1
|
Guan Y, Cui Y, Qu X, Li B, Zhang L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int J Food Microbiol 2025; 426:110920. [PMID: 39316924 DOI: 10.1016/j.ijfoodmicro.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The fermented milk products with lactic acid bacteria (LAB) are widely accepted by consumers. During the chilled-chain transportation and storage, LAB in the product keep producing lactic acid, and this will lead to post-acidification, which can affect the flavor, consumer acceptance and even shelf-life of the product. LAB is the determining factor affecting post-acidification. The acid production pathway in LAB and methods inhibiting post-acidification received widespread attention. This review will focus on the post-acidification from the perspective of fermentation starters, including acid production pathway in LAB, main factors and key enzymes affecting post-acidification. Lactobacillus delbrueckii subsp. bulgaricus is a key bacterial species responsible for post acidification in the fermented milk products. The different species and strains presented various differences in process like acid production, acid resistance and post-acidification. Furthermore, multiple factors, such as milk composition, fermentation temperature, and homogenization, also can influence post-acidification. Lactose transport and utilization pathways, as well as its subsequent products metabolic pathway directly influence the post-acidification. F0F1-ATPase, β-galactosidase, and lactate dehydrogenase are recognized as important enzymes related to post-acidification. The degree of post-acidification is mainly related to the acid production and acid resistance abilities of the fermentation starters, so the key enzymes related to post-acidification are mostly taking part in these two capacities. Recently, some new post-acidification related biomarker genes were found, providing a reference adjusting post-acidification without affecting fermentation rate and bacteria viability. To clarify the post-acidification mechanism at the molecular level will help control post- acidification.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Effendi SSW, Ng IS. Reprogramming T7RNA Polymerase in Escherichia coli Nissle 1917 under Specific Lac Operon for Efficient p-Coumaric Acid Production. ACS Synth Biol 2022; 11:3471-3481. [PMID: 36087056 DOI: 10.1021/acssynbio.2c00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lac operon is the standard regulator used to control the orthogonality of T7RNA polymerase (T7RNAP) and T7 promoter inEscherichia coli BL21(DE3) strain for protein expression. However,E. coliNissle 1917 (EcN), the unique probiotic strain, has seldom been precisely adapted to the T7 system. Herein, we applied bioinformatics analysis on Lac operon from different strains, and it was observed that a weak promoter for LacI repressor existed in EcN. Furthermore, X-gal assay revealed a strong expression of lacZ in EcN. We demonstrated that Lac operon significantly affected the protein expression in the two T7-derived EcN, in which T7RNAP was integrated at lambda (ET7L) and HK022 (ET7H), respectively. Different combinations of replication origin, chaperonin GroELS, inducer, and medium were explored to fine-tune the best strain with tyrosine ammonia-lyase (TAL) for p-coumaric acid (pCA) production, which is one of the essential bioactive compounds for human health. Finally, the highest pCA conversion of 78.8% was achieved using RRtL (plasmid form) under the optimum condition, and a 51.5% conversion was obtained with L::Rt strain which has integrated T7-RtTAL at HK022 of ET7L in the simulated gut environment. The appropriate reprogramming of T7RNAP expedites EcN as an effective and promising cell factory for live bacterial therapeutics in the future.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Surve S, Shinde DB, Kulkarni R. Isolation, characterization and comparative genomics of potentially probiotic Lactiplantibacillus plantarum strains from Indian foods. Sci Rep 2022; 12:1940. [PMID: 35121802 PMCID: PMC8816928 DOI: 10.1038/s41598-022-05850-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023] Open
Abstract
Lactiplantibacillus plantarum is one of the most diverse species of lactic acid bacteria found in various habitats. The aim of this work was to perform preliminary phenotypic and genomic characterization of two novel and potentially probiotic L. plantarum strains isolated from Indian foods, viz., dhokla batter and jaggery. Both the strains were bile and acid tolerant, utilized various sugars, adhered to intestinal epithelial cells, produced exopolysaccharides and folate, were susceptible for tetracycline, erythromycin, and chloramphenicol, did not cause hemolysis, and exhibited antimicrobial and plant phenolics metabolizing activities. The genetic determinants of bile tolerance, cell-adhesion, bacteriocins production, riboflavin and folate biosynthesis, plant polyphenols utilization, and exopolysaccharide production were found in both the strains. One of the strains contained a large number of unique genes while the other had a simultaneous presence of glucansucrase and fructansucrase genes which is a rare trait in L. plantarum. Comparative genome analysis of 149 L. plantarum strains highlighted high variation in the cell-adhesion and sugar metabolism genes while the genomic regions for some other properties were relatively conserved. This work highlights the unique properties of our strains along with the probiotic and technically important genomic features of a large number of L. plantarum strains.
Collapse
Affiliation(s)
- Sarvesh Surve
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, 03755, USA
| | - Dasharath B Shinde
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.
| |
Collapse
|
4
|
Deshwal GK, Tiwari S, Kumar A, Raman RK, Kadyan S. Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Millar JA, Raghavan R. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Front Cell Infect Microbiol 2021; 10:596277. [PMID: 33747974 PMCID: PMC7968456 DOI: 10.3389/fcimb.2020.596277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Sci Rep 2018; 8:7152. [PMID: 29740087 PMCID: PMC5940811 DOI: 10.1038/s41598-018-25660-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 11/30/2022] Open
Abstract
The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-β-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h−1) and in LacNAc (0.0307 ± 0.0009 h−1) significantly lower than the wild-type (0.1010 ± 0.0006 h−1 and 0.0522 ± 0.0005 h−1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320–fold in LacNAc and from 100 to 200–fold in lactose, compared to cells growing in glucose.
Collapse
|
7
|
Cutrim CS, Barros RFD, Franco RM, Cortez MAS. Escherichia coli O157:H7 SURVIVAL IN TRADITIONAL AND LOW LACTOSE YOGURT DURING FERMENTATION AND COOLING PERIODS. CIÊNCIA ANIMAL BRASILEIRA 2017. [DOI: 10.1590/1089-6891v18e-39554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.
Collapse
|
8
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
9
|
Cutrim CS, Barros RFD, Costa MPD, Franco RM, Conte-Junior CA, Cortez MAS. Survival of Escherichia coli O157:H7 during manufacture and storage of traditional and low lactose yogurt. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Hagi T, Kobayashi M, Nomura M. Metabolome analysis of milk fermented by γ-aminobutyric acid–producing Lactococcus lactis. J Dairy Sci 2016; 99:994-1001. [DOI: 10.3168/jds.2015-9945] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
|
11
|
Kelesidis T. Origin of de novo daptomycin non susceptible enterococci. World J Clin Infect Dis 2015; 5:30-36. [DOI: 10.5495/wjcid.v5.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
The emergence of daptomycin non-susceptible enterococci (DNSE) poses both treatment and infection control challenges. Clinicians should be vigilant that DNSE may be isolated from patients with or without (de novo DNSE) prior use of daptomycin. Recent epidemiological data suggest the presence of a community reservoir for DNSE which may be associated with environmental, foodborne and agricultural exposures. The mechanisms of nonsusceptibility to daptomycin have not been well characterized and may not parallel those for Staphylococcus aureus. The identification of daptomycin resistance genes in anaerobes, in farm animals and in an ecosystem that has been isolated for million years, suggest that the environmental reservoir for de novo DNSE may be larger than previously thought. Herein, the limited available scientific evidence regarding the possible origin of de novo DNSE is discussed. The current existing evidence is not sufficient to draw firm conclusions on the origin of DNSE. Further studies to determine the mechanisms of de novo daptomycin nonsusceptibility among enterococci are needed.
Collapse
|
12
|
Barber KE, King ST, Stover KR, Pogue JM. Therapeutic options for vancomycin-resistant enterococcal bacteremia. Expert Rev Anti Infect Ther 2015; 13:363-77. [DOI: 10.1586/14787210.2015.1001839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Liu K, Zeng X, Qiao L, Li X, Yang Y, Dai C, Hou A, Xu D. The sensitivity and significance analysis of parameters in the model of pH regulation on lactic acid production by Lactobacillus bulgaricus. BMC Bioinformatics 2014; 15 Suppl 13:S5. [PMID: 25434877 PMCID: PMC4248659 DOI: 10.1186/1471-2105-15-s13-s5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. Results A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. Conclusions The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed.
Collapse
|
14
|
Derkx PMF, Janzen T, Sørensen KI, Christensen JE, Stuer-Lauridsen B, Johansen E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb Cell Fact 2014; 13 Suppl 1:S5. [PMID: 25186244 PMCID: PMC4155822 DOI: 10.1186/1475-2859-13-s1-s5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.
Collapse
|
15
|
El Kafsi H, Binesse J, Loux V, Buratti J, Boudebbouze S, Dervyn R, Kennedy S, Galleron N, Quinquis B, Batto JM, Moumen B, Maguin E, van de Guchte M. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics 2014; 15:407. [PMID: 24884896 PMCID: PMC4082628 DOI: 10.1186/1471-2164-15-407] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. Results Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. Conclusions The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-407) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Do Carmo A, De Oliveira M, Da Silva D, Castro S, Borges A, De Carvalho A, De Moraes C. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk. Benef Microbes 2012; 3:23-32. [DOI: 10.3920/bm2011.0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh – lactate dehydrogenase, adhE – Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 – catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.
Collapse
Affiliation(s)
- A. Do Carmo
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Departamento de Microbiologia, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| | - M. De Oliveira
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Departamento de Microbiologia, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| | - D. Da Silva
- Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua da Glória, 187 Centro, 39100-000 Diamantina, MG, Brazil
| | - S. Castro
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Departamento de Microbiologia, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| | - A. Borges
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Departamento de Microbiologia, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| | - A. De Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| | - C. De Moraes
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Departamento de Microbiologia, Universidade Federal de Viçosa, Campus Universitário s/n, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
17
|
Nguyen TT, Nguyen HA, Arreola SL, Mlynek G, Djinović-Carugo K, Mathiesen G, Nguyen TH, Haltrich D. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1713-21. [PMID: 22283494 PMCID: PMC3284191 DOI: 10.1021/jf203909e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The lacZ gene from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, encoding a β-galactosidase of the glycoside hydrolase family GH2, was cloned into different inducible lactobacillal expression vectors for overexpression in the host strain Lactobacillus plantarum WCFS1. High expression levels were obtained in laboratory cultivations with yields of approximately 53000 U of β-galactosidase activity per liter of medium, which corresponds to ~170 mg of recombinant protein per liter and β-galactosidase levels amounting to 63% of the total intracellular protein of the host organism. The wild-type (nontagged) and histidine-tagged recombinant enzymes were purified to electrophoretic homogeneity and further characterized. β-Galactosidase from L. bulgaricus was used for lactose conversion and showed very high transgalactosylation activity. The maximum yield of galacto-oligosaccharides (GalOS) was approximately 50% when using an initial concentration of 600 mM lactose, indicating that the enzyme can be of interest for the production of GalOS.
Collapse
Affiliation(s)
- Tien-Thanh Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kelesidis T. Comment on: Successful therapy of treatment-emergent, non-clonal daptomycin-non-susceptible Enterococcus faecium infections. J Antimicrob Chemother 2012; 67:515-6. [PMID: 22052687 PMCID: PMC8445007 DOI: 10.1093/jac/dkr465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Abstract
Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.
Collapse
Affiliation(s)
- Willem M de Vos
- Laboratory of Microbiology, Wageningen University, The Netherlands.
| |
Collapse
|
20
|
Cebeci A, Gürakan GC. Comparative typing of L. delbrueckii subsp. bulgaricus strains using multilocus sequence typing and RAPD–PCR. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1526-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing. Appl Environ Microbiol 2009; 75:4120-9. [PMID: 19395564 DOI: 10.1128/aem.02898-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions.
Collapse
|
22
|
Tsai YK, Chen HW, Lo TC, Lin TH. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+. MICROBIOLOGY-SGM 2009; 155:751-760. [PMID: 19246746 DOI: 10.1099/mic.0.021907-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Hung-Wen Chen
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Ta-Chun Lo
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Thy-Hou Lin
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
23
|
Francke C, Kerkhoven R, Wels M, Siezen RJ. A generic approach to identify Transcription Factor-specific operator motifs; Inferences for LacI-family mediated regulation in Lactobacillus plantarum WCFS1. BMC Genomics 2008; 9:145. [PMID: 18371204 PMCID: PMC2329647 DOI: 10.1186/1471-2164-9-145] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/27/2008] [Indexed: 12/18/2022] Open
Abstract
Background A key problem in the sequence-based reconstruction of regulatory networks in bacteria is the lack of specificity in operator predictions. The problem is especially prominent in the identification of transcription factor (TF) specific binding sites. More in particular, homologous TFs are abundant and, as they are structurally very similar, it proves difficult to distinguish the related operators by automated means. This also holds for the LacI-family, a family of TFs that is well-studied and has many members that fulfill crucial roles in the control of carbohydrate catabolism in bacteria including catabolite repression. To overcome the specificity problem, a comprehensive footprinting approach was formulated to identify TF-specific operator motifs and was applied to the LacI-family of TFs in the model gram positive organism, Lactobacillus plantarum WCFS1. The main premise behind the approach is that only orthologous sequences that share orthologous genomic context will share equivalent regulatory sites. Results When the approach was applied to the 12 LacI-family TFs of the model species, a specific operator motif was identified for each of them. With the TF-specific operator motifs, potential binding sites were found on the genome and putative minimal regulons could be defined. Moreover, specific inducers could in most cases be linked to the TFs through phylogeny, thereby unveiling the biological role of these regulons. The operator predictions indicated that the LacI-family TFs can be separated into two subfamilies with clearly distinct operator motifs. They also established that the operator related to the 'global' regulator CcpA is not inherently distinct from that of other LacI-family members, only more degenerate. Analysis of the chromosomal position of the identified putative binding sites confirmed that the LacI-family TFs are mostly auto-regulatory and relate mainly to carbohydrate uptake and catabolism. Conclusion Our approach to identify specific operator motifs for different TF-family members is specific and in essence generic. The data infer that, although the specific operator motifs can be used to identify minimal regulons, experimental knowledge on TF activity especially is essential to determine complete regulons as well as to estimate the overlap between TF affinities.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O, Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Soundararajan M, Bailey CP, Markwell J. Use of a laboratory exercise on molar absorptivity to help students understand the authority of the primary literature. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:61-4. [PMID: 21591161 DOI: 10.1002/bmb.20144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To promote understanding of the authority of the primary literature in students taking our biochemistry laboratory courses, a biochemistry laboratory exercise on the determination of an acceptable molar absorptivity value of 2-nitrophenol (2-NP) was developed. This made the laboratory course much more relevant by linking to a thematic thread, β-galactosidase, that scaffolds concepts in one exercise with those in later exercises. The substrate for the continuous assay of β-galactosidase is the chromogenic 2-nitrophenyl-β-D-galactopyranoside that produces 2-NP. In an early laboratory exercise, students determine the wavelength of maximum absorption for the protonated and deprotonated form of 2-NP at various pH values and then determine the molar absorptivity of 2-NP. Students were encouraged to discuss apparent discrepancies not only in their own determinations of molar absorptivity values for 2-NP, but also in the published molar absorptivity values for 2-NP (2,150-21,300 M(-1) cm(-1) ) at almost the same pH and at 420 nm. Finally, the students were led to a publication that serves as an authentic source for molar absorptivity of 2-NP.
Collapse
Affiliation(s)
- Madhavan Soundararajan
- Center for Biological Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664.
| | | | | |
Collapse
|
25
|
Möller C, Bockelmann W, Ammann A, Heller KJ. Production of yoghurt with mild taste by a Lactobacillus delbrueckii subsp. bulgaricus mutant with altered proteolytic properties. Biotechnol J 2007; 2:469-79. [PMID: 17260332 DOI: 10.1002/biot.200600225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this communication, we describe the isolation of a Lactobacillus delbrueckii subsp. bulgaricus 92063 mutant strain named pH-P11, which differed from the parent strain by low proteolytic activity and altered regulation of expression of lacZ in the presence of glucose or lactose. In the presence of lactose, beta-galactosidase activity was approximately twice as high in pH-P11 than in the wild type. pH-P11 exhibited protosymbiosis together with Streptococcus thermophilus. Yoghurt produced with pH-P11 was characterized by low acidity and little post-acidification during storage. The organoleptic properties (absence of bitterness and other off-flavors, weak sourness, and clear yoghurt taste) were those of a typical "yoghurt mild". This mild flavor was achieved at rather high cell counts of lactobacilli even at the end of shelf-life. High cell counts in conjunction with high beta-galactosidase activity make pH-P11 an interesting strain for application in yoghurt especially designed for consumers with lactose malabsorption. In contrast to "yoghurt mild", which is predominantly produced with Lactobacillus acidophilus together with Streptococcus thermophilus, the product obtained by fermentation with pH-P11 and Streptococcus thermophilus concurs with international standards for yoghurt. During frequent sub-culturing, strain pH-P11, which is supposed to differ from the wild type by one or a few so-far-not-characterized mutations, showed sufficient stability for application in industrial production.
Collapse
Affiliation(s)
- Claudia Möller
- Institute for Microbiology, Federal Center for Nutrition and Food, Kiel, Germany
| | | | | | | |
Collapse
|
26
|
van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessières P, Weissenbach J, Ehrlich SD, Maguin E. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006; 103:9274-9. [PMID: 16754859 PMCID: PMC1482600 DOI: 10.1073/pnas.0603024103] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is a representative of the group of lactic acid-producing bacteria, mainly known for its worldwide application in yogurt production. The genome sequence of this bacterium has been determined and shows the signs of ongoing specialization, with a substantial number of pseudogenes and incomplete metabolic pathways and relatively few regulatory functions. Several unique features of the L. bulgaricus genome support the hypothesis that the genome is in a phase of rapid evolution. (i) Exceptionally high numbers of rRNA and tRNA genes with regard to genome size may indicate that the L. bulgaricus genome has known a recent phase of important size reduction, in agreement with the observed high frequency of gene inactivation and elimination; (ii) a much higher GC content at codon position 3 than expected on the basis of the overall GC content suggests that the composition of the genome is evolving toward a higher GC content; and (iii) the presence of a 47.5-kbp inverted repeat in the replication termination region, an extremely rare feature in bacterial genomes, may be interpreted as a transient stage in genome evolution. The results indicate the adaptation of L. bulgaricus from a plant-associated habitat to the stable protein and lactose-rich milk environment through the loss of superfluous functions and protocooperation with Streptococcus thermophilus.
Collapse
Affiliation(s)
- M van de Guchte
- Génétique Microbienne and Mathématique, Informatique et Génome, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci U S A 2006; 103:3816-21. [PMID: 16505367 PMCID: PMC1533782 DOI: 10.1073/pnas.0511287103] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transport and catabolic machinery involved in carbohydrate utilization by Lactobacillus acidophilus was characterized genetically by using whole-genome cDNA microarrays. Global transcriptional profiles were determined for growth on glucose, fructose, sucrose, lactose, galactose, trehalose, raffinose, and fructooligosaccharides. Hybridizations were carried out by using a round-robin design, and microarray data were analyzed with a two-stage mixed model ANOVA. Differentially expressed genes were visualized by hierarchical clustering, volcano plots, and contour plots. Overall, only 63 genes (3% of the genome) showed a >4-fold induction. Specifically, transporters of the phosphoenolpyruvate:sugar transferase system were identified for uptake of glucose, fructose, sucrose, and trehalose, whereas ATP-binding cassette transporters were identified for uptake of raffinose and fructooligosaccharides. A member of the LacS subfamily of galactoside-pentose hexuronide translocators was identified for uptake of galactose and lactose. Saccharolytic enzymes likely involved in the metabolism of monosaccharides, disaccharides, and polysaccharides into substrates of glycolysis were also found, including enzymatic machinery of the Leloir pathway. The transcriptome appeared to be regulated by carbon catabolite repression. Although substrate-specific carbohydrate transporters and hydrolases were regulated at the transcriptional level, genes encoding regulatory proteins CcpA, Hpr, HprK/P, and EI were consistently highly expressed. Genes central to glycolysis were among the most highly expressed in the genome. Collectively, microarray data revealed that coordinated and regulated transcription of genes involved in sugar uptake and metabolism is based on the specific carbohydrate provided. L. acidophilus's adaptability to environmental conditions likely contributes to its competitive ability for limited carbohydrate sources available in the human gastrointestinal tract.
Collapse
Affiliation(s)
| | | | - Tri Duong
- *Genomic Sciences Graduate Program and Departments of
- Food Science and
| | - Shannon B. Conners
- *Genomic Sciences Graduate Program and Departments of
- Chemical Engineering, North Carolina State University, Raleigh, NC 27695
| | - Robert M. Kelly
- Chemical Engineering, North Carolina State University, Raleigh, NC 27695
| | | |
Collapse
|
28
|
Callanan MJ, Beresford TP, Ross RP. Genetic diversity in the lactose operons of Lactobacillus helveticus strains and its relationship to the role of these strains as commercial starter cultures. Appl Environ Microbiol 2005; 71:1655-8. [PMID: 15746373 PMCID: PMC1065143 DOI: 10.1128/aem.71.3.1655-1658.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel insertion sequence elements, ISLhe1 and ISLhe15, were located upstream of the genes encoding the beta-galactosidase enzyme in Lactobacillus helveticus commercial starter strains. Strains with the IS982 family element, ISLhe1, demonstrated reduced beta-galactosidase activity compared to the L. helveticus type strain, whereas strains with the ISLhe15 element expressed beta-galactosidase in the absence of lactose.
Collapse
Affiliation(s)
- M J Callanan
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | | |
Collapse
|
29
|
Dellaglio F, Felis GE, Castioni A, Torriani S, Germond JE. Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. Int J Syst Evol Microbiol 2005; 55:401-404. [PMID: 15653908 DOI: 10.1099/ijs.0.63067-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four strains isolated from Indian dairy products and initially identified as Lactobacillus delbrueckii could not be assigned to a definite subspecies because molecular identification and phenotypic traits did not agree with those of recognized subspecies of L. delbrueckii. Hybridization of total DNA (78–86 % against type strains of the other three subspecies), AFLP and RAPD-PCR fingerprints, phylogenetic analysis based on 16S rRNA gene sequences and sequence analysis of two coding genes (recA and hsp60), together with phenotypic profiles, indicated that the four strains form a coherent cluster and represent a novel subspecies, for which the name Lactobacillus delbrueckii subsp. indicus subsp. nov. is proposed. The type strain is NCC725T (=LMG 22083T=DSM 15996T).
Collapse
Affiliation(s)
- Franco Dellaglio
- Dipartimento Scientifico e Tecnologico, Facoltà di Scienze MM. FF. NN., Università degli Studi di Verona, Italy
| | - Giovanna E Felis
- Dipartimento Scientifico e Tecnologico, Facoltà di Scienze MM. FF. NN., Università degli Studi di Verona, Italy
| | - Anna Castioni
- Dipartimento Scientifico e Tecnologico, Facoltà di Scienze MM. FF. NN., Università degli Studi di Verona, Italy
| | - Sandra Torriani
- Dipartimento Scientifico e Tecnologico, Facoltà di Scienze MM. FF. NN., Università degli Studi di Verona, Italy
| | | |
Collapse
|
30
|
Kurogochi M, Nishimura SI, Lee YC. Mechanism-based Fluorescent Labeling of β-Galactosidases. J Biol Chem 2004; 279:44704-12. [PMID: 15308675 DOI: 10.1074/jbc.m401718200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
(4-N-5-Dimethylaminonaphthalene-1-sulfonyl-2-difluoromethylphenyl)-beta-d-galactopyranoside was synthesized and successfully tested on beta-galactosidases from Xanthomonas manihotis (Wong-Madden, S. T., and Landry, D. Glycobiology (1995) 5, 19-28 and Taron, C. H., Benner, J. S., Hornstra, L. J., and Guthrie, E. P. (1995) Glycobiology 5, 603-610), Escherichia coli (Jacobson, R. H., Zhang, X. J., DuBose, R. F., and Matthews, B. W. (1994) Nature 369, 761-766), and Bacillus circulans (Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and Ajisaka, K. (1988) Glycoconj. J. 15, 155-160) for the rapid identification of the catalytic site. Reaction of the irreversible inhibitor with enzymes proceeded to afford a fluorescence-labeled protein suitable for further high throughput characterization by using antidansyl antibody and matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF). Specific probing by a fluorescent aglycon greatly facilitated identification of the labeled peptide fragments from beta-galactosidases. It was demonstrated by using X. manihotis beta-galactosidase that the Arg-58 residue, which is located within a sequence of 56IPRAYWKD63, was labeled by nucleophilic attack of the guanidinyl group. This sequence including Arg-58 (Leu-46 to Tyr-194) was similar to that (Met-1 to Tyr-151) of Thermus thermophilus A4, which is the first known structure of glycoside hydrolases family 42 (Hidaka, M., Fushinobu, S., Ohtsu, N., Motoshima, H., Matsuzawa, H., Shoun, H., and Wakagi, T. (2002) J. Mol. Biol. 322, 79-91). A catalytic glutamic acid (Glu-537) of E. coli beta-galactosidase was proved to be labeled by the same procedure, suggesting that the modification site with this irreversible substrate might depend both on the nucleophilicity of the amino acids and their spatial arrangement in the individual catalytic cavity. Similarly, a Glu-259 in 257TLEE260 was selectively labeled using B. circulans beta-galactosidase, indicating that Glu-259 is one of the nucleophiles in the active site. The present method can be readily extended to other glycosidases and should greatly aid the high throughput proteomics of many glycoside hydrolases showing both retaining- and inverting-type mechanisms.
Collapse
Affiliation(s)
- Masaki Kurogochi
- Division of Biological Sciences, Graduate School of Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | |
Collapse
|
31
|
Sóki J, Fodor E, Hecht DW, Edwards R, Rotimi VO, Kerekes I, Urbán E, Nagy E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J Med Microbiol 2004; 53:413-419. [PMID: 15096551 DOI: 10.1099/jmm.0.05452-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fifteen Bacteroides fragilis isolates from the USA, Hungary and Kuwait were examined for carbapenem resistance, for carbapenemase activity and, with the use of various PCR-based methods and nucleotide sequencing, for cfiA genes and activating insertion sequence (IS) elements. All the B. fragilis isolates were cfiA-positive, 10 of the cfiA genes being upregulated by IS elements that are already known. Of these 10, one was of a novel type (designated IS943) and two further ones (IS614B and IS614C) were suspected hybrids of IS612, IS614 and IS942. There were five cfiA-positive imipenem-resistant B. fragilis isolates with elevated imipenem MICs (minimal inhibitory concentration) that harboured no IS insertion upstream of the cfiA gene, but produced carbapenemase; these isolates might possess a novel activation mechanism. On the basis of the available phenotypic and genotypic evidence, the present data suggest that there are at least two cfiA activation mechanisms among B. fragilis isolates.
Collapse
Affiliation(s)
- József Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Eleonóra Fodor
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - David W Hecht
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Richard Edwards
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Vincent O Rotimi
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Irén Kerekes
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary 2Department of Medicine, Microbiology and Immunology, Loyola University Chicago, Maywood, and Department of Medicine, VA Hospital, Hines, USA 3Division of Microbiology, University Hospital, Queen's Medical Centre, Nottingham, UK 4Department of Microbiology, Faculty of Medicine, University of Kuwait, Kuwait 5`Vitality' Laboratory, Biological Research Center of Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
32
|
Strøman P, Müller CC, Sørensen KI. Heat shock treatment increases the frequency of loss of an erythromycin resistance-encoding transposable element from the chromosome of Lactobacillus crispatus CHCC3692. Appl Environ Microbiol 2004; 69:7173-80. [PMID: 14660363 PMCID: PMC309925 DOI: 10.1128/aem.69.12.7173-7180.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3,165-bp chromosomally integrated transposon, designatedTn3692, of the gram-positive strain Lactobacillus crispatus CHCC3692 contains an erm(B) gene conferring resistance to erythromycin at concentrations of up to 250 micrograms/ml. Loss of this resistance can occur spontaneously, but the rate is substantially increased by heat shock treatment. Heat shock treatment at 60 degrees C resulted in an almost 40-fold increase in the frequency of erythromycin-sensitive cells (erythromycin MIC, 0.047 micrograms/ml). The phenotypic change was followed by a dramatic increase in transcription of the transposase gene and the concomitant loss of an approximately 2-kb DNA fragment carrying the erm(B) gene from the 3,165-bp erm transposon. In cells that were not subjected to heat shock, transcription of the transposase gene was not detectable. The upstream sequence of the transposase gene did not show any homology to known heat shock promoters in the gene data bank. Significant homology (>99%) was observed between the erythromycin resistance-encoding gene from L. crispatus CHCC3692 and the erm(B) genes from other gram-positive bacteria, such as Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium, and Lactobacillus reuteri, which strongly indicates a common origin of the erm(B) gene for these species. The transposed DNA element was not translocated to other parts of the genome of CHCC3692, as determining by Southern blotting, PCR analysis, and DNA sequencing. No other major aberrations were observed, as judged by colony morphology, growth performance of the strain, and pulsed-field gel electrophoresis. These observations suggest that heat shock treatment could be used as a tool for the removal of unwanted antibiotic resistance genes harbored in transposons flanked by insertion sequence elements or transposases in lactic acid bacteria used for animal and human food production.
Collapse
Affiliation(s)
- Per Strøman
- Department of Genomics and Strain Development, Chr. Hansen A/S, DK-2970 Hørsholm, Denmark.
| | | | | |
Collapse
|
33
|
Bongers RS, Hoefnagel MHN, Starrenburg MJC, Siemerink MAJ, Arends JGA, Hugenholtz J, Kleerebezem M. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J Bacteriol 2003; 185:4499-507. [PMID: 12867459 PMCID: PMC165757 DOI: 10.1128/jb.185.15.4499-4507.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis NZ9010 in which the las operon-encoded ldh gene was replaced with an erythromycin resistance gene cassette displayed a stable phenotype when grown under aerobic conditions, and its main end products of fermentation under these conditions were acetate and acetoin. However, under anaerobic conditions, the growth of these cells was strongly retarded while the main end products of fermentation were acetate and ethanol. Upon prolonged subculturing of this strain under anaerobic conditions, both the growth rate and the ability to produce lactate were recovered after a variable number of generations. This recovery was shown to be due to the transcriptional activation of a silent ldhB gene coding for an Ldh protein (LdhB) with kinetic parameters different from those of the native las operon-encoded Ldh protein. Nevertheless, cells producing LdhB produced mainly lactate as the end product of fermentation. The mechanism underlying the ldhB gene activation was primarily studied in a single-colony isolate of the recovered culture, designated L. lactis NZ9015. Integration of IS981 in the upstream region of ldhB was responsible for transcription activation of the ldhB gene by generating an IS981-derived -35 promoter region at the correct spacing with a natively present -10 region. Subsequently, analysis of 10 independently isolated lactate-producing derivatives of L. lactis NZ9010 confirmed that the ldhB gene is transcribed in all of them. Moreover, characterization of the upstream region of the ldhB gene in these derivatives indicated that site-specific and directional IS981 insertion represents the predominant mechanism of the observed recovery of the ability to produce lactate.
Collapse
Affiliation(s)
- Roger S Bongers
- Wageningen Centre for Food Sciences, NIZO Food Research, FNI Department, 6710 BA Ede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Duncan MJ. Genomics of oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:175-87. [PMID: 12799321 DOI: 10.1177/154411130301400303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in bacterial genetics came with the discovery of the genetic code, followed by the development of recombinant DNA technologies. Now the field is undergoing a new revolution because of investigators' ability to sequence and assemble complete bacterial genomes. Over 200 genome projects have been completed or are in progress, and the oral microbiology research community has benefited through projects for oral bacteria and their non-oral-pathogen relatives. This review describes features of several oral bacterial genomes, and emphasizes the themes of species relationships, comparative genomics, and lateral gene transfer. Genomics is having a broad impact on basic research in microbial pathogenesis, and will lead to new approaches in clinical research and therapeutics. The oral microbiota is a unique community especially suited for new challenges to sequence the metagenomes of microbial consortia, and the genomes of uncultivable bacteria.
Collapse
Affiliation(s)
- Margaret J Duncan
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Fortina MG, Ricci G, Mora D, Guglielmetti S, Manachini PL. Unusual organization for lactose and galactose gene clusters in Lactobacillus helveticus. Appl Environ Microbiol 2003; 69:3238-43. [PMID: 12788721 PMCID: PMC161534 DOI: 10.1128/aem.69.6.3238-3243.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of the Lactobacillus helveticus lactose utilization genes were determined, and these genes were located and oriented relative to one another. The lacLM genes (encoding the beta-galactosidase protein) were in a divergent orientation compared to lacR (regulatory gene) and lacS (lactose transporter). Downstream from lacM was an open reading frame (galE) encoding a UDP-galactose 4 epimerase, and the open reading frame had the same orientation as lacM. The lacR gene was separated from the downstream lacS gene by 2.0 kb of DNA containing several open reading frames that were derived from fragmentation of another permease gene (lacS'). Northern blot analysis revealed that lacL, lacM, and galE made up an operon that was transcribed in the presence of lactose from an upstream lacL promoter. The inducible genes lacL and lacM were regulated at the transcriptional level by the LacR repressor. In the presence of glucose and galactose galE was transcribed from its promoter, suggesting that the corresponding enzyme can be expressed constitutively. Lactose transport was inducible by addition of lactose to the growth medium.
Collapse
Affiliation(s)
- Maria Grazia Fortina
- Industrial Microbiology Section, Department of Food Science and Microbiology, University of Milan, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
36
|
Ravin V, Alatossava T. Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification. Plasmid 2003; 49:253-68. [PMID: 12749837 DOI: 10.1016/s0147-619x(03)00018-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A group of new insertion sequence (IS) elements, ISLdl2, ISLdl3, and ISLdl4, from Lactobacillus delbrueckii subsp. lactis ATCC 15808 was isolated, characterized, and used for strain identification together with ISLdl1, recently characterized as an L. delbrueckii IS element belonging to the ISL3 family. ISLdl2 was 1367 bp in size and had a 24 bp IR and an 8 bp DR. The single ORF of ISLdl2 encoded a protein of 392 aa similar to transposases of the IS256 family. ISLdl3 had a single ORF encoding a protein of 343 aa similar to transposases of the IS30 family. Finally, ISLdl4 had a single ORF encoding a protein of 406 aa and displayed homology to the transposases of the IS110 family. ISLdl4 was only slight different from ISL4 (Accession No. AY040213). ISLdl1, ISLdl2, and ISLdl4 were present in all of the 10 L. delbrueckii subsp. lactis and subsp. delbrueckii strains tested, as well as in three of the 11 L. delbrueckii subsp. bulgaricus strains tested. ISLdl3 was present only in four closely related strains of L. delbrueckii subsp. lactis. These IS elements were not observed in Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus helveticus, or Lactobacillus plantarum. A cluster of IS elements, ISLdl1, ISLdl2, ISLdl3, ISLdl4, and ISL6, was observed in L. delbrueckii subsp. lactis strain ATCC 15808. Within this cluster, ISLdl4 was inserted into ISLdl1 between the left IR and the start codon of ORF455, encoding a putative transposase. Most of the integration sites of the IS elements were strain-specific. We have observed that IS elements can migrate from one strain to another as integral parts of bacterial DNA by using phage LL-H as a vehicle. We demonstrate for the first time that inverse PCR and vectorette PCR methods with primers based on sequences of the IS elements could be used for identification of L. delbrueckii strains.
Collapse
Affiliation(s)
- Victor Ravin
- Department of Biology, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | |
Collapse
|
37
|
Bringel F, Hubert JC. Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus, and L. casei: prevalence of CO(2)-dependent auxotrophs and characterization of deficient arg genes in L. plantarum. Appl Environ Microbiol 2003; 69:2674-83. [PMID: 12732536 PMCID: PMC154521 DOI: 10.1128/aem.69.5.2674-2683.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Accepted: 01/30/2003] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO(2). We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO(2) requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.
Collapse
Affiliation(s)
- Françoise Bringel
- Laboratoire de Dynamique, Expression et Evolution des génomes de micro-organismes, FRE 2326 Université Louis-Pasteur/CNRS, 28 rue Goethe, 67083 Strasbourg, France.
| | | |
Collapse
|
38
|
Germond JE, Lapierre L, Delley M, Mollet B, Felis GE, Dellaglio F. Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 2003; 20:93-104. [PMID: 12519911 DOI: 10.1093/molbev/msg012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The species Lactobacillus delbrueckii consists at present of three subspecies, delbrueckii, lactis and bulgaricus, showing a high level of DNA-DNA hybridization similarity but presenting markedly different traits related to distinct ecological adaptation. The internal genetic heterogeneity of the bacterial species L. delbrueckii was analyzed. Phenotypic and several genetic traits were investigated for 61 strains belonging to this species. These included 16S rDNA sequence mutations, expression of beta-galactosidase and of the cell wall-anchored protease, the characterization of the lactose operon locus and of the sequence of lacR gene, galactose metabolism, and the distribution of insertion sequences. The high genetic heterogeneity of taxa was confirmed by every trait investigated: the lac operon was completely deleted in the subsp. delbrueckii, different mutation events in the repressor gene of the operon led to a constitutive expression of lacZ in the subsp. bulgaricus. Structural differences in the same genetic locus were probably due to the presence of different IS elements in the flanking regions. The different expression of the cell wall-anchored protease, constitutive in the subsp. bulgaricus, inducible in the subsp. lactis, and absent in the subsp. delbrueckii was also a consequence of mutations at the gene level. The galT gene for galactose metabolism was found only in the subsp. lactis, while no specific amplification product was detected in the other two subspecies. All these data, together with the absence of a specific IS element, ISL6, from the major number of strains belonging to the subsp. bulgaricus, confirmed a deep internal heterogeneity among the three subspecies. Moreover, this evidence and the directional mutations found in the 16S rDNA sequences suggested that, of the three subspecies, L. delbrueckii subsp. lactis is the taxon closer to the ancestor. Limitations of the current prokaryotic species definition were also discussed, based on presented evidences. Our results indicate the need for an accurate investigation of internal heterogeneity of bacterial species. This study has consequences on the prokaryotic species concept, since genomic flexibility of prokaryotes collides with a stable classification, necessary from a scientific and applied point of view.
Collapse
|