1
|
Wang P, Zhou HY, Zhou JP, Li B, Liu ZQ, Zheng YG. Module engineering coupled with omics strategies for enhancing D-pantothenate production in Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 352:127024. [PMID: 35337996 DOI: 10.1016/j.biortech.2022.127024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Biosynthesis of D-pantothenate has been widely studied as D-pantothenate is one kind of important vitamins used in food and pharmaceuticals. However, the engineered strain for D-pantothenate production was focused solely on the main biosynthetic pathway, while other important factors such as one carbon unit were ignored. Here the systematic modular engineering on different factors coupled with omics analysis were studied in Escherichia coli for efficient D-pantothenate production. Through reinforcing the precursor pool, refactoring the one carbon unit generation pathway, optimization of reducing power and energy supply, the D-pantothenate titer reached 34.12 g/L with the yield at 0.28 g/g glucose under fed-batch fermentation in 5-L bioreactor. With a further comparative transcriptome and metabolomics studies, the addition of citrate was implemented and 45.35 g/L D-pantothenate was accumulated with a yield of 0.31 g/g glucose. The systematic modular engineering coupled with omics studies provide useful strategies for the industrial production of D-pantothenate.
Collapse
Affiliation(s)
- Pei Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun-Ping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Bo Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
2
|
Structure-function insights into elusive Mycobacterium tuberculosis protein Rv1916. Int J Biol Macromol 2019; 141:927-936. [PMID: 31505209 DOI: 10.1016/j.ijbiomac.2019.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. Long duration of TB therapy, results in the persistence and development of drug resistant strains of causative organism Mycobacterium tuberculosis (Mtb). Novel drug targets against persistent Mtb is an immediate need for overcoming this global menace. Isocitrate lyase (ICL), the first enzyme of glyoxylate pathway, is essential for persistent Mtb and absent in humans, hence a propitious target for drug development. Pathogenic Mtb H37Rv, have two types of ICLs - ICL1 encoded by icl (Rv0467) is well characterized and homologous to eubacterial enzyme whereas ICL2 encoded by aceA is more related to eukaryotic isocitrate lyase. To compound it, the aceA gene is split into two ORFs namely rv1915/aceAa and rv1916/aceAb. No translational product has been reported for the later and therefore, in vivo existence of Rv1916/ICL2b is debatable. This study reports recombinant production of Rv1916 in heterologous host E. coli BL21 (DE3) for structure function studies. The studies categorically demonstrate that akin to Mtb ICL1, recombinant Rv1916 also possess dual ICL and methylisocitrate lyase (MICL) activities in vitro. Based on in silico analysis, a putative function linked to secondary metabolite synthesis is assigned to unique mycobacterial domain IV.
Collapse
|
3
|
Tomita H, Imanaka T, Atomi H. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis. Mol Microbiol 2013; 90:307-21. [PMID: 23941541 DOI: 10.1111/mmi.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea.
Collapse
Affiliation(s)
- Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | | |
Collapse
|
4
|
Wang W, Baker P, Seah SYK. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling. Biochemistry 2010; 49:3774-82. [PMID: 20364820 DOI: 10.1021/bi100251u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HpaI and BphI are two pyruvate class II aldolases found in aromatic meta-cleavage degradation pathways that catalyze similar reactions but are not related in sequence. Steady-state kinetic analysis of the aldol addition reactions and product inhibition assays showed that HpaI exhibits a rapid equilibrium random order mechanism while BphI exhibits a compulsory order mechanism, with pyruvate binding first. Both aldolases are able to utilize aldehyde acceptors two to five carbons in length; however, HpaI showed broader specificity and had a preference for aldehydes containing longer linear alkyl chains or C2-OH substitutions. Both enzymes were able to bind 2-keto acids larger than pyruvate, but only HpaI was able to utilize both pyruvate and 2-ketobutanoate as carbonyl donors in the aldol addition reaction. HpaI lacks stereospecific control producing racemic mixtures of 4-hydroxy-2-oxopentanoate (HOPA) from pyruvate and acetaldehyde while BphI synthesizes only (4S)-HOPA. BphI is also able to utilize acetaldehyde produced by the reduction of acetyl-CoA catalyzed by the associated aldehyde dehydrogenase, BphJ. This aldehyde was directly channeled from the dehydrogenase to the aldolase active sites, with an efficiency of 84%. Furthermore, the BphJ reductive deacylation reaction increased 4-fold when BphI was catalyzing the aldol addition reaction. Therefore, the BphI-BphJ enzyme complex exhibits unique bidirectionality in substrate channeling and allosteric activation.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
5
|
Baker P, Pan D, Carere J, Rossi A, Wang W, Seah SYK. Characterization of an aldolase-dehydrogenase complex that exhibits substrate channeling in the polychlorinated biphenyls degradation pathway. Biochemistry 2009; 48:6551-8. [PMID: 19476337 DOI: 10.1021/bi9006644] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aldolase and dehydrogenase complex from the polychlorinated biphenyl degradation pathway of the bacterium Burkholderia xenovorans LB400 was purified. The aldolase, BphI, had the highest activity with Mn(2+) as the cofactor and was able to transform 4-hydroxy-2-oxopentanoate and 4-hydroxy-2-oxohexanoate to pyruvate and acetaldehyde or propionaldehyde with similar specificity constants. Aldolase activity was competitively inhibited by the pyruvate enolate analogue, oxalate, with a K(ic) of 0.93 microM. The pH-rate profiles suggested the involvement of a pK(a) 7.7 catalytic base in the reaction mechanism. BphI activity was activated 15-fold when substrate turnover was occurring in the dehydrogenase, BphJ, which can be attributed partially to nicotinamide coenzyme binding to BphJ. BphJ had similar specificity constants for acetaldehyde or propionaldehyde and was able to utilize aliphatic aldehydes from two to five carbons in length as substrates, although K(m) values for these aldehyes were >20 mM. When 4-hydroxy-2-oxopentanoate was provided as a substrate to the BphI-BphJ complex in a coupled enzyme assay, no lag in the progress curve of BphJ was observed. When 1 mM propionaldehyde was added exogenously to a reaction mixture containing 0.1 mM 4-hydroxy-2-oxopentanoate, 95% of the CoA esters produced was acetyl CoA. Conversely, 99% of the CoA esters produced was propionyl CoA when a 10-fold molar excess of exogenous acetaldehyde was added in a reaction mixture containing 4-hydroxy-2-oxohexanoate. These results demonstrate that acetaldehyde and propionaldehyde, products of the BphI reaction, are not released in the bulk solvent but are channeled directly to the dehydrogenase.
Collapse
Affiliation(s)
- Perrin Baker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Wang W, Seah SYK. Purification and Biochemical Characterization of a Pyruvate-Specific Class II Aldolase, HpaI. Biochemistry 2005; 44:9447-55. [PMID: 15996099 DOI: 10.1021/bi050607y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HpaI, a class II pyruvate-specific aldolase involved in the catabolic pathway of hydroxyphenylacetate, is overexpressed and purified. A previous suggestion that phosphate is involved in proton transfer of pyruvate, based on the crystal structure of the homologous 2-dehydro-3-deoxygalactarate aldolase, is not substantiated from biochemical studies with HpaI. Thus, specific activities of the enzyme for the substrate 4-hydroxy-2-ketopentanoate in sodium HEPES and Tris-acetate buffers are higher than in sodium phosphate buffer. The enzyme also catalyzed the partial reaction of pyruvate proton exchange with an initial rate of 0.77 mmol min(-)(1) mg(-)(1) in phosphate-free buffer, as monitored by nuclear magnetic resonance. Steady-state kinetic analysis shows that the enzyme is also able to catalyze the aldol cleavage of 4-hydroxy-2-ketohexanoate and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO). The enzyme exhibits significant oxaloacetate decarboxylase activity, with a k(cat) value 2.4-fold higher than the corresponding value for the aldol cleavage of 4-hydroxy-2-ketopentanoate. Sodium oxalate, an analogue of the enolate intermediate of the enzyme-catalyzed reaction, is a competitive inhibitor of the enzyme, with a K(i) value of 5.5 microM. Replacement of an active site arginine residue (R70) with alanine by site-specific mutagenesis resulted in an enzyme that lacks both aldolase and decarboxylase activities. The mutant enzyme is also unable to catalyze pyruvate proton exchange. The dissociation constant for pyruvate in the R70A mutant, determined by fluorescence titration, is similar to that of the wild-type enzyme, indicating that pyruvate binding is not affected by this mutation. Together, the results show that R70 influences catalysis in HpaI, particularly at the pyruvate proton exchange step.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Liu S, Lu Z, Han Y, Melamud E, Dunaway-Mariano D, Herzberg O. Crystal Structures of 2-Methylisocitrate Lyase in Complex with Product and with Isocitrate Inhibitor Provide Insight into Lyase Substrate Specificity, Catalysis and Evolution,. Biochemistry 2005; 44:2949-62. [PMID: 15723538 DOI: 10.1021/bi0479712] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two crystal structures of the C123S mutant of 2-methylisocitrate lyase have been determined, one with the bound reaction products, Mg(2+)-pyruvate and succinate, and the second with a bound Mg(2+)-(2R,3S)-isocitrate inhibitor. Comparison with the structure of the wild-type enzyme in the unbound state reveals that the enzyme undergoes a conformational transition that sequesters the ligand from solvent, as previously observed for two other enzyme superfamily members, isocitrate lyase and phosphoenolpyruvate mutase. The binding modes reveal the determinants of substrate specificity and stereoselectivity, and the stringent specificity is verified in solution using various potential substrates. A model of bound 2-methylisocitrate has been developed based on the experimentally determined structures. We propose a catalytic mechanism involving an alpha-carboxy-carbanion intermediate/transition state, which is consistent with previous stereochemical experiments showing inversion of configuration at the C(3) of 2-methylisocitrate. Structure-based sequence analysis and phylogenic tree construction reveal determinants of substrate specificity, highlight nodes of divergence of families, and predict enzyme families with new functions.
Collapse
Affiliation(s)
- Sijiu Liu
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|