1
|
Choo M, Oh S, Jo S, Jin X, Song Y, Wen H, Park S, Kang S. Highly conserved protein Rv1211 in Mycobacterium tuberculosis is a natively unfolded protein that binds to a calmodulin antagonist, trifluoperazine. Biochem Biophys Res Commun 2022; 610:182-187. [PMID: 35468422 DOI: 10.1016/j.bbrc.2022.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
Abstract
Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 μM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.
Collapse
Affiliation(s)
- Munki Choo
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sehyun Oh
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sihyang Jo
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Xing Jin
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yonghyun Song
- Department of Biochemistry, Inha University Hospital, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - He Wen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Sunghyouk Park
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunmi Kang
- Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Kayastha BB, Kubo A, Burch-Konda J, Dohmen RL, McCoy JL, Rogers RR, Mares S, Bevere J, Huckaby A, Witt W, Peng S, Chaudhary B, Mohanty S, Barbier M, Cook G, Deng J, Patrauchan MA. EF-hand protein, EfhP, specifically binds Ca 2+ and mediates Ca 2+ regulation of virulence in a human pathogen Pseudomonas aeruginosa. Sci Rep 2022; 12:8791. [PMID: 35614085 PMCID: PMC9132961 DOI: 10.1038/s41598-022-12584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Calcium (Ca2+) is well known as a second messenger in eukaryotes, where Ca2+ signaling controls life-sustaining cellular processes. Although bacteria produce the components required for Ca2+ signaling, little is known about the mechanisms of bacterial Ca2+ signaling. Previously, we have identified a putative Ca2+-binding protein EfhP (PA4107) with two canonical EF-hand motifs and reported that EfhP mediates Ca2+ regulation of virulence factors production and infectivity in Pseudomonas aeruginosa, a human pathogen causing life-threatening infections. Here, we show that EfhP selectively binds Ca2+ with 13.7 µM affinity, and that mutations at the +X and -Z positions within each or both EF-hand motifs abolished Ca2+ binding. We also show that the hydrophobicity of EfhP increased in a Ca2+-dependent manner, however no such response was detected in the mutated proteins. 15 N-NMR showed Ca2+-dependent chemical shifts in EfhP confirming Ca2+-binding triggered structural rearrangements in the protein. Deletion of efhP impaired P. aeruginosa survival in macrophages and virulence in vivo. Disabling EfhP Ca2+ binding abolished Ca2+ induction of pyocyanin production in vitro. These data confirm that EfhP selectively binds Ca2+, which triggers its structural changes required for the Ca2+ regulation of P. aeruginosa virulence, thus establishing the role of EfhP as a Ca2+ sensor.
Collapse
Affiliation(s)
- Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rosalie L Dohmen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jacee L McCoy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rendi R Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sergio Mares
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Justin Bevere
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Annalisa Huckaby
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - William Witt
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bharat Chaudhary
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Smita Mohanty
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mariette Barbier
- Vaccine Development Center at West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Gabriel Cook
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Reddy PT, O'Dell WB. Fusing an insoluble protein to GroEL apical domain enhances soluble expression in Escherichia coli. Methods Enzymol 2021; 659:171-188. [PMID: 34752284 DOI: 10.1016/bs.mie.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A protocol for increasing soluble protein expression by fusing the chaperone GroEL apical domain with a gene of interest is described herein. GroEL apical domain, the minichaperone that functions independently of GroES and ATP in protein folding, is cloned downstream of the lambda CII ribosome binding site in the parent pRE vector. The pRE vector has tightly controlled transcription suitable for expressing toxic proteins. The GroEL minichaperone is fused to a glycine-serine rich linker followed by the enterokinase protease recognition sequence. A number of genes that are recalcitrant to protein production in the parent pRE vector 5were cloned into the pRE:GroEL fusion vector and successfully expressed as fusion proteins in Escherichia coli.
Collapse
Affiliation(s)
- Prasad T Reddy
- Biomolecular Measurement Division, National institute of Standards and Technology, Gaithersburg, MD, United States; Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, United States.
| | - William B O'Dell
- Biomolecular Measurement Division, National institute of Standards and Technology, Gaithersburg, MD, United States; Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| |
Collapse
|
4
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
5
|
A Novel Calcium Uptake Transporter of Uncharacterized P-Type ATPase Family Supplies Calcium for Cell Surface Integrity in Mycobacterium smegmatis. mBio 2017; 8:mBio.01388-17. [PMID: 28951477 PMCID: PMC5615198 DOI: 10.1128/mbio.01388-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca2+ plays an important role in the physiology of bacteria. Intracellular Ca2+ concentrations are tightly maintained in the nanomolar range. Molecular mechanisms of Ca2+ uptake in bacteria remain elusive. Here we show that CtpE is responsible for Ca2+ uptake in Mycobacterium smegmatis. It represents a previously uncharacterized P-type ATPase family in bacteria. Disruption of ctpE in M. smegmatis resulted in a mutant with impaired growth under Ca2+-deficient conditions. The growth defect of the mutant could be rescued by Ca2+ or by ectopic expression of ctpE from M. smegmatis or the orthologous gene (Rv0908) from Mycobacterium tuberculosis H37Rv. Radioactive transport assays revealed that CtpE is a Ca2+-specific transporter. Ca2+ deficiency increased expression of ctpE, resulting in increased 45Ca2+ accumulation in cells. ctpE is a gene that is part of an operon, which is negatively regulated by Ca2+. The ctpE mutant also showed hypersensitivity to polymyxin B, increased biofilm formation, and higher cell aggregation, indicating cell envelope defects. Our work establishes, for the first time, the presence of Ca2+ uptake pumps of the energy-dependent P-type ATPase superfamily in bacteria and also implicates that intracellular Ca2+ is essential for growth and cell envelope integrity in M. smegmatis. Ca2+ is essential for gene regulation, enzymatic activity, and maintenance of structural integrity of cell walls in bacteria. Bacteria maintain intracellular calcium concentrations in a narrow range, creating a gradient with low cytoplasmic calcium concentration and high extracellular calcium concentration. Due to this steep gradient, active pumps belonging to family 2 of P-type ATPases and antiporters are used for Ca2+ efflux, whereas Ca2+ uptake is usually carried out by channels. Molecular mechanisms of Ca2+ uptake in bacteria are still elusive and are mainly limited to a nonproteinaceous channel in Escherichia coli and a pH-dependent channel protein from Bacillus subtilis. Energy-dependent active transporters are not reported for Ca2+ uptake from any organism. Here we show that CtpE belonging to a family of previously uncharacterized bacterial P-type ATPases is involved in specific uptake of Ca2+ into Mycobacterium smegmatis. We also demonstrate that intracellular Ca2+ obtained through CtpE is essential for growth and maintenance of cell surface properties under Ca2+-deficient conditions.
Collapse
|
6
|
|
7
|
Chiou CY, Chen IP, Chen C, Wu HJL, Wei NV, Wallace CC, Chen CA. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 2008; 66:317-24. [PMID: 18322634 DOI: 10.1007/s00239-008-9084-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/06/2007] [Accepted: 01/25/2008] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5'-untranslated region (UTR), 296 bp of 3'-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.
Collapse
Affiliation(s)
- Chih-Yung Chiou
- Research Center for Biodiversity, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Amaral L, Martins M, Viveiros M. Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother 2007; 59:1237-46. [PMID: 17218448 DOI: 10.1093/jac/dkl500] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whereas human neutrophils are effective and efficient killers of bacteria, macrophages such as those derived from monocytes are almost devoid of killing activity. Nevertheless, monocytes can be transformed into effective killers of mycobacteria or staphylococci when exposed to clinical concentrations of a phenothiazine or to inhibitors of efflux pumps (reserpine and verapamil), or to ouabain, an inhibitor of K(+) transport. Because the rates of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) continue to escalate globally, and because no new effective drug has been made available for almost 40 years, compounds that enhance the killing activity of monocytes against MDR-TB are obviously needed. This review covers the specific characteristics of MDR-TB, identifies a variety of agents that address these characteristics and therefore have potential for managing MDR-TB. Because the mechanism by which these agents enhance the killing of intracellular bacteria is important for the intelligent design of new anti-tubercular agents, the review correlates the mechanisms by which these agents manifest their effects. Lastly, a model is presented which describes the mechanisms by which distinct efflux pumps of the phagosome-lysosome complex are inhibited by agents that are known to inhibit K(+) flux. The model also predicts the existence of a K(+) activated exchange (pump) that is probably located in the membrane that delineates the lysosome. This putative pump, which is immune to inhibitors of K+ flux, is identified as being the cause for the acidification of the lysosome thereby activating its hydrolytic enzymes. Because the non-killer macrophage can be transformed into an effective killer by a variety of compounds that inhibit K(+) transport, perhaps it would be wise to develop drugs that enhance the killing activity of these cells inasmuch as this approach would not be subject to any resistance, as is the eventual case for conventional antibiotics.
Collapse
Affiliation(s)
- Leonard Amaral
- Unidade de Micobacterias, UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, Lisboa, Portugal.
| | | | | |
Collapse
|
9
|
Li S, Xie L, Ma Z, Zhang R. cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata. FEBS J 2005; 272:4899-910. [PMID: 16176264 DOI: 10.1111/j.1742-4658.2005.04899.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|