1
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
2
|
Tkachev PV, Goncharov A, Dmitriev A. Temperate enterococcal bacteriophages: genetic features and practical application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.213-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temperate bacteriophages are of interest as carriers and vectors of pathogenicity factors that determine an epidemic potential of opportunistic bacteria as well as biotechnology objects. This review describes studies of temperate bacteriophages infecting bacteria of the genus Enterococcus, including strains associated with the development of nosocomial infections. Genetic features of moderate enterococcal phages as well as their potential for practical application in medicine are considered.
Collapse
Affiliation(s)
| | - A.E. Goncharov
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| | - A.V. Dmitriev
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| |
Collapse
|
3
|
Koko I, Song AAL, Masarudin MJ, Abdul Rahim R. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis. BMC Biotechnol 2019; 19:82. [PMID: 31775775 PMCID: PMC6882331 DOI: 10.1186/s12896-019-0575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/07/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Site-specific integration system allows foreign DNA to be integrated into the specific site of the host genome, enabling stable expression of heterologous protein. In this study, integrative vectors for secretion and surface display of proteins were constructed based on a lactococcal phage TP901-1 integrating system. RESULTS The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA. CONCLUSION The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.
Collapse
Affiliation(s)
- Innanurdiani Koko
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
- Chancellory, Universiti Teknikal Malaysia, 76100 Durian Tunggal, Melaka, Malaysia
| |
Collapse
|
4
|
Abstract
A synthetic approach to biology is a promising technique for various applications. Recent advancements have demonstrated the feasibility of constructing synthetic two-input logic gates in Escherichia coli cells with long-term memory based on DNA inversion induced by recombinases. Moreover, recent evidences indicate that DNA inversion mediated by genome editing tools is possible. Powerful genome editing technologies, such as CRISPR-Cas9 systems, have great potential to be exploited to implement large-scale recombinase-based circuits. What remains unclear is how to construct arbitrary Boolean functions based on these emerging technologies. In this paper, we lay the theoretical foundation formalizing the connection between recombinase-based genetic circuits and Boolean functions. It enables systematic construction of any given Boolean function using recombinase-based logic gates. We further develop a methodology leveraging existing electronic design automation (EDA) tools to automate the synthesis of complex recombinase-based genetic circuits with respect to area and delay optimization. In silico experimental results demonstrate the applicability of our proposed methods as a useful tool for recombinase-based genetic circuit synthesis and optimization.
Collapse
|
5
|
Stevens RH, Zhang H, Hsiao C, Kachlany S, Tinoco EMB, DePew J, Fouts DE. Structural proteins of Enterococcus faecalis bacteriophage ϕEf11. BACTERIOPHAGE 2016; 6:e1251381. [PMID: 28090386 PMCID: PMC5221750 DOI: 10.1080/21597081.2016.1251381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/06/2023]
Abstract
ϕEf11, a temperate Siphoviridae bacteriophage, was isolated by induction from a root canal isolate of Enterococcus faecalis. Sequence analysis suggested that the ϕEf11 genome included a contiguous 8 gene module whose function was related to head structure assembly and another module of 10 contiguous genes whose products were responsible for tail structure assembly. SDS-PAGE analysis of virions of a ϕEf11 derivative revealed 11 well-resolved protein bands. To unify the deduced functional gene assignments emanating from the DNA sequence data, with the structural protein analysis of the purified virus, 6 of the SDS-PAGE bands were subjected to mass spectrometry analysis. 5 of the 6 protein bands analyzed by mass spectrometry displayed identical amino acid sequences to those predicted to be specified by 4 of the ORFs identified in the ϕEf11 genome. These included: ORF8 (predicted scaffold protein), ORF10 (predicted major head protein), ORF15 (predicted major tail protein), and ORF23 (presumptive antireceptor).
Collapse
Affiliation(s)
- Roy H Stevens
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA; Department of Endodontics, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Hongming Zhang
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA; Department of Endodontics, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Chaiwing Hsiao
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry , Philadelphia, PA, USA
| | - Scott Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University , Newark, NJ, USA
| | | | - Jessica DePew
- Department of Genomic Medicine, J Craig Venter Institute , Rockville, MD, USA
| | - Derrick E Fouts
- Department of Genomic Medicine, J Craig Venter Institute , Rockville, MD, USA
| |
Collapse
|
6
|
Yoon BH, Chang HI. Genomic annotation for the temperate phage EFC-1, isolated from Enterococcus faecalis KBL101. Arch Virol 2014; 160:601-4. [PMID: 25359106 DOI: 10.1007/s00705-014-2263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/19/2014] [Indexed: 12/01/2022]
Abstract
The temperate phage EFC-1 was newly isolated from a mitomycin-C-induced lysate of Enterococcus faecalis KBL101. EFC-1 has an isometric head and a long tail. The phage belongs to the family Siphoviridae according to its genomic structure and morphology. The phage EFC-1 has 40,286 base pairs of double-stranded DNA and a G+C content of 35.05 %. Bioinformatic analysis of the phage revealed 60 putative open reading frames (ORFs). The genome of the temperate phage EFC-1 was not significantly similar to that of previously reported bacteriophages from E. faecalis.
Collapse
Affiliation(s)
- Bo Hyun Yoon
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Sungbuk-Gu, Seoul, Korea
| | | |
Collapse
|
7
|
Shank EA. Using coculture to detect chemically mediated interspecies interactions. J Vis Exp 2013:e50863. [PMID: 24300024 DOI: 10.3791/50863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Collapse
|
8
|
Li M, Wang J, Geng Y, Li Y, Wang Q, Liang Q, Qi Q. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb Cell Fact 2012; 11:19. [PMID: 22305426 PMCID: PMC3293061 DOI: 10.1186/1475-2859-11-19] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs) in tandem. RESULTS Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. CONCLUSIONS The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
Collapse
Affiliation(s)
- Mingji Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Jang JH, Kim SJ, Yoon BH, Ryu JH, Gu MB, Chang HI. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip. J Food Prot 2011; 74:933-8. [PMID: 21669070 DOI: 10.4315/0362-028x.jfp-10-418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.
Collapse
Affiliation(s)
- Jun Hyeong Jang
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Brown WR, Lee NC, Xu Z, Smith MC. Serine recombinases as tools for genome engineering. Methods 2011; 53:372-9. [DOI: 10.1016/j.ymeth.2010.12.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/14/2023] Open
|
11
|
Chen L, Woo SLC. Site-specific transgene integration in the human genome catalyzed by phiBT1 phage integrase. Hum Gene Ther 2008; 19:143-51. [PMID: 18067406 DOI: 10.1089/hum.2007.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Streptomyces phage phiBT1 integrase catalyzes recombination between phage attP and bacterial attB sites (att, attachment), resulting in phage DNA integration into the bacterial host genome in a unidirectional manner. Multiple pseudo-attB and -attP sites are present serendipitously in mammalian genomes and can recombine with wild-type attP and attB sequences. The phiBT1 system has been used previously to achieve site-specific integration of murine phenylalanine hydroxylase cDNA into hepatocytes of mice with phenylketonuria, which led to the complete and permanent correction of the disease phenotypes without apparent toxicities. Here we report the identification of three pseudo-attP and two pseudo-attB sites in human cells, which are located in intergenic regions of five different chromosomes. There are no microdeletions of human genomic sequences at the insertional junctions and the integrated transgenes are expressed. Human cells expressing phiBT1 integrase showed normal karyotypes without chromosomal translocations between the pseudo-attB and -attP sites. Polymerase chain reaction analyses were performed on genomic DNA isolated from various human cell types expressing phiBT1 integrase, using primers flanking the pseudo-attB and -attP sites from mismatched human chromosomes. No chromosomal translocation events were detected in normal human hepatocytes, peripheral blood mononuclear cells, vascular microendothelial cells, and two other transformed human cell lines, although one such event was observed in a human melanoma cell line. The results suggest that the occurrence of chromosomal translocations is human cell type dependent, and that the phiBT1 system for site-specific integration of transgenes into the human genome can be used in selected applications.
Collapse
Affiliation(s)
- Li Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
12
|
Nigutová K, Styriak I, Javorský P, Pristas P. Partial characterization of Enterococcus faecalis bacteriophage F4. Folia Microbiol (Praha) 2008; 53:234-6. [PMID: 18661299 DOI: 10.1007/s12223-008-0033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 10/21/2022]
Abstract
Large Enterococcus faecalis F4 bacteriophage (described earlier) consisting of double-stranded linear DNA of approximately 60 kb was characterized. Library was prepared of its random DNA fragments and selected recombinants were sequenced. Three phage essential genes were characterized: DNA polymerase, replicative DNA helicase and a minor capsid protein, showing only limited homology to other known phage encoded genes. The occurrence of these genes among enterococci was determined by PCR method. Only two out of 40 tested isolates possessed all three genes, another three isolates contained at least one of the genes, demonstrating low frequency F4 lysogens among natural enterococcal isolates.
Collapse
Affiliation(s)
- K Nigutová
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovakia.
| | | | | | | |
Collapse
|
13
|
Chen L, Woo SL. Correction in female PKU mice by repeated administration of mPAH cDNA using phiBT1 integration system. Mol Ther 2007; 15:1789-95. [PMID: 17637719 DOI: 10.1038/sj.mt.6300257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder secondary to a hepatic deficiency of phenylalanine hydroxylase (PAH) that predisposes affected children to develop severe and irreversible mental retardation. We have previously reported the complete and permanent correction of the hyperphenylalaninemic and hypopigmentation phenotypes in male, but not female, PKU mice after genome-targeted delivery of murine PAH (mPAH) complementary DNA (cDNA) in a phiBT1 bacteriophage integration system. Here we show that sequential administration of green fluorescent protein (GFP)- and red fluorescent protein (RFP)-expressing cassettes in the phiBT1 integration system led to distinct and non-overlapping populations of green and red fluorescent hepatocytes in vivo. The hyperphenylalaninemic and hypopigmentation phenotypes of female PKU mice were completely corrected after 10 weekly administrations of mPAH cDNA. Importantly, there was no apparent liver pathology in mice even after 10 consecutive administrations of the phiBT1 integration system. The results indicate that repeated administration of transgenes in the phiBT1 integration system can lead to their genome-targeted integration in a diverse population of hepatocytes and result in the elevation of transgene expression levels in a cumulative manner, which can be utilized to overcome insufficient transgene expression owing to low genome integration frequencies in a gene therapy paradigm for metabolic disorders.
Collapse
Affiliation(s)
- Li Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
14
|
Chen L, Thung SN, Woo SLC. Metabolic basis of sexual dimorphism in PKU mice after genome-targeted PAH gene therapy. Mol Ther 2007; 15:1079-85. [PMID: 17406346 DOI: 10.1038/sj.mt.6300137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have previously reported a transgene delivery system based on phiBT1 bacteriophage integrase that results in targeted insertion of transgenes into mammalian genomes, and its use in the delivery of murine phenylalanine hydroxylase (PAH) complementary DNA (cDNA) into the hepatocytes of male phenylketonuria (PKU) mice, leading to a complete and permanent correction of their hyperphenylalaninemic phenotype. In this study, we report only partial phenotypic correction in female PKU mice, even though hepatic PAH activities in both sexes after gene treatment were similar. Daily injections of tetrahydrobiopterin (BH4), an essential co-factor for phenylalanine hydroxylation, in the gene-treated females led to complete correction of their PKU phenotype. After gonadectomy, serum phenylalanine levels in the gene-treated females were reduced to normal, whereas those in the gene-treated males remained unchanged. The sterile gene-treated PKU mice were subjected to daily sex hormone injections. Whereas the estradiol-treated sterile males developed hyperphenylalaninemia, the dihydrotestosterone-treated sterile females remained normal phenylalaninemic. The results indicate that it is estrogen that suppresses the steady-state levels of BH4 in mouse hepatocytes that became limiting, which is the underlying mechanism for the observed sexual dimorphism in PKU mice after PAH gene treatment. Livers of the PAH gene-corrected PKU mice also appeared normal and without apparent pathologies.
Collapse
Affiliation(s)
- Li Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
15
|
Azarnia S, Robert N, Lee B. Biotechnological methods to accelerate cheddar cheese ripening. Crit Rev Biotechnol 2006; 26:121-43. [PMID: 16923531 DOI: 10.1080/07388550600840525] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cheese is one of the dairy products that can result from the enzymatic coagulation of milk. The basic steps of the transformation of milk into cheese are coagulation, draining, and ripening. Ripening is the complex process required for the development of a cheese's flavor, texture and aroma. Proteolysis, lipolysis and glycolysis are the three main biochemical reactions that are responsible for the basic changes during the maturation period. As ripening is a relatively expensive process for the cheese industry, reducing maturation time without destroying the quality of the ripened cheese has economic and technological benefits. Elevated ripening temperatures, addition of enzymes, addition of cheese slurry, attenuated starters, adjunct cultures, genetically engineered starters and recombinant enzymes and microencapsulation of ripening enzymes are traditional and modern methods used to accelerate cheese ripening. In this context, an up to date review of Cheddar cheese ripening is presented.
Collapse
Affiliation(s)
- Sorayya Azarnia
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
16
|
Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics 2006; 276:135-46. [PMID: 16699779 DOI: 10.1007/s00438-006-0129-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 04/09/2006] [Indexed: 12/12/2022]
Abstract
This study evaluated the ability of five serine phage integrases, from phages A118, U153, Bxb1, phiFC1, and phiRV1, to mediate recombination in mammalian cells. Two types of recombination were investigated, including the ability of an integrase to mediate recombination between its own phage att sites in the context of a mammalian cell and the ability of an integrase to perform genomic integration pairing a phage att site with an endogenous mammalian sequence. We demonstrated that the A118 integrase mediated precise intra-molecular recombination of a plasmid containing its attB and attP sites at a frequency of approximately 50% in human cells. The closely related U153 integrase also performed efficient recombination in human cells on a plasmid containing the attB and attP sites of A118. The integrases from phages Bxb1, phiFC1, and phiRV1 carried out such recombination at their attB and attP sites at frequencies ranging from 11 to 75%. Furthermore, the A118 integrase mediated recombination between its attP site on a plasmid and pseudo attB sites in the human genome, i.e. native sequences with partial identity to attB. Fifteen such A118 pseudo att sites were analyzed, and a consensus recognition site was identified. The other integrases did not mediate integration at genomic sequences at a frequency above background. These site-specific integrases represent valuable new tools for manipulating eukaryotic genomes.
Collapse
Affiliation(s)
- Annahita Keravala
- Department of Genetics, M-334, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen L, Woo SLC. Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci U S A 2005; 102:15581-6. [PMID: 16230623 PMCID: PMC1266087 DOI: 10.1073/pnas.0503877102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explored the potential of using a bacteriophage integrase system to achieve site-specific genome integration of murine phenylalanine hydroxylase cDNA in the livers of phenylketonuric (PKU) mice. The phiBT1 phage integrase is an enzyme that catalyses the efficient recombination between unique sequences in the phage and bacterial genomes, leading to the site-specific integration of the former into the latter in a unidirectional manner. Here we showed that this phage integrase functions efficiently in mouse cells, and several naturally occurring pseudo-attP sites located in the intergenic regions of the mouse genome have been identified and molecularly characterized. We further demonstrated that the addition of nuclear localization signal sequences to the C terminus of the phage integrase enhanced the efficiency for transgene integration into the mouse genome. Using this phage integration system, we delivered mouse phenylalanine hydroxylase cDNA to the livers of PKU mice by hydrodynamic injection of plasmid DNA and showed that the severity of the hyperphenylalaninemic phenotype in the treated mice decreased significantly. After three applications, serum phenylalanine levels in all treated PKU mice were reduced to the normal range and remained stable thereafter. Their fur color also changed from gray to black, indicating the reconstitution of melanin biosynthesis as a result of available tyrosine derived from reconstituted phenylalanine hydroxylation in the liver. Thus, the phiBT1 bacteriophage integrase represents an effective site-specific genome integration system in mammalian cells and can be of great value in DNA-mediated gene therapy for a multitude of genetic disorders.
Collapse
Affiliation(s)
- Li Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | | |
Collapse
|
18
|
Adams V, Lucet IS, Lyras D, Rood JI. DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family. Mol Microbiol 2004; 53:1195-207. [PMID: 15306021 DOI: 10.1111/j.1365-2958.2004.04198.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific recombination is an important mechanism for genetic exchange. Insertional recombination mediated by the recently delineated large resolvase or serine recombinase proteins is unique within the resolvase family as integration was thought to be a reaction catalysed only by members of the integrase or tyrosine recombinase family of site-specific recombinases. The large resolvase TnpX is a serine recombinase that is responsible for the movement of the Tn4451/3 family of chloramphenicol resistance elements, which are found within two genera of the medically important clostridia. Deletion analysis of TnpX showed that the last 110 amino acids (aa) of TnpX, which comprise a cysteine rich region, were not essential for its biological function and that a region required for DNA binding was located between aa 493-597. Purified TnpX was shown to bind to the ends of the element and to the joint of the circular intermediate with high affinity but, most unusually, to bind to its target sites with a considerably lower affinity. Therefore, it was concluded that the resolvase-like excision and insertion reactions mediated by TnpX were distinct processes even though the same serine recombinase mechanism was involved. TnpX is the first large serine recombinase in which differential binding to its transposon and target sites has been demonstrated.
Collapse
Affiliation(s)
- Vicki Adams
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
19
|
Abstract
Phage integrases are enzymes that mediate unidirectional site-specific recombination between two DNA recognition sequences, the phage attachment site, attP, and the bacterial attachment site, attB. Integrases may be grouped into two major families, the tyrosine recombinases and the serine recombinases, based on their mode of catalysis. Tyrosine family integrases, such as lambda integrase, utilize a catalytic tyrosine to mediate strand cleavage, tend to recognize longer attP sequences, and require other proteins encoded by the phage or the host bacteria. Phage integrases from the serine family are larger, use a catalytic serine for strand cleavage, recognize shorter attP sequences, and do not require host cofactors. Phage integrases mediate efficient site-specific recombination between two different sequences that are relatively short, yet long enough to be specific on a genomic scale. These properties give phage integrases growing importance for the genetic manipulation of living eukaryotic cells, especially those with large genomes such as mammals and most plants, for which there are few tools for precise manipulation of the genome. Integrases of the serine family have been shown to work efficiently in mammalian cells, mediating efficient integration at introduced att sites or native sequences that have partial identity to att sites. This reaction has applications in areas such as gene therapy, construction of transgenic organisms, and manipulation of cell lines. Directed evolution can be used to increase further the affinity of an integrase for a particular native sequence, opening up additional applications for genomic modification.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
20
|
Bibb LA, Hatfull GF. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol Microbiol 2002; 45:1515-26. [PMID: 12354222 DOI: 10.1046/j.1365-2958.2002.03130.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genomes of Mycobacterium tuberculosis H37Rv and CDC1551 each contain two prophage-like elements, phiRv1 and phiRv2. The phiRv1 element is not only absent from Mycobacterium bovis BCG but is in different locations within the two sequenced M. tuberculosis genomes; in both cases phiRv1 is inserted into a REP13E12 repeated sequence, which presumably contains the bacterial attachment site, attB, for phiRv1. Although phiRv1 is probably too small to encode infectious phage particles, it may nevertheless have an active integration/excision system and be capable of moving from one chromosomal position to another. We show here that the M. tuberculosis H37Rv phiRv1 element does indeed encode an active site-specific recombination system in which an integrase of the serine recombinase family (Rv1586c) catalyses integration and excision and a small, basic phiRv1-encoded protein (Rv1584c) controls the directionality of re-combination. Integration-proficient plasmid vectors derived from phiRv1 efficiently transform BCG, can utilize four of the seven REP13E12 sites present in BCG as attachment sites, and can occupy more than one site simultaneously.
Collapse
Affiliation(s)
- Lori A Bibb
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|