1
|
Segawa T, Ohno Y, Kurita M, Ishibashi T, Yoshioka M. Helicobacter delphinicola infection and the risk of gastric disease in common bottlenose dolphin. DISEASES OF AQUATIC ORGANISMS 2023; 155:187-192. [PMID: 37767885 DOI: 10.3354/dao03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Gastritis and gastric ulcers are well-recognized conditions in cetaceans; bacteria of the genus Helicobacter are considered the primary cause of these diseases. Dolphins have been shown to be susceptible to infection by at least 2 gastric species of Helicobacter, H. cetorum and H. delphinicola, both of which are closely related to the human pathogen H. pylori. In the present study, we evaluated the carriage rate and relationship to gastric disease of H. cetorum and H. delphinicola, based on a study population of 82 dolphins maintained at 21 facilities in Japan. Of these 82 dolphins, 79 (96.3%) and 45 (54.9%) were positive for H. cetorum and H. delphinicola, respectively; H. delphinicola infection was significantly associated with chronic gastric diseases (odds rate: 5.9; 95% CI: 2.1-16.9), but no such association was detected for H. cetorum. Of the 21 facilities, 20 (95%) and 11 (55%) housed H. cetorum- and H. delphinicola-positive dolphins, respectively, and our study suggested that the transmission between dolphins occurs quickly within pools. These findings indicate that methods will need to be established to prevent the transmission of Helicobacter infections within facilities housing dolphins.
Collapse
Affiliation(s)
- Takao Segawa
- Cetacean Research Center, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | | | | | | | | |
Collapse
|
2
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
3
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
4
|
Rimbara E, Suzuki M, Matsui H, Nakamura M, Morimoto M, Sasakawa C, Masuda H, Nomura S, Osaki T, Nagata N, Shibayama K, Tokunaga K. Isolation and characterization of Helicobacter suis from human stomach. Proc Natl Acad Sci U S A 2021; 118:e2026337118. [PMID: 33753513 PMCID: PMC8020762 DOI: 10.1073/pnas.2026337118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter suis, a bacterial species naturally hosted by pigs, can colonize the human stomach in the context of gastric diseases such as gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Because H. suis has been successfully isolated from pigs, but not from humans, evidence linking human H. suis infection to gastric diseases has remained incomplete. In this study, we successfully in vitro cultured H. suis directly from human stomachs. Unlike Helicobacter pylori, the viability of H. suis decreases significantly on neutral pH; therefore, we achieved this using a low-pH medium for transport of gastric biopsies. Ultimately, we isolated H. suis from three patients with gastric diseases, including gastric MALT lymphoma. Successful eradication of H. suis yielded significant improvements in endoscopic and histopathological findings. Oral infection of mice with H. suis clinical isolates elicited gastric and systemic inflammatory responses; in addition, progression of gastric mucosal metaplasia was observed 4 mo postinfection. Because H. suis could be isolated from the stomachs of infected mice, our findings satisfied Koch's postulates. Although further prospective clinical studies are needed, H. suis, like H. pylori, is likely a gastric pathogen in humans. Furthermore, comparative genomic analysis of H. suis using complete genomes of clinical isolates revealed that the genome of each H. suis isolate contained highly plastic genomic regions encoding putative strain-specific virulence factors, including type IV secretion system-associated genes, and that H. suis isolates from humans and pigs were genetically very similar, suggesting possible pig-to-human transmission.
Collapse
Affiliation(s)
- Emiko Rimbara
- Department of Bacteriology II, National Institute of Infectious Diseases, 208-0011 Tokyo, Japan;
| | - Masato Suzuki
- Antimicrobial Research Center, National Institute of Infectious Diseases, 189-0002 Tokyo, Japan
| | - Hidenori Matsui
- Omura Satoshi Memorial Institute, Kitasato University, 108-8641 Tokyo, Japan;
| | | | - Misako Morimoto
- Department of Research Associate Product Development, Nippon Institute for Biological Science, 198-0024 Tokyo, Japan
| | - Chihiro Sasakawa
- Department of Research Associate Product Development, Nippon Institute for Biological Science, 198-0024 Tokyo, Japan
- Medical Mycology Research Center, Chiba University, 263-8522 Chiba, Japan
| | - Hiroki Masuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-8654 Tokyo, Japan
- Department of Gastrointestinal Surgery, Nippon Medical University, 113-8602 Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-8654 Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 181-8611 Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 208-0011 Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, 208-0011 Tokyo, Japan
| | - Kengo Tokunaga
- Department of General Medicine, Kyorin University School of Medicine, 181-8611 Tokyo, Japan
| |
Collapse
|
5
|
Helicobacter pylori type 4 secretion systems as gastroduodenal disease markers. Sci Rep 2021; 11:4584. [PMID: 33633144 PMCID: PMC7907105 DOI: 10.1038/s41598-021-83862-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Although the type 4 secretion system of the integrating and conjugative elements (tfs ICE) is common in Helicobacter pylori, its clinical association with the cag pathogenicity island (cagPAI) have not yet been well-investigated. In this study, Vietnamese patient H. pylori samples (46 duodenal ulcer (DU), 51 non-cardia gastric cancer (NCGC), 39 chronic gastritis (CG)) were fully sequenced using next-generation sequencing and assembled into contigs. tfs3, tfs4, and cagPAI genes were compared with the public database. Most (94%) H. pylori strains possessed a complete cagPAI, which was the greatest risk factor for clinical outcomes, while the prevalences of tfs3 and tfs4 were 45% and 77%, respectively. Complete tfs3 and tfs4 were found in 18.3% and 17.6% of strains, respectively. The prevalence of H. pylori strains with complete tfs3 ICE in DU patients was significantly higher than that in NCGC patients (30.4% vs 11.7%, P < 0.05). In addition, the prevalence of strains with complete tfs3 ICE and cagPAI was significantly higher in DU patients than that in NCGC (28.4% vs 9.8%, P = 0.038) and CG patients (28.2% vs 7.7%, P = 0.024). cagPAI and complete tfs3 increased the risk of DU compared to NCGC (OR = 3.56, 95%CI: 1.1–14.1, P = 0.038) and CG (OR = 4.64, 95%CI: 1.1–27.6, P = 0.024). A complete cluster of tfs3 ICE was associated with gastroduodenal diseases in Vietnam. However, there was a low prevalence of the dupA/complete dupA cluster (15.4%) in the Vietnam strains. The prevalence of cagPAI in Vietnam strains was significantly higher than in US (P = 0.01) and Indonesia (P < 0.0001); the prevalence of the dupA cluster was also higher in the Vietnam strains than in the Indonesian strains (P < 0.05). In addition, the prevalence of ctkA, an accessory gene of tfs3, was significantly different between Vietnam and US strains (28% vs 2%, P = 0.0002). In summary, the acquisition of tfs3/4 ICE was common in H. pylori strains in patients with gastroduodenal disease in Vietnam, and the complete cluster of tfs3 ICE was a reliable marker for the severity of disease in the H. pylori infected population.
Collapse
|
6
|
Mucito-Varela E, Castillo-Rojas G, Calva JJ, López-Vidal Y. Integrative and Conjugative Elements of Helicobacter pylori Are Hypothetical Virulence Factors Associated With Gastric Cancer. Front Cell Infect Microbiol 2020; 10:525335. [PMID: 33194783 PMCID: PMC7604443 DOI: 10.3389/fcimb.2020.525335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori is a bacteria with high genome plasticity that has been associated with diverse gastric pathologies. The genetic diversity of this bacteria has limited the characterization of virulence factors associated with gastric cancer (GC). To identify potentially helpful disease biomarkers, we compared 38 complete genomes and 108 draft genomes of H. pylori isolated worldwide from patients with diverse gastric pathologies and 53 draft genomes of H. pylori isolated from Mexican patients with GC, intestinal metaplasia, gastritis, peptic ulcer, and dyspepsia. H. pylori strains isolated from GC were 3-11 times more likely to harbor any of seven genes encoded within an integrative and conjugative element (ICE) than H. pylori isolated from subjects with other gastric pathologies. We tested the cytopathic effects on AGS cells of selected H. pylori strains with known cytotoxin-associated gene pathogenicity island (cag-PAI) and ICE status (H. pylori strains 29CaP, 29CaCe, 62A9, 7C, 8822, and 26695) and the histopathological damage of H. pylori 29CaP and 62A9 in a mouse model. H. pylori 29CaP, which harbors a complete ICEHptfs3 but lacks cag-PAI, elicited distinctive morphology changes and higher histopathological scores compared with other H. pylori strains carrying cag-PAI and hybrid ICE with incomplete TFSS. The presence of intact segments of ICE regions might be a risk factor to develop GC that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Eduardo Mucito-Varela
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gonzalo Castillo-Rojas
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan J. Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
7
|
Alam J, Sarkar A, Karmakar BC, Ganguly M, Paul S, Mukhopadhyay AK. Novel virulence factor dupA of Helicobacter pylori as an important risk determinant for disease manifestation: An overview. World J Gastroenterol 2020; 26:4739-4752. [PMID: 32921954 PMCID: PMC7459207 DOI: 10.3748/wjg.v26.i32.4739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a microaerophilic, Gram-negative, human gastric pathogen found usually in the mucous lining of stomach. It infects more than 50% of the world’s population and leads to gastroduodenal diseases. The outcome of disease depends on mainly three factors: Host genetics, environment and bacterial factors. Among these, bacterial virulence factors such as cagA, vacA are well known for their role in disease outcomes. However, based on the global epidemiological results, none of the bacterial virulence (gene) factors was found to be associated with particular diseases like duodenal ulcer (DU) in all populations. Hence, substantial importance has been provided for research in strain-specific genes outside the cag pathogenicity island, especially genes located within the plasticity regions. dupA found within the plasticity regions was first demonstrated in 2005 and was proposed for duodenal ulcer development and reduced risk of gastric cancer in certain geographical regions. Due to the discrepancies in report from different parts of the world in DU development related to H. pylori virulence factor, dupA became an interesting area of research in elucidating the role of this gene in the disease progression. In this review, we shed light on the detailed information available on the polymorphisms in dupA and their clinical relevance. We have critically appraised several pertinent studies on dupA and discussed their merits and shortcomings. This review also highlights dupA gene as an important biomarker for DU in certain populations.
Collapse
Affiliation(s)
- Jawed Alam
- Division of Infectious Diseases, Institute of Life Science, Bhubaneswar 751023, India
| | - Avijit Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Mou Ganguly
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Sangita Paul
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
8
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Excision and transfer of an integrating and conjugative element in a bacterial species with high recombination efficiency. Sci Rep 2019; 9:8915. [PMID: 31222169 PMCID: PMC6586827 DOI: 10.1038/s41598-019-45429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Horizontal transfer of mobile genetic elements, such as integrating and conjugative elements (ICEs), plays an important role in generating diversity and maintaining comprehensive pan-genomes in bacterial populations. The human gastric pathogen Helicobacter pylori, which is known for its extreme genetic diversity, possesses highly efficient transformation and recombination systems to achieve this diversity, but it is unclear to what extent these systems influence ICE physiology. In this study, we have examined the excision/integration and horizontal transfer characteristics of an ICE (termed ICEHptfs4) in these bacteria. We show that transfer of ICEHptfs4 DNA during mating between donor and recipient strains is independent of its conjugation genes, and that homologous recombination is much more efficient than site-specific integration into the recipient chromosome. Nevertheless, ICEHptfs4 excision by site-specific recombination occurs permanently in a subpopulation of cells and involves relocation of a circularization-dependent promoter. Selection experiments for excision indicate that the circular form of ICEHptfs4 is not replicative, but readily reintegrates by site-specific recombination. Thus, although ICEHptfs4 harbours all essential transfer genes, and typical ICE functions such as site-specific integration are active in H. pylori, canonical ICE transfer is subordinate to the more efficient general DNA uptake and homologous recombination machineries in these bacteria.
Collapse
|
10
|
Park CH, Lee A, Lee Y, Eun CS, Lee SK, Han DS. Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing. Helicobacter 2019; 24:e12547. [PMID: 30440093 PMCID: PMC6587566 DOI: 10.1111/hel.12547] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite recent advances in studies on the gastric microbiome, the role of the non-Helicobacter pylori gastric microbiome in gastric carcinogenesis remains unclear. We evaluated the characteristics of the gastric microbiome and metagenomic functions in patients with IM. METHODS Participants were classified into six groups according to disease status (chronic superficial gastritis [CSG], intestinal metaplasia [IM], and cancer) and H. pylori- infection status (H. pylori-positive and H. pylori-negative). The gastric microbiome was analyzed in mucosal tissues at the gastric antrum by 16S rRNA gene sequencing. Moreover, we assessed the metagenome including the type IV secretion system (T4SS) gene, as T4SS proteins are essential for transferring CagA from H. pylori- into the human gastric epithelium. RESULTS Among the 138 included patients, 48, 9, 23, 14, 12, and 32 were classified into the H. pylori-negative CSG, H. pylori-negative IM, H. pylori-negative cancer, H. pylori-positive CSG, H. pylori-positive IM, and H. pylori-positive cancer groups, respectively. Cyanobacteria were predominant in the H. pylori-negative CSG group compared to in the H. pylori-negative IM and H. pylori-negative cancer groups (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 14.0% vs 4.2% vs 0.04%, P < 0.001). In contrast, Rhizobiales were commonly observed in the H. pylori-negative IM group (H. pylori-negative CSG vs H. pylori-negative IM vs H. pylori-negative cancer: 1.9% vs 15.4% vs 2.8%, P < 0.001). The relative abundance of Rhizobiales increased as H. pylori-infected stomachs progressed from gastritis to IM. In the H. pylori-negative IM group, genes encoding T4SS were prevalent among the metagenome. Additionally, after H. pylori- eradication therapy, the gastric microbiome was similar to the microbiome observed after spontaneous clearance of H. pylori-. CONCLUSIONS The relative abundance of Rhizobiales was higher in patients with H. pylori-negative IM than in those with H. pylori-negative CSG or cancer. Additionally, T4SS genes were highly observed in the metagenome of patients with IM. Highly abundant T4SS proteins in these patients may promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea,Department of Medicine, The Graduate SchoolYonsei UniversitySeoulKorea
| | - A‐reum Lee
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Yu‐ra Lee
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Chang Soo Eun
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal MedicineSeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Dong Soo Han
- Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| |
Collapse
|
11
|
Waskito LA, Yih-Wu J, Yamaoka Y. The role of integrating conjugative elements in Helicobacter pylori: a review. J Biomed Sci 2018; 25:86. [PMID: 30497458 PMCID: PMC6264033 DOI: 10.1186/s12929-018-0489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
The genome of Helicobacter pylori contains many putative genes, including a genetic region known as the Integrating Conjugative Elements of H. pylori type four secretion system (ICEHptfs). This genetic regions were originally termed as "plasticity zones/regions" due to the great genetic diversity between the original two H. pylori whole genome sequences. Upon analysis of additional genome sequences, the regions were reported to be extremely common within the genome of H. pylori. Moreover, these regions were also considered conserved rather than genetically plastic and were believed to act as mobile genetic elements transferred via conjugation. Although ICEHptfs(s) are highly conserved, these regions display great allele diversity, especially on ICEHptfs4, with three different subtypes: ICEHptfs4a, 4b, and 4c. ICEHptfs were also reported to contain a novel type 4 secretion system (T4SS) with both epidemiological and in vitro infection model studies highlighting that this novel T4SS functions primarily as a virulence factor. However, there is currently no information regarding the structure, the genes responsible for forming the T4SS, and the interaction between this T4SS and other virulence genes. Unlike the cag pathogenicity island (PAI), which contains CagA, a gene found to be essential for H. pylori virulence, these novel T4SSs have not yet been reported to contain genes that contribute significant effects to the entire system. This notion prompted the hypothesis that these novel T4SSs may have different mechanisms involving cag PAI.
Collapse
Affiliation(s)
- Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Oita University, Faculty of Medicine, Yufu City, Oita, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Jeng Yih-Wu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University, Faculty of Medicine, Yufu City, Oita, Japan. .,Department of Medicine, Gastroenterology Section, Baylor College of Medicine, Houston, TX, USA. .,Global Oita Medical Advanced Research Center for Health, Yufu City, Oita, Japan.
| |
Collapse
|
12
|
Sitaraman R. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. MICROBIOME 2018; 6:163. [PMID: 30223892 PMCID: PMC6142633 DOI: 10.1186/s40168-018-0551-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/05/2018] [Indexed: 05/26/2023]
Abstract
The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.
Collapse
Affiliation(s)
- Ramakrishnan Sitaraman
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
13
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
14
|
Waskito LA, Miftahussurur M, Lusida MI, Syam AF, Suzuki R, Subsomwong P, Uchida T, Hamdan M, Nasronudin, Yamaoka Y. Distribution and clinical associations of integrating conjugative elements and cag pathogenicity islands of Helicobacter pylori in Indonesia. Sci Rep 2018; 8:6073. [PMID: 29666390 PMCID: PMC5904169 DOI: 10.1038/s41598-018-24406-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
The clinical associations and correlations with other virulence factors such as cag pathogenicity island (PAI) of the Integrating Conjugative Elements Helicobacter pylori TFSS (ICEHptfs), a new type IV secretion system (TFSS) in H. pylori has not been described. Among 103 studied strains from Indonesia, almost all strains (99.0%) contained cag PAI with more than half (55.8%) were intact cag PAI. Patients infected with intact cag PAI strains showed significantly higher antral activity, inflammation and atrophy as well as corporal inflammation than those with non-intact cag PAI strains, confirming the virulence of cag PAI. Over half of strains (53.8%) contained ICEHptfs, predominantly consisted of ICEHptfs3-tfs4a (42.8%) and ICEHptfs3 (16.3%). Although patients infected with ICEHptfs-positive strains had lower H. pylori density, those with the complete ICEHptfs4b strains tended to have higher antral activity than the negative one. In combination, patients infected with combination of intact cag PAI-ICEHptfs-positive strains had more severe inflammation than those with non-intact cag PAI-ICEHptfs-negative, suggesting a possibility of a mutual correlation between these TFSS(s).
Collapse
Affiliation(s)
- Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Muhammad Hamdan
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Nasronudin
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan. .,Department of Medicine, Gastroenterology and Hepatology section, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
15
|
Delahay RM, Croxall NJ, Stephens AD. Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA 2018; 9:5. [PMID: 29416569 PMCID: PMC5785829 DOI: 10.1186/s13100-018-0109-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background The genome of the gastric pathogen Helicobacter pylori is characterised by considerable variation of both gene sequence and content, much of which is contained within three large genomic islands comprising the cag pathogenicity island (cagPAI) and two mobile integrative and conjugative elements (ICEs) termed tfs3 and tfs4. All three islands are implicated as virulence factors, although whereas the cagPAI is well characterised, understanding of how the tfs elements influence H. pylori interactions with different human hosts is significantly confounded by limited definition of their distribution, diversity and structural representation in the global H. pylori population. Results To gain a global perspective of tfs ICE population dynamics we established a bioinformatics workflow to extract and precisely define the full tfs pan-gene content contained within a global collection of 221 draft and complete H. pylori genome sequences. Complete (ca. 35-55kbp) and remnant tfs ICE clusters were reconstructed from a dataset comprising > 12,000 genes, from which orthologous gene complements and distinct alleles descriptive of different tfs ICE types were defined and classified in comparative analyses. The genetic variation within defined ICE modular segments was subsequently used to provide a complete description of tfs ICE diversity and a comprehensive assessment of their phylogeographic context. Our further examination of the apparent ICE modular types identified an ancient and complex history of ICE residence, mobility and interaction within particular H. pylori phylogeographic lineages and further, provided evidence of both contemporary inter-lineage and inter-species ICE transfer and displacement. Conclusions Our collective results establish a clear view of tfs ICE diversity and phylogeographic representation in the global H. pylori population, and provide a robust contextual framework for elucidating the functional role of the tfs ICEs particularly as it relates to the risk of gastric disease associated with different tfs ICE genotypes. Electronic supplementary material The online version of this article (10.1186/s13100-018-0109-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin M Delahay
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Nicola J Croxall
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Amberley D Stephens
- 1Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,2Present Address: Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcette Drive, West Cambridge, Cambridge, CB3 0AS UK
| |
Collapse
|
16
|
Silva B, Nunes A, Vale FF, Rocha R, Gomes JP, Dias R, Oleastro M. The expression of Helicobacter pylori tfs plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion. Helicobacter 2017; 22. [PMID: 28436598 DOI: 10.1111/hel.12390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. METHODS The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. RESULTS We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. CONCLUSIONS A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains.
Collapse
Affiliation(s)
- Bruno Silva
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Rocha
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
17
|
Alandiyjany MN, Croxall NJ, Grove JI, Delahay RM. A role for the tfs3 ICE-encoded type IV secretion system in pro-inflammatory signalling by the Helicobacter pylori Ser/Thr kinase, CtkA. PLoS One 2017; 12:e0182144. [PMID: 28759055 PMCID: PMC5536186 DOI: 10.1371/journal.pone.0182144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Two distinct type IV secretion systems (T4SSs) can be identified in certain Helicobacter pylori strains, encoded on mobile genetic elements termed tfs3 and tfs4. Although their function remains unknown, both have been implicated in clinical outcomes of H. pylori infection. Here we provide evidence that the Tfs3 T4SS is required for activity of the pro-inflammatory Ser/Thr kinase protein, CtkA, in a gastric epithelial cell infection model. Previously, purified recombinant CtkA protein has been shown to upregulate NF-kappaB signalling and induce TNF-alpha and IL-8 cytokine secretion from cultured macrophages suggesting that it may potentiate the H. pylori-mediated inflammatory response. In this study, we show that CtkA expressed from its native host, H. pylori has a similar capacity for stimulation of a pro-inflammatory response from gastric epithelial cells. CtkA interaction was found to be dependent upon a complement of tfs3 T4SS genes, but independent of the T4SSs encoded by either tfs4 or the cag pathogenicity island. Moreover, the availability of CtkA for host cell interaction was shown to be conditional upon the carboxyl-terminus of CtkA, encoding a putative conserved secretion signal common to other variably encoded Tfs3 proteins. Collectively, our observations indicate a role for the Tfs3 T4SS in CtkA-mediated pro-inflammatory signalling by H. pylori and identify CtkA as a likely Tfs3 T4SS secretion substrate.
Collapse
Affiliation(s)
- Maher N. Alandiyjany
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Nicola J. Croxall
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jane I. Grove
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Robin M. Delahay
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Abstract
Helicobacter pylori is the most common bacterial infection worldwide, and virtually all infected persons develop co-existing gastritis. H. pylori is able to send and receive signals from the gastric mucosa, which enables both host and microbe to engage in a dynamic equilibrium. In order to persist within the human host, H. pylori has adopted dichotomous strategies to both induce inflammation as a means of liberating nutrients while simultaneously tempering the immune response to augment its survival. Toll-like receptors (TLRs) and Nod proteins are innate immune receptors that are present in epithelial cells and represent the first line of defense against pathogens. To ensure persistence, H. pylori manipulates TLR-mediated defenses using strategies that include rendering its LPS and flagellin to be non-stimulatory to TLR4 and TLR5, respectively; translocating peptidoglycan into host cells to induce NOD1-mediated anti-inflammatory responses; and translocating DNA into host cells to induce TLR9 activation.
Collapse
|
19
|
Kumari R, Shariq M, Kumar N, Mukhopadhyay G. Biochemical characterization of theHelicobacter pyloriCag-type IV secretion system unique component CagU. FEBS Lett 2017; 591:500-512. [DOI: 10.1002/1873-3468.12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rajesh Kumari
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Mohd Shariq
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Navin Kumar
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Biotechnology; Gautam Buddha University; Uttar Pradesh India
| | | |
Collapse
|
20
|
Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A, Gomez MA, Good JAD, Almqvist F, Skaar EP, Correa P, Wilson KT, Hadjifrangiskou M, Peek RM. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 2016; 35:6262-6269. [PMID: 27157617 PMCID: PMC5102820 DOI: 10.1038/onc.2016.158] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori is the strongest identified risk factor for gastric cancer, the third most common cause of cancer-related death worldwide. An H. pylori constituent that augments cancer risk is the strain-specific cag pathogenicity island, which encodes a type IV secretion system (T4SS) that translocates a pro-inflammatory and oncogenic protein, CagA, into epithelial cells. However, the majority of persons colonized with CagA+H. pylori strains do not develop cancer, suggesting that other microbial effectors also play a role in carcinogenesis. Toll-like receptor 9 (TLR9) is an endosome bound, innate immune receptor that detects and responds to hypo-methylated CpG DNA motifs that are most commonly found in microbial genomes. High expression tlr9 polymorphisms have been linked to the development of premalignant lesions in the stomach. We now demonstrate that levels of H. pylori-mediated TLR9 activation and expression are directly related to gastric cancer risk in human populations. Mechanistically, we show for the first time that the H. pylori cancer-associated cag T4SS is required for TLR9 activation and that H. pylori DNA is actively translocated by the cag T4SS to engage this host receptor. Activation of TLR9 occurs through a contact-dependent mechanism between pathogen and host, and involves transfer of microbial DNA that is both protected as well as exposed during transport. These results indicate that TLR9 activation via the cag island may modify the risk for malignancy within the context of H. pylori infection and provide an important framework for future studies investigating the microbial-epithelial interface in gastric carcinogenesis.
Collapse
Affiliation(s)
- M G Varga
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C L Shaffer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J C Sierra
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - G Suarez
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M B Piazuelo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M E Whitaker
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Romero-Gallo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - U S Krishna
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A Delgado
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M A Gomez
- Department of Internal Medicine, Unit of Gastroenterology, National University of Colombia School of Medicine, Bogota, Colombia
| | - J A D Good
- Department of Chemistry, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - F Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - E P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - P Correa
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - K T Wilson
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - M Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R M Peek
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Biological function of hpsh4590 localized in the plasticity zone of Helicobacter pylori. Microb Pathog 2016; 93:63-9. [DOI: 10.1016/j.micpath.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
|
22
|
Helicobacter pylori outer membrane protein and virulence marker differences in expatriate patients. Epidemiol Infect 2016; 144:2200-8. [PMID: 26941114 DOI: 10.1017/s095026881600025x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the prevalence of Helicobacter pylori virulence markers, e.g. cytotoxin associated gene (cagA), cagA promoter, vacuolating associated cytotoxin A (vacA) alleles induced by contact with epithelium (iceA type), and outer membrane protein Q (hopQ) in expatriates and compared them with those in local residents. Gastric biopsies were obtained at endoscopy for culture, histology and PCR for virulence marker and hopQ. Of 309 patients, 236 (76%) were males with a mean age of 45 years. A total of 102 patients were expatriates. hopQ type 1 was present in 98 (47%) local residents compared to 88 (86%) expatriates (P < 0·001), while hopQ type 2 was present in 176 (85%) local residents, compared to 60 (59%) expatriates (P < 0·001). H. pylori virulence marker cagA was positive in 97 (47%) local residents compared to 86 (84%) expatriates (P < 0·001) while cagA-P was positive in 72 (35%) local residents compared to 87 (85%) expatriates (P < 0·001). iceA type 1 was positive in 157 (76%) local residents compared to 45 (44%) expatriates (P < 0·001), while iceA type 2 was positive in 81 (39%) local residents compared to 86 (84%) expatriates (P < 0·001). Distribution of H. pylori cagA, cagA promoter, iceA and hopQ type in local residents and expatriates was different. H. pylori virulence markers were associated with severe pathology in expatriates.
Collapse
|
23
|
Wang MY, Liu XF, Gao XZ. Helicobacter pylori virulence factors in development of gastric carcinoma. Future Microbiol 2015; 10:1505-16. [PMID: 26346770 DOI: 10.2217/fmb.15.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori plays a vital role in the pathogenesis of gastric carcinoma. However, only a relatively small proportion of individuals infected with H. pylori develop gastric carcinoma. Differences in the incidence of gastric carcinoma among infected individuals can be explained, at least partly, by the different genotypes of H. pylori virulence factors. Thus far, many virulence factors of H. pylori, such as Cag PAI, VacA, OMPs and DupA, have been reported to be involved in the development of gastric cancer. The risk of developing gastric cancer during H. pylori infection is affected by specific host-microbe interactions that are independent of H. pylori virulence factors. In this review, we discuss virulence factors of H. pylori and their role in the development of gastric carcinoma that will provide further understanding of the biological interactions of H. pylori with the host.
Collapse
Affiliation(s)
- Ming-Yi Wang
- Department of Clinical Lab, Weihai Municipal Hospital, Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Region of PLA, Ji'nan, Shandong Province, 250031, PR China
| | - Xiao-Zhong Gao
- Department of Gastroenterology, Weihai Municipal Hospital, Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
24
|
You Y, He L, Zhang M, Zhang J. Comparative genomics of a Helicobacter pylori isolate from a Chinese Yunnan Naxi ethnic aborigine suggests high genetic divergence and phage insertion. PLoS One 2015; 10:e0120659. [PMID: 25799515 PMCID: PMC4370579 DOI: 10.1371/journal.pone.0120659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Lihua He
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
25
|
Crystal structure confirmation of JHP933 as a nucleotidyltransferase superfamily protein from Helicobacter pylori strain J99. PLoS One 2014; 9:e104609. [PMID: 25101777 PMCID: PMC4125220 DOI: 10.1371/journal.pone.0104609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/09/2014] [Indexed: 01/25/2023] Open
Abstract
Helicobacter pylori is a well-known pathogen involved in the development of peptic ulcer, gastric adenocarcinoma and other forms of gastric cancer. Recently, there has been more considerable interest in strain-specific genes located in plasticity regions with great genetic variability. However, little is known about many of these genes. Studies suggested that certain genes in this region may play key roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. JHP933, a conserved putative protein of unknown function, is encoded by the gene in plasticity region of H. pylori strain J99. Here we have determined the structure of JHP933. Our work demonstrates that JHP933 is a nucleotidyltransferase superfamily protein with a characteristic αβαβαβα topology. A superposition demonstrates overall structural homology of the JHP933 N-terminal fragment with lincosamide antibiotic adenylyltransferase LinA and identifies a possible substrate-binding cleft of JHP933. Furthermore, through structural comparison with LinA and LinB, we pinpoint conservative active site residues which may contribute to divalent ion coordination and substrate binding.
Collapse
|
26
|
Tenguria S, Ansari SA, Khan N, Ranjan A, Devi S, Tegtmeyer N, Lind J, Backert S, Ahmed N. Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase. Int J Med Microbiol 2014; 304:1066-76. [PMID: 25172221 DOI: 10.1016/j.ijmm.2014.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/16/2022] Open
Abstract
The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.7 cells (a mouse macrophage cell line) up to 55% within 24h of co-incubation. The decreased cellular viability was due to apoptosis, which was confirmed by TUNEL assay and Fas expression analysis by flow-cytometry. Further, we found that caspase-1 and IL-1beta were activated upon treatment with JHP0940. These results point towards possible action through the host inflammasome. Our in vitro studies using tyrosine kinase assays further demonstrated that JHP0940 acts as auto-phosphorylating tyrosine kinase and induces pro-inflammatory cytokines in RAW264.7 cells. Upon exposure with JHP0940, these cells secreted IL-1beta, TNF-alpha and IL-6, in a dose- and time-dependent manner, as detected by ELISA and transcript profiling by q-RT-PCR. The pro-inflammatory, pro-apoptotic and other regulatory responses triggered by JHP0940 lead to the assumption of its possible role in inducing chronic inflammation for enhanced bacterial persistence and escape from host innate immune responses by apoptosis of macrophages.
Collapse
Affiliation(s)
- Shivendra Tenguria
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Suhail A Ansari
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Amit Ranjan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Savita Devi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Judith Lind
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Nuremberg, D-91058 Erlangen, Germany
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
27
|
Fischer W, Breithaupt U, Kern B, Smith SI, Spicher C, Haas R. A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics 2014; 15:310. [PMID: 24767410 PMCID: PMC4234485 DOI: 10.1186/1471-2164-15-310] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent. RESULTS We have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration. CONCLUSIONS The significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Fernandez-Gonzalez E, Backert S. DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol 2014; 49:594-604. [PMID: 24515309 DOI: 10.1007/s00535-014-0938-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
The gastric pathogen Helicobacter pylori is one of the most genetically diverse bacteria. Recombination and DNA transfer contribute to its genetic variability and enhance host adaptation. Among the strategies described to increase genetic diversity in bacteria, DNA transfer by conjugation is one of the best characterized. Using this mechanism, a fragment of DNA from a donor cell can be transferred to a recipient, always mediated by a conjugative nucleoprotein complex, which is evolutionarily related to type IV secretion systems (T4SSs). Interestingly, the H. pylori chromosomes can encode up to four T4SSs, including the cagPAI, comB, tfs3, and tfs4 genes, some of which are known to promote chronic H. pylori infection. The T4SS encoded by the cagPAI mediates the injection of the effector protein CagA and proinflammatory signaling, and the comB system is involved in DNA uptake from the environment. However, the role of tfs3 and tfs4 is not yet clear. The presence of a functional XerD tyrosine recombinase and 5'AAAGAATG-3' border sequences as well as two putative conjugative relaxases (Rlx1 and Rlx2), a coupling protein (TraG), and a chromosomal region carrying a putative origin of transfer (oriT) suggest the existence of a DNA transfer apparatus in tfs4. Moreover, a conjugation-like DNA transfer mechanism in H. pylori has already been described in vitro, but whether this occurs in vivo is still unknown. Some extrachromosomal plasmids and phages are also present in various H. pylori strains. Genetic exchange among plasmids and chromosomes, and involved DNA mobilization events, could explain part of H. pylori's genetic diversity. Here, we review our knowledge about the possible DNA transfer mechanisms in H. pylori and its implications in bacterial adaptation to the host environment.
Collapse
Affiliation(s)
- Esther Fernandez-Gonzalez
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | | |
Collapse
|
29
|
Lu W, Wise MJ, Tay CY, Windsor HM, Marshall BJ, Peacock C, Perkins T. Comparative analysis of the full genome of Helicobacter pylori isolate Sahul64 identifies genes of high divergence. J Bacteriol 2014; 196:1073-83. [PMID: 24375107 PMCID: PMC3957704 DOI: 10.1128/jb.01021-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.
Collapse
Affiliation(s)
- Wei Lu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Michael J. Wise
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
| | - Chin Yen Tay
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Helen M. Windsor
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Barry J. Marshall
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| | - Christopher Peacock
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
- Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - Tim Perkins
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
30
|
Grove JI, Alandiyjany MN, Delahay RM. Site-specific relaxase activity of a VirD2-like protein encoded within the tfs4 genomic island of Helicobacter pylori. J Biol Chem 2013; 288:26385-96. [PMID: 23900838 PMCID: PMC3772185 DOI: 10.1074/jbc.m113.496430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Four different type IV secretion systems are variously represented in the genomes of different Helicobacter pylori strains. Two of these, encoded by tfs3 and tfs4 gene clusters are contained within self-transmissible genomic islands. Although chromosomal excision of tfs4 circular intermediates is reported to be dependent upon the function of a tfs4-encoded XerD tyrosine-like recombinase, other factors required for transfer to a recipient cell have not been demonstrated. Here, we characterize the functional activity of a putative tfs4-encoded VirD2-like relaxase protein. Tfs4 VirD2 was purified as a fusion to maltose-binding protein and demonstrated to bind and nick both supercoiled duplex DNA and oligonucleotides in vitro in a manner dependent upon the presence of Mg(2+) but independently of any auxiliary proteins. Unusually, concentration-dependent nicking of duplex DNA appeared to require only transient protein-DNA interaction. Although phylogenetically distinct from established relaxase families, site-specific cleavage of oligonucleotides by Tfs4 VirD2 required the nick region sequence 5'-ATCCTG-3' common to transfer origins (oriT) recognized by MOBP conjugative relaxases. Cleavage resulted in covalent attachment of MBP-VirD2 to the 5'-cleaved end, consistent with conventional relaxase activity. Identification of an oriT-like sequence upstream of tfs4 virD2 and demonstration of VirD2 protein-protein interaction with a putative VirC1 relaxosome component indicate that transfer initiation of the tfs4 genomic island is analogous to mechanisms underlying mobilization of other integrated mobile elements, such as integrating conjugative elements, requiring site-specific targeting of relaxase activity to a cognate oriT sequence.
Collapse
Affiliation(s)
- Jane I Grove
- From the Centre for Biomolecular Sciences and Nottingham Digestive Diseases Centre, National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | |
Collapse
|
31
|
Joo JS, Song JY, Baik SC, Lee WK, Cho MJ, Lee KH, Cho Y, Youn HS, Seo JH, Rhee KH, Kang HL. Genetic organization and conjugal plasmid DNA transfer of pHP69, a plasmid from a Korean isolate of Helicobacter pylori. J Microbiol 2012; 50:955-61. [PMID: 23274982 DOI: 10.1007/s12275-012-2580-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022]
Abstract
We isolated pHP69, a 9,153 bp plasmid from Helicobacter pylori with a 33.98% (G+C) content. We identified 11 open reading frames (ORFs), including replication initiation protein A (repA), fic (cAMP-induced filamentation protein), mccC, mccB, mobA, mobD, mobB, and mobC, as well as four 22 bp tandem repeat sequences. The nucleic acid and predicted amino acid sequences of these ORFs exhibited significant homology to those of other H. pylori plasmids. pHP69 repA encodes a replication initiation protein and its amino acid sequence is similar to those of replicase proteins from theta-type plasmids. pHP69 contains two types of repeat sequences (R1 and R2), a MOBHEN family mobilization region comprising mobC, mobA, mobB, and mobD, and genes encoding microcin B and C. Among the 36 H. pylori strains containing plasmids, mobA or mccBC are present in 12 or 6, respectively and 3 contain both genes. To examine intrinsic capability of H. pylori for conjugative plasmid transfer, a shuttle vector pBHP69KH containing pHP69 and replication origin of pBR322 was constructed. It was shown that this vector could stably replicate and be mobilized among clinical H. pylori strains and demonstrated to gene transfer by natural plasmid.
Collapse
Affiliation(s)
- Jung-Soo Joo
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
You Y, He L, Zhang M, Fu J, Gu Y, Zhang B, Tao X, Zhang J. Comparative genomics of Helicobacter pylori strains of China associated with different clinical outcome. PLoS One 2012; 7:e38528. [PMID: 22701658 PMCID: PMC3368837 DOI: 10.1371/journal.pone.0038528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 05/07/2012] [Indexed: 02/06/2023] Open
Abstract
In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori (H. pylori) genomes was designed. This microarray was used to compare the genomic profiles of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation was found among these strains, an additional 76 H. pylori strains associated with different clinical outcomes were isolated from various provinces of China. These strains were tested by polymerase chain reaction to demonstrate this distinction. We identified several highly variable regions in strains associated with gastritis, gastric ulceration, and gastric cancer. These regions are associated with genes involved in the bacterial type I, type II, and type III R-M systems. They were also associated with the virB gene, which lies on the well-studied cag pathogenic island. While previous studies have reported on the diverse genetic characterization of this pathogenic island, in this study, we find that it is conserved in all strains tested by microarray. Moreover, a number of genes involved in the type IV secretion system, which is related to horizontal DNA transfer between H. pylori strains, were identified in the comparative analysis of the strain-specific genes. These findings may provide insight into new biomarkers for the prediction of gastric diseases.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianying Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Gu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Binghua Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Tao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Alam J, Maiti S, Ghosh P, De R, Chowdhury A, Das S, Macaden R, Devarbhavi H, Ramamurthy T, Mukhopadhyay AK. Significant association of the dupA gene of Helicobacter pylori with duodenal ulcer development in a South-east Indian population. J Med Microbiol 2012; 61:1295-1302. [PMID: 22653921 DOI: 10.1099/jmm.0.038398-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel virulence factor, duodenal ulcer-promoting gene A (dupA), in Helicobacter pylori has been found to be associated with disease in certain populations but not in others. This study analysed a South-east Indian population as part of the debate about the relevance of dupA for the prediction of clinical outcomes. A total of 140 H. pylori strains isolated from duodenal ulcer (DU) (n = 83) and non-ulcer dyspepsia (NUD) patients (n = 57) were screened by PCR and dot-blot hybridization to determine the presence of the ORFs jhp0917 and jhp0918. Part of jhp0917-jhp0918 was sequenced to search for the C/T insertion that characterizes dupA and the levels of dupA transcripts were also assessed. The PCR and dot-blot results indicated the presence of jhp0917 and jhp0918 in 37.3 % (31/83) and 12.2 % (7/57) of H. pylori strains isolated from DU and NUD patients, respectively. Sequencing analysis showed insertion of a C at nt 1386 in the 3' region of jhp0917, forming the dupA gene in 35 strains. RT-PCR analysis detected the dupA transcript in 28 of these 35 strains. The expression level of the dupA transcript varied from strain to strain, as shown by real-time PCR. The results demonstrated that analysis based on PCR only for dupA may produce an erroneous interpretation. The prevalence of dupA was significantly greater among strains isolated from patients with DU than from patients with NUD in this population (P = 0.001, odds ratio = 4.26, confidence interval = 1.60-11.74). Based on these findings, dupA can be considered a biomarker for DU patients in India. The reported discrepancies for this putative virulence marker in different populations may be due to the genome plasticity of H. pylori.
Collapse
Affiliation(s)
- Jawed Alam
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Sankar Maiti
- IISER (Indian Institute of Science Education and Research), Kolkata, India
| | - Prachetash Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ronita De
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Abhijit Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | | | | | | | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | |
Collapse
|
34
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
35
|
Vermoote M, Vandekerckhove TTM, Flahou B, Pasmans F, Smet A, De Groote D, Van Criekinge W, Ducatelle R, Haesebrouck F. Genome sequence of Helicobacter suis supports its role in gastric pathology. Vet Res 2011; 42:51. [PMID: 21414191 PMCID: PMC3065412 DOI: 10.1186/1297-9716-42-51] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/17/2011] [Indexed: 01/14/2023] Open
Abstract
Helicobacter (H.) suis has been associated with chronic gastritis and ulcers of the pars oesophagea in pigs, and with gastritis, peptic ulcer disease and gastric mucosa-associated lymphoid tissue lymphoma in humans. In order to obtain better insight into the genes involved in pathogenicity and in the specific adaptation to the gastric environment of H. suis, a genome analysis was performed of two H. suis strains isolated from the gastric mucosa of swine. Homologs of the vast majority of genes shown to be important for gastric colonization of the human pathogen H. pylori were detected in the H. suis genome. H. suis encodes several putative outer membrane proteins, of which two similar to the H. pylori adhesins HpaA and HorB. H. suis harbours an almost complete comB type IV secretion system and members of the type IV secretion system 3, but lacks most of the genes present in the cag pathogenicity island of H. pylori. Homologs of genes encoding the H. pylori neutrophil-activating protein and γ-glutamyl transpeptidase were identified in H. suis. H. suis also possesses several other presumptive virulence-associated genes, including homologs for mviN, the H. pylori flavodoxin gene, and a homolog of the H. pylori vacuolating cytotoxin A gene. It was concluded that although genes coding for some important virulence factors in H. pylori, such as the cytotoxin-associated protein (CagA), are not detected in the H. suis genome, homologs of other genes associated with colonization and virulence of H. pylori and other bacteria are present.
Collapse
Affiliation(s)
- Miet Vermoote
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tom Theo Marie Vandekerckhove
- Laboratory for Bioinformatics and Computational Genomics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominic De Groote
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Criekinge
- Laboratory for Bioinformatics and Computational Genomics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Abstract
Type IV secretion systems (T4SS) are macromolecular assemblies used by bacteria to transport material across their membranes. T4SS are generally composed of a set of twelve proteins (VirB1-11 and VirD4). This represents a dynamic machine powered by three ATPases. T4SS are widespread in pathogenic bacteria where they are often used to deliver effectors into host cells. For example, the human pathogen Helicobacter pylori encodes a T4SS, the Cag-T4SS, which mediates the injection of the toxin CagA. We review the progress made in the past decade in our understanding of T4SS architecture. We translate this new knowledge to derive an understanding of the structure of the H. pylori Cag system, and use recent protein-protein interaction data to refine this model.
Collapse
Affiliation(s)
- Laurent Terradot
- Institut de Biologie et Chimie des Protéines, Biologie Structurale des Complexes Macromoléculaires Bactériens, UMR 5086 CNRS Université de Lyon, Lyon, France.
| | | |
Collapse
|
37
|
Ahmed N. Coevolution and adaptation of Helicobacter pylori and the case for 'functional molecular infection epidemiology'. Med Princ Pract 2011; 20:497-503. [PMID: 21986005 DOI: 10.1159/000329786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/10/2011] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori is a major human pathogen and its transmission and epidemiology have been extensively studied; it has been found that H. pylori's prevalence and infection outcome is characterized by marked differences between the developing and the developed worlds. Recent data on genomic analyses and comparative core genome haplotyping have revealed that H. pylori has coevolved with its human host. While several studies advocate the protective effects of H. pylori colonization, it is prudent to systematically unleash the role of the strong virulence apparatus present within most H. pylori strains and to determine how to disarm them (or protect the host from the effects) if the intent is to allow it to remain a friendly organism or to use it as a vaccine delivery tool. While genotyping and phenotyping based on a few genetic markers have not provided much insight into such issues, use of replicate/chronological genomics (of virulent versus innocuous strains) coupled with functional screens in animal models is expected to be able to explain the acquisition and evolution of virulence factors of H. pylori and their discreet associations with serious clinical outcomes such as gastric cancer.
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
38
|
Abstract
Helicobacter pylori plays an essential role in the development of various gastroduodenal diseases; however, only a small proportion of people infected with H. pylori develop these diseases. Some populations that have a high prevalence of H. pylori infection also have a high incidence of gastric cancer (for example, in East Asia), whereas others do not (for example, in Africa and South Asia). Even within East Asia, the incidence of gastric cancer varies (decreasing in the south). H. pylori is a highly heterogeneous bacterium and its virulence varies geographically. Geographic differences in the incidence of gastric cancer can be explained, at least in part, by the presence of different types of H. pylori virulence factor, especially CagA, VacA and OipA. However, it is still unclear why the pathogenicity of H. pylori increased as it migrated from Africa to East Asia during the course of evolution. H. pylori infection is also thought to be involved in the development of duodenal ulcer, which is at the opposite end of the disease spectrum to gastric cancer. This discrepancy can be explained in part by the presence of H. pylori virulence factor DupA. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufucity, Oita 879-5593, Japan.
| |
Collapse
|
39
|
Abstract
Helicobacter pylori plays an essential role in the development of various gastroduodenal diseases; however, only a small proportion of people infected with H. pylori develop these diseases. Some populations that have a high prevalence of H. pylori infection also have a high incidence of gastric cancer (for example, in East Asia), whereas others do not (for example, in Africa and South Asia). Even within East Asia, the incidence of gastric cancer varies (decreasing in the south). H. pylori is a highly heterogeneous bacterium and its virulence varies geographically. Geographic differences in the incidence of gastric cancer can be explained, at least in part, by the presence of different types of H. pylori virulence factor, especially CagA, VacA and OipA. However, it is still unclear why the pathogenicity of H. pylori increased as it migrated from Africa to East Asia during the course of evolution. H. pylori infection is also thought to be involved in the development of duodenal ulcer, which is at the opposite end of the disease spectrum to gastric cancer. This discrepancy can be explained in part by the presence of H. pylori virulence factor DupA. Despite advances in our understanding of the development of H. pylori-related diseases, further work is required to clarify the roles of H. pylori virulence factors.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasamamachi, Yufucity, Oita 879-5593, Japan
| |
Collapse
|
40
|
Fischer W, Windhager L, Rohrer S, Zeiller M, Karnholz A, Hoffmann R, Zimmer R, Haas R. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 2010; 38:6089-101. [PMID: 20478826 PMCID: PMC2952849 DOI: 10.1093/nar/gkq378] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Pettenkoferstr. 9a, D-80336 München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kersulyte D, Lee W, Subramaniam D, Anant S, Herrera P, Cabrera L, Balqui J, Barabas O, Kalia A, Gilman RH, Berg DE. Helicobacter Pylori's plasticity zones are novel transposable elements. PLoS One 2009; 4:e6859. [PMID: 19727398 PMCID: PMC2731543 DOI: 10.1371/journal.pone.0006859] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023] Open
Abstract
Background Genes present in only certain strains of a bacterial species can strongly affect cellular phenotypes and evolutionary potentials. One segment that seemed particularly rich in strain-specific genes was found by comparing the first two sequenced Helicobacter pylori genomes (strains 26695 and J99) and was named a “plasticity zone”. Principal Findings We studied the nature and evolution of plasticity zones by sequencing them in five more Helicobacter strains, determining their locations in additional strains, and identifying them in recently released genome sequences. They occurred as discrete units, inserted at numerous chromosomal sites, and were usually flanked by direct repeats of 5′AAGAATG, a sequence generally also present in one copy at unoccupied sites in other strains. This showed that plasticity zones are transposable elements, to be called TnPZs. Each full length TnPZ contained a cluster of type IV protein secretion genes (tfs3), a tyrosine recombinase family gene (“xerT”), and a large (≥2800 codon) orf encoding a protein with helicase and DNA methylase domains, plus additional orfs with no homology to genes of known function. Several TnPZ types were found that differed in gene arrangement or DNA sequence. Our analysis also indicated that the first-identified plasticity zones (in strains 26695 and J99) are complex mosaics of TnPZ remnants, formed by multiple TnPZ insertions, and spontaneous and transposable element mediated deletions. Tests using laboratory-generated deletions showed that TnPZs are not essential for viability, but identified one TnPZ that contributed quantitatively to bacterial growth during mouse infection and another that affected synthesis of proinflammatory cytokines in cell culture. Conclusions We propose that plasticity zone genes are contained in conjugative transposons (TnPZs) or remnants of them, that TnPZ insertion is mediated by XerT recombinase, and that some TnPZ genes affect bacterial phenotypes and fitness.
Collapse
Affiliation(s)
- Dangeruta Kersulyte
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - WooKon Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dharmalingam Subramaniam
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shrikant Anant
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phabiola Herrera
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Lilia Cabrera
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Jacqueline Balqui
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Orsolya Barabas
- Laboratory of Molecular Biology, National Institute of Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert H. Gilman
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments of Genetics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Differences in genome content among Helicobacter pylori isolates from patients with gastritis, duodenal ulcer, or gastric cancer reveal novel disease-associated genes. Infect Immun 2009; 77:2201-11. [PMID: 19237517 DOI: 10.1128/iai.01284-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori establishes a chronic infection in the human stomach, causing gastritis, peptic ulcer, or gastric cancer, and more severe diseases are associated with virulence genes such as the cag pathogenicity island (PAI). The aim of this work was to study gene content differences among H. pylori strains isolated from patients with different gastroduodenal diseases in a Mexican-Mestizo patient population. H. pylori isolates from 10 patients with nonatrophic gastritis, 10 patients with duodenal ulcer, and 9 patients with gastric cancer were studied. Multiple isolates from the same patient were analyzed by randomly amplified polymorphic DNA analysis, and strains with unique patterns were tested using whole-genome microarray-based comparative genomic hybridization (aCGH). We studied 42 isolates and found 1,319 genes present in all isolates, while 341 (20.5%) were variable genes. Among the variable genes, 127 (37%) were distributed within plasticity zones (PZs). The overall number of variable genes present in a given isolate was significantly lower for gastric cancer isolates. Thirty genes were significantly associated with nonatrophic gastritis, duodenal ulcer, or gastric cancer, 14 (46.6%) of which were within PZs and the cag PAI. Two genes (HP0674 and JHP0940) were absent in all gastric cancer isolates. Many of the disease-associated genes outside the PZs formed clusters, and some of these genes are regulated in response to acid or other environmental conditions. Validation of candidate genes identified by aCGH in a second patient cohort allowed the identification of novel H. pylori genes associated with gastric cancer or duodenal ulcer. These disease-associated genes may serve as biomarkers of the risk for severe gastroduodenal diseases.
Collapse
|
43
|
McClain MS, Shaffer CL, Israel DA, Peek RM, Cover TL. Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genomics 2009; 10:3. [PMID: 19123947 PMCID: PMC2627912 DOI: 10.1186/1471-2164-10-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 01/05/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Persistent colonization of the human stomach by Helicobacter pylori is associated with asymptomatic gastric inflammation (gastritis) and an increased risk of duodenal ulceration, gastric ulceration, and non-cardia gastric cancer. In previous studies, the genome sequences of H. pylori strains from patients with gastritis or duodenal ulcer disease have been analyzed. In this study, we analyzed the genome sequences of an H. pylori strain (98-10) isolated from a patient with gastric cancer and an H. pylori strain (B128) isolated from a patient with gastric ulcer disease. RESULTS Based on multilocus sequence typing, strain 98-10 was most closely related to H. pylori strains of East Asian origin and strain B128 was most closely related to strains of European origin. Strain 98-10 contained multiple features characteristic of East Asian strains, including a type s1c vacA allele and a cagA allele encoding an EPIYA-D tyrosine phosphorylation motif. A core genome of 1237 genes was present in all five strains for which genome sequences were available. Among the 1237 core genes, a subset of alleles was highly divergent in the East Asian strain 98-10, encoding proteins that exhibited <90% amino acid sequence identity compared to corresponding proteins in the other four strains. Unique strain-specific genes were identified in each of the newly sequenced strains, and a set of strain-specific genes was shared among H. pylori strains associated with gastric cancer or premalignant gastric lesions. CONCLUSION These data provide insight into the diversity that exists among H. pylori strains from diverse clinical and geographic origins. Highly divergent alleles and strain-specific genes identified in this study may represent useful biomarkers for analyzing geographic partitioning of H. pylori and for identifying strains capable of inducing malignant or premalignant gastric lesions.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2605, USA.
| | | | | | | | | |
Collapse
|
44
|
Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. Infect Immun 2008; 76:5632-44. [PMID: 18794279 DOI: 10.1128/iai.00627-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we undertook to identify colonization and gastric disease-promoting factors of the human gastric pathogen Helicobacter pylori as genes that were induced in response to the stomach environment. Using recombination-based in vivo expression technology (RIVET), we identified six promoters induced in the host compared to laboratory conditions. Three of these promoters, designated Pivi10, Pivi66, and Pivi77, regulate genes that H. pylori may use to interact with other microbes or the host. Pivi10 likely regulates the mobA, mobB, and mobD genes, which have potential roles in horizontal gene transfer through plasmid mobilization. Pivi66 occurs in the cytotoxin-associated gene pathogenicity island, a genomic region known to be associated with more severe disease outcomes, and likely regulates cagZ, virB11, and virD4. Pivi77 likely regulates HP0289, an uncharacterized paralogue of the vacA cytotoxin gene. We assessed the roles of a subset of these genes in colonization by creating deletion mutants and analyzing them in single-strain and coinfection experiments. We found that a mobABD mutant was defective for murine host colonization and that a cagZ mutant outcompeted the wild-type strain in a coinfection analysis. Our work supports the conclusion that RIVET is a valuable tool for identifying H. pylori factors with roles in host colonization.
Collapse
|
45
|
Yamaoka Y. Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J Med Microbiol 2008; 57:545-553. [PMID: 18436586 DOI: 10.1099/jmm.0.2008/000570-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Putative virulence genes of Helicobacter pylori are generally classified into three categories: strain-specific genes, phase-variable genes and genes with variable structures/genotypes. Among these, there has recently been considerable interest in strain-specific genes found outside of the cag pathogenicity island, especially genes in the plasticity regions. Nearly half of the strain-specific genes of H. pylori are located in the plasticity regions in strains 26695 and J99. Strain HPAG1, however, seems to lack a typical plasticity region; instead it has 43 HPAG1-specific genes which are either undetectable or incompletely represented in the genomes of strains 26695 and J99. Recent studies showed that certain genes or combination of genes in this region may play important roles in the pathogenesis of H. pylori-associated gastroduodenal diseases. Most previous studies have focused on the plasticity region in strain J99 (jhp0914-jhp0961) and the jhp0947 gene and the duodenal ulcer promoting (dupA) gene are good candidate markers for gastroduodenal diseases although there are some paradoxical findings. The jhp0947 gene is reported to be associated with an increased risk of both duodenal ulcers and gastric cancers, whereas the dupA gene, which encompasses jhp0917 and jhp0918, is reported to be associated with an increased risk of duodenal ulcers and protection against gastric cancers. In addition, recent studies showed that approximately 10-30 % of clinical isolates possess a 16.3 kb type IV secretion apparatus (tfs3) in the plasticity region. Studies on the plasticity region have only just begun, and further investigation is necessary to elucidate the roles of genes in this region in gastroduodenal pathogenesis.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Medicine - Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 2008; 6:387-94. [PMID: 18392032 DOI: 10.1038/nrmicro1889] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing availability of DNA-sequence information for multiple pathogenic and non-pathogenic variants of individual bacterial species has indicated that both DNA acquisition and genome reduction have important roles in genome evolution. Such genomic fluidity, which is found in human pathogens such as Escherichia coli, Helicobacter pylori and Mycobacterium tuberculosis, has important consequences for the clinical management of the diseases that are caused by these pathogens and for the development of diagnostics and new molecular epidemiological methods.
Collapse
|
47
|
Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 2008; 190:2161-71. [PMID: 18178731 DOI: 10.1128/jb.01341-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type IV secretion systems are possibly the most versatile protein transport systems in gram-negative bacteria, with substrates ranging from small proteins to large nucleoprotein complexes. In many cases, such as the cag pathogenicity island of Helicobacter pylori, genes encoding components of a type IV secretion system have been identified due to their sequence similarities to prototypical systems such as the VirB system of Agrobacterium tumefaciens. The Cag type IV secretion system contains at least 14 essential apparatus components and several substrate translocation and auxiliary factors, but the functions of most components cannot be inferred from their sequences due to the lack of similarities. In this study, we have performed a comprehensive sequence analysis of all essential or auxiliary Cag components, and we have used antisera raised against a subset of components to determine their subcellular localization. The results suggest that the Cag system contains functional analogues to all VirB components except VirB5. Moreover, we have characterized mutual stabilization effects and performed a comprehensive yeast two-hybrid screening for potential protein-protein interactions. Immunoprecipitation studies resulted in identification of a secretion apparatus subassembly at the outer membrane. Combining these data, we provide a first low-resolution model of the Cag type IV secretion apparatus.
Collapse
|
48
|
|
49
|
Microevolution of Helicobacter pylori type IV secretion systems in an ulcer disease patient over a ten-year period. J Clin Microbiol 2007; 45:4039-43. [PMID: 17942650 DOI: 10.1128/jcm.01631-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori cagA and vacA genotypes have been used for almost a decade as stable entities to link the severity of gastritis and ulcer disease. We describe here microevolution of the two genomic islands, cag pathogenicity island (cagPAI; 40 kb) and tfs3 (16 kb) from isolates obtained at inclusion (one subclone) and after a 10-year period (two subclones) from a duodenal ulcer patient. Our results indicate microevolution in cagA, cagE, and cag7 genes of the cagPAI and open reading frames G, P, and L in tfs3, which possibly leads to inactivation or pseudogenization of these genes. Interestingly, no significant reduction in the severity of gastroduodenal pathology was found. These results point to an obvious difficulty in correlating the continuously evolving virulence factors such as the cagPAI genes with disease characteristics that appear to remain stable.
Collapse
|
50
|
Ahmed N, Majeed AA, Ahmed I, Hussain MA, Alvi A, Devi SM, Rizwan M, Ranjan A, Sechi LA, Mégraud F. genoBASE pylori: A genotype search tool and database of the human gastric pathogen Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2007; 7:463-8. [PMID: 17320487 DOI: 10.1016/j.meegid.2007.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/10/2007] [Accepted: 01/19/2007] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori is the pathogenic bacterium linked to gastric and duodenal ulcers and gastric carcinoma. Genomic diversity of the organism has enabled new insights into its population biology through comparative genomics. genoBASE pylori is an online databank of several virulence-linked and phylogenetic markers of H. pylori strains obtained from different human populations. This knowledgebase is built upon a relational database management system which is connected to visualize the presence of known, pathogenicity markers such as the co-ordinates within the cag pathogenicity island (cagPAI), the cagA gene and motifs surrounding it, the vacA allotypes and the oipA gene frame status, together with genotypic details in the form of DNA profiling traces and candidate gene sequences for individual strains. This flexible search tool allows inter-laboratory comparison of DNA fingerprinting data in the form of fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) and repetitive extragenic palindromic (REP) signature profiles. Besides this, the database also displays diversity of strains based on nucleotide sequences of several house keeping genes and two membrane proteins. Being the first of its kind, genoBASE pylori is expected to be a helpful online tool in strengthening the concept of 'geographic genomics' and will be useful to molecular epidemiologists, clinical laboratory scientists and those interested in diagnostic development for H. pylori. The database can be accessed through its website (http://www.cdfd.org.in/amplibase/HP).
Collapse
Affiliation(s)
- Niyaz Ahmed
- Pathogen Evolution Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|