1
|
Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity. Microb Pathog 2020; 149:104561. [PMID: 33049333 DOI: 10.1016/j.micpath.2020.104561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
Burkholderia cepacia is well known as the causative agent of infections in humans where often shares niche with other pathogens, like Pseudomonas aeruginosa. Clinical isolate Burkholderia sp. BCC4135 was selected due to its strong quorum quenching (QQ) activity. Whole genome sequencing unveiled this isolate as B. cepacia with unique sequence type ST1485 and a myriad of genes belonging to resistome and virulome. Two QQ lactonases YtnP and Y2-aiiA originated from B. cepacia BCC4135 were cloned, expressed, and functionally characterized. They were active against a broad substrate spectrum of the N-acyl-homoserine lactones (AHLs). The YtnP lactonase was inactive, while Y2-aiiA was active against N-tetradecanoyl-dl-homoserine lactone (C14-HSL) which could imply the difference in their biological roles from the aspect of its quorum sensing (QS) autoregulation and interference with the QS systems of bacteria residing within the same niche. Both YtnP and Y2-aiiA were able to attenuate virulence potential of P. aeruginosa MMA83 clinical isolate declining its biofilm formation and virulence factors production. B. cepacia BCC4135 lactonases interfered with the las, rhl, and even pqs QS circuit of P. aeruginosa MMA83 transcription and the effect of combined enzymes was even more prominent. B. cepacia BCC4135 also employs the CepI/R QS system for governing its own virulence traits and possibly self-regulates the QQ/QS network through the different expression and activity of YtnP and/or Y2-aiiA. Our findings pointed out that BCC4135 lactonases could be exploited as an effective antivirulence drugs against P. aeruginosa and gave us a new insight into B. cepacia QQ/QS machinery.
Collapse
|
2
|
Lethal Consequences of Overcoming Metabolic Restrictions Imposed on a Cooperative Bacterial Population. mBio 2017; 8:mBio.00042-17. [PMID: 28246357 PMCID: PMC5347341 DOI: 10.1128/mbio.00042-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Quorum sensing (QS) controls cooperative activities in many Proteobacteria. In some species, QS-dependent specific metabolism contributes to the stability of the cooperation. However, the mechanism by which QS and metabolic networks have coevolved to support stable public good cooperation and maintenance of the cooperative group remains unknown. Here we explored the underlying mechanisms of QS-controlled central metabolism in the evolutionary aspects of cooperation. In Burkholderia glumae, the QS-dependent glyoxylate cycle plays an important role in cooperativity. A bifunctional QS-dependent transcriptional regulator, QsmR, rewired central metabolism to utilize the glyoxylate cycle rather than the tricarboxylic acid cycle. Defects in the glyoxylate cycle caused metabolic imbalance and triggered high expression of the stress-responsive chaperonin GroEL. High-level expression of GroEL in glyoxylate cycle mutants interfered with the biosynthesis of a public resource, oxalate, by physically interrupting the oxalate biosynthetic enzyme ObcA. Under such destabilized cooperativity conditions, spontaneous mutations in the qsmR gene in glyoxylate cycle mutants occurred to relieve metabolic stresses, but these mutants lost QsmR-mediated pleiotropy. Overcoming the metabolic restrictions imposed on the population of cooperators among glyoxylate cycle mutants resulted in the occurrence and selection of spontaneous qsmR mutants despite the loss of other important functions. These results provide insight into how QS bacteria have evolved to maintain stable cooperation via QS-mediated metabolic coordination. We address how quorum sensing (QS) has coevolved with metabolic networks to maintain bacterial sociality. We found that QS-mediated metabolic rewiring is critical for sustainable bacterial cooperation in Burkholderia glumae. The loss of the glyoxylate cycle triggered the expression of the stress-responsive molecular chaperonin GroEL. Excessive biosynthesis of GroEL physically hampered biosynthesis of a public good, oxalate. This is one good example of how molecular chaperones play critical roles in bacterial cooperation. In addition, we showed that metabolic restrictions in the glyoxylate cycle acted as a selection pressure on metabolic networks; there were spontaneous mutations in the qsmR gene to relieve such stresses. However, the presence of spontaneous qsmR mutants had tragic consequences for a cooperative population of B. glumae due to failure of qsmR-dependent activation of public good biosynthesis. These results provide a good example of a bacterial strategy for robust cooperation via QS-mediated metabolic rewiring.
Collapse
|
3
|
Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JCM, Ferreira ICFR, Vahabi K. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 2016; 37:525-540. [PMID: 27684212 DOI: 10.1080/07388551.2016.1199010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.
Collapse
Affiliation(s)
- Brahma N Singh
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Prateeksha
- a Pharmacognosy & Ethnopharmacology Division , CSIR-National Botanical Research Institute , Lucknow , India
| | - Dalip K Upreti
- b Lichenology laboratory , Plant Biodiversity and Conservation Biology Division, CSIR-National Botanical Research Institute , Lucknow , Uttar Pradesh , India
| | - Braj Raj Singh
- c TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon , Haryana , India.,d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India
| | - Tom Defoirdt
- d Centre of Excellence in Materials Science (Nanomaterials), Z. H. College of Engineering and Technology , Aligarh Muslim University, Aligarh , Uttar Pradesh , India.,e Laboratory of Aquaculture & Artemia Reference Center , Ghent University , Gent , Belgium
| | - Vijai K Gupta
- f Molecular Glyco-biotechnology Group, Discipline of Biochemistry , School of Natural Sciences, National University of Ireland Galway , Galway , Ireland
| | | | - Harikesh Bahadur Singh
- h Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University , Varanasi , Uttar Pardesh , India
| | - João C M Barreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Isabel C F R Ferreira
- i Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança , Campus de Santa Apolónia , Bragança , Portugal
| | - Khabat Vahabi
- j Biologisch-Pharmazeutische Fakultät , Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller Universität Jena , Jena , Germany
| |
Collapse
|
4
|
Song C, Schmidt R, de Jager V, Krzyzanowska D, Jongedijk E, Cankar K, Beekwilder J, van Veen A, de Boer W, van Veen JA, Garbeva P. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics 2015; 16:1103. [PMID: 26704531 PMCID: PMC4690342 DOI: 10.1186/s12864-015-2289-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities. RESULTS In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7% of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities. CONCLUSIONS Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.
Collapse
Affiliation(s)
- Chunxu Song
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Ruth Schmidt
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Victor de Jager
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Dorota Krzyzanowska
- Laboratory of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG&MUG, Kladki 24, Gdansk, 80-822, Poland.
| | - Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Katarina Cankar
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Jules Beekwilder
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Anouk van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Wietse de Boer
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Johannes A van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
5
|
How KY, Hong KW, Chan KG. Whole genome sequencing enables the characterization of BurI, a LuxI homologue of Burkholderia cepacia strain GG4. PeerJ 2015; 3:e1117. [PMID: 26290785 PMCID: PMC4540015 DOI: 10.7717/peerj.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/30/2015] [Indexed: 01/24/2023] Open
Abstract
Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kar Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
6
|
Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00063-15. [PMID: 25745000 PMCID: PMC4358387 DOI: 10.1128/genomea.00063-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene.
Collapse
|
7
|
Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2013; 7:1373-87. [PMID: 23231487 DOI: 10.2217/fmb.12.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
8
|
Ham JH. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2013; 14. [PMID: 23186372 PMCID: PMC6638695 DOI: 10.1111/mpp.12005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Ryan GT, Wei Y, Winans SC. A LuxR-type repressor of Burkholderia cenocepacia inhibits transcription via antiactivation and is inactivated by its cognate acylhomoserine lactone. Mol Microbiol 2012; 87:94-111. [PMID: 23136852 DOI: 10.1111/mmi.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that encodes two LuxI-type acylhomoserine lactone (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR form a cognate synthase/receptor pair, as do cciI and cciR, while cepR2 lacks a genetically linked AHL synthase gene. Another group showed that a cepR2 mutant overexpressed a cluster of linked genes that appear to direct the production of a secondary metabolite. We found that these same genes were upregulated by octanoylhomoserine lactone (OHL), which is synthesized by CepI. These data suggest that several cepR2-linked promoters are repressed by CepR2 and that CepR2 is antagonized by OHL. Fusions of two divergent promoters to lacZ were used to confirm these hypotheses, and promoter resections and DNase I footprinting assays revealed a single CepR2 binding site between the two promoters. This binding site lies well upstream of both promoters, suggesting an unusual mode of repression. Adjacent to the cepR2 gene is a gene that we designate cepS, which encodes an AraC-type transcription factor. CepS is essential for expression of both promoters, regardless of the CepR2 status or OHL concentration. CepS therefore acts downstream of CepR2, and CepR2 appears to function as a CepS antiactivator.
Collapse
Affiliation(s)
- Gina T Ryan
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
10
|
O'Grady EP, Viteri DF, Sokol PA. A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia. PLoS One 2012; 7:e37611. [PMID: 22624054 PMCID: PMC3356288 DOI: 10.1371/journal.pone.0037611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia.
Collapse
Affiliation(s)
| | | | - Pamela A. Sokol
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L. Microbial chemical signaling: a current perspective. Crit Rev Microbiol 2012; 38:217-49. [PMID: 22300377 DOI: 10.3109/1040841x.2011.652065] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication among microorganisms is mediated through quorum sensing. The latter is defined as cell-density linked, coordinated gene expression in microbial populations as a response to threshold signal concentrations followed by induction of a synchronized population response. This phenomenon is used by a variety of microbes to optimize their survival in a constantly challenging, dynamic milieu, by correlating individual cellular functions to community-based requirements. The synthesis, secretion, and perception of quorum-sensing molecules and their target response play a pivotal role in quorum sensing and are tightly controlled by complex, multilayered and interconnected signal transduction pathways that regulate diverse cellular functions. Quorum sensing exemplifies interactive social behavior innate to the microbial world that controls features such as, virulence, biofilm maturation, antibiotic resistance, swarming motility, and conjugal plasmid transfer. Over the past two decades, studies have been performed to rationalize bacterial cell-to-cell communication mediated by structurally and functionally diverse small molecules. This review describes the theoretical aspects of cellular and quorum-sensing mechanisms that affect microbial physiology and pathobiology.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Biosciences, Prince Philip Dental Hospital, 34, Hospital Road, Sai Ying Pun, Hong Kong
| | | | | | | |
Collapse
|
12
|
Wei Y, Ryan GT, Flores-Mireles AL, Costa ED, Schneider DJ, Winans SC. Saturation mutagenesis of a CepR binding site as a means to identify new quorum-regulated promoters in Burkholderia cenocepacia. Mol Microbiol 2011; 79:616-32. [PMID: 21255107 DOI: 10.1111/j.1365-2958.2010.07469.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen of humans that encodes two genes that resemble the acylhomoserine lactone synthase gene luxI of Vibrio fischeri and three genes that resemble the acylhomoserine lactone receptor gene luxR. Of these, CepI synthesizes octanoylhomoserine lactone (OHL), while CepR is an OHL-dependent transcription factor. In the current study we developed a strategy to identify genes that are directly regulated by CepR. We systematically altered a CepR binding site (cep box) upstream of a target promoter to identify nucleotides that are essential for CepR activity in vivo and for CepR binding in vitro. We constructed 34 self-complementary oligonucleotides containing altered cep boxes, and measured binding affinity for each. These experiments allowed us to identify a consensus CepR binding site. Several hundred similar sequences were identified, some of which were adjacent to probable promoters. Several such promoters were fused to a reporter gene with and without intact cep boxes. This allowed us to identify four new regulated promoters that were induced by OHL, and that required a cep box for induction. CepR-dependent, OHL-dependent expression of all four promoters was reconstituted in Escherichia coli. Purified CepR bound to each of these sites in electrophoretic mobility shift assays.
Collapse
Affiliation(s)
- Yuping Wei
- Departments of Microbiology Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
13
|
Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated burkholderia species cluster. Appl Environ Microbiol 2010; 76:4302-17. [PMID: 20435760 DOI: 10.1128/aem.03086-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Burkholderia includes over 60 species isolated from a wide range of environmental niches and can be tentatively divided into two major species clusters. The first cluster includes pathogens such as Burkholderia glumae, B. pseudomallei, and B. mallei and 17 well-studied species of the Burkholderia cepacia complex. The other recently established cluster comprises at least 29 nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that Burkholderia kururiensis, a member of the latter cluster, possesses an N-acyl homoserine lactone (AHL) quorum-sensing (QS) system designated "BraI/R," which is found in all species of the plant-associated cluster. In the present study, two other BraI/R-like systems were characterized in B. xenovorans and B. unamae and were designated the BraI/R(XEN) and BraI/R(UNA) systems, respectively. Several phenotypes were analyzed, and it was determined that exopolysaccharide was positively regulated by the BraIR-like system in the species B. kururiensis, B. unamae, and B. xenovorans, highlighting commonality in targets. However, the three BraIR-like systems also revealed differences in targets since biofilm formation and plant colonization were differentially regulated. In addition, a second AHL QS system designated XenI2/R2 and an unpaired LuxR solo protein designated BxeR solo were also identified and characterized in B. xenovorans LB400(T). The two AHL QS systems of B. xenovorans are not transcriptionally regulating each other, whereas BxeR solo negatively regulated xenI2. The XenI2/R2 and BxeR solo proteins are not widespread in the Burkholderia species cluster. In conclusion, the present study represents an extensive analysis of AHL QS in the Burkholderia plant-associated cluster demonstrating both commonalities and differences, probably reflecting environmental adaptations of the various species.
Collapse
|
14
|
O'Grady EP, Viteri DF, Malott RJ, Sokol PA. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics 2009; 10:441. [PMID: 19761612 PMCID: PMC2753556 DOI: 10.1186/1471-2164-10-441] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/17/2009] [Indexed: 01/10/2023] Open
Abstract
Background Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc) which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems. Results Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes. Conclusion For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine-tuned control of quorum sensing gene expression in B. cenocepacia strains carrying the cenocepacia island.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
15
|
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 2009; 191:2447-60. [PMID: 19201791 DOI: 10.1128/jb.01746-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.
Collapse
|
16
|
Jayaraman A, Wood TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 2008; 10:145-67. [PMID: 18647113 DOI: 10.1146/annurev.bioeng.10.061807.160536] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Communication between bacteria, belonging to the same species or to different species, is mediated through different chemical signals that are synthesized and secreted by bacteria. These signals can either be cell-density related (autoinducers) or be produced by bacteria at different stages of growth, and they allow bacteria to monitor their environment and alter gene expression to derive a competitive advantage. The properties of these signals and the response elicited by them are important in ensuring bacterial survival and propagation in natural environments (e.g., human oral cavity) where hundreds of bacterial species coexist. First, the interaction between a signal and its receptor is very specific, which underlies intraspecies communication and quorum sensing. Second, when multiple signals are synthesized by the same bacterium, the signaling circuits utilized by the different signals are coordinately regulated with distinct overall circuit architecture so as to maximize the overall response. Third, the recognition of a universal communication signal synthesized by different bacterial species (interspecies communication), as well that of signals produced by eukaryotic cells (interkingdom communication), is also integral to the formation of multispecies biofilm communities that are important in infection and disease. The focus of this review is on the principles underlying signal-mediated bacterial communication, with specific emphasis on the potential for using them in two applications-development of synthetic biology modules and circuits, and the control of biofilm formation and infection.
Collapse
Affiliation(s)
- Arul Jayaraman
- Departments of Chemical Engineering and Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
17
|
DeAngelis KM, Lindow SE, Firestone MK. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 2008; 66:197-207. [PMID: 18721146 DOI: 10.1111/j.1574-6941.2008.00550.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N) mineralization. Most soil organic nitrogen is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate limiting for plant nitrogen accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease-specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared with bulk soil. Low-molecular-weight (MW) DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density-dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals N-acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and nitrogen cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in seven of eight isolates disrupted enzyme activity. Many Alphaproteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of nitrogen-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere nitrogen mineralization.
Collapse
Affiliation(s)
- Kristen M DeAngelis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
18
|
|
19
|
Sokol PA, Malott RJ, Riedel K, Eberl L. Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol 2007; 2:555-63. [PMID: 17927476 DOI: 10.2217/17460913.2.5.555] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genus Burkholderia not only contains the primary pathogens Burkholderia pseudomallei and Burkholderia mallei but also several species that have emerged as opportunistic pathogens in persons suffering from cystic fibrosis or chronic granulomatous disease and immunocompromised individuals. Burkholderia species utilize quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express virulence factors and other functions in a population-density-dependent manner. Most Burkholderia species employ the CepIR QS system, which relies on N-octanoyl-homoserine lactone. However, some strains harbour multiple QS systems and produce numerous AHLs. QS systems have been demonstrated to be essential for full virulence in various infection models and, thus, these regulatory systems represent attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Pamela A Sokol
- University of Calgary, Department of Microbiology and Infectious Diseases, Faculty of Medicine, 3330 Hospital Dr., NW Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
20
|
Malott RJ, Sokol PA. Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis. J Bacteriol 2007; 189:3006-16. [PMID: 17277056 PMCID: PMC1855837 DOI: 10.1128/jb.01544-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia vietnamiensis has both the cepIR quorum-sensing system that is widely distributed among the Burkholderia cepacia complex (BCC) and the bviIR system. Comparison of the expression of cepI, cepR, bviI, and bviR-luxCDABE fusions in B. vietnamiensis G4 and the G4 cepR and bviR mutants determined that the expression of bviI requires both a functional cognate regulator, BviR, and functional CepR. The cepIR system, however, is not regulated by BviR. Unlike the cepIR genes in other BCC species, the cepIR genes are not autoregulated in G4. N-Acyl-homoserine lactone (AHL) production profiles in G4 cepI, cepR, bviI, and bviR mutants confirmed the regulatory organization of the G4 quorum-sensing systems. The regulatory network in strain PC259 is similar to that in G4, except that CepR positively regulates cepI and negatively regulates cepR. AHL production and the bviI expression levels in seven B. vietnamiensis isolates were compared. All strains produced N-octanoyl-homoserine lactone and N-hexanoyl-homoserine lactone; however, only one of four clinical strains but all three environmental strains produced the BviI synthase product, N-decanoyl-homoserine lactone (DHL). The three strains that did not produce DHL expressed bviR but not bviI. Heterologous expression of bviR restored DHL production in these strains. The bviIR loci of the non-DHL-producing strains were sequenced to confirm that bviR encodes a functional transcriptional regulator. Lack of expression of G4 bviI in these three strains indicated that an additional regulatory element may be involved in the regulation of bviIR expression in certain strains of B. vietnamiensis.
Collapse
Affiliation(s)
- Rebecca J Malott
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada
| | | |
Collapse
|
21
|
Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome. BMC Microbiol 2006; 6:104. [PMID: 17187664 PMCID: PMC1766932 DOI: 10.1186/1471-2180-6-104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs. RESULTS Four positively regulated and two negatively regulated genes were identified by transposon mutagenesis including genes potentially involved in iron transport and virulence. The promoter regions of selected CepR regulated genes and site directed mutagenesis of the cepI promoter were used to predict a consensus cep box sequence for CepR binding. The first-generation consensus sequence for the cep box was used to identify putative cep boxes in the genome sequence. Eight potential CepR regulated genes were chosen and the expression of their promoters analyzed. Six of the eight were shown to be regulated by CepR. A second generation motif was created from the promoters of these six genes in combination with the promoters of cepI, zmpA, and two of the CepR regulated genes identified by transposon mutagenesis. A search of the B. cenocepacia J2315 genome with the new motif identified 55 cep boxes in 65 promoter regions that may be regulated by CepR. CONCLUSION Using transposon mutagenesis and bioinformatics expression of twelve new genes have been determined to be regulated by the CepIR quorum sensing system. A cep box consensus sequence has been developed based on the predicted cep boxes of ten CepR regulated genes. This consensus cep box has led to the identification of over 50 new genes potentially regulated by the CepIR quorum sensing system.
Collapse
|
22
|
Lumjiaktase P, Diggle SP, Loprasert S, Tungpradabkul S, Daykin M, Cámara M, Williams P, Kunakorn M. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology (Reading) 2006; 152:3651-3659. [PMID: 17159218 DOI: 10.1099/mic.0.29226-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting B. pseudomallei from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of dpsA expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a lux-box motif has been located within the dpsA promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that B. pseudomallei strain PP844 synthesizes AHLs. These were identified as N-octanoylhomoserine lactone (C8-HSL), N-(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), N-(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), N-decanoylhomoserine lactone (C10-HSL), N-(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and N-(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that bpsI expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In bpsI, bpsR and bpsIR mutants, dpsA expression was substantially down-regulated. Furthermore, dpsA expression in Escherichia coli required both BpsR and C8-HSL. bpsIR-deficient mutants exhibited hypersensitivity to the organic hydroperoxide tert-butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL (bpsI mutant only), by complementation with the bpsIR genes or by overexpression of dpsA. These data indicate that in B. pseudomallei, QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA.
Collapse
Affiliation(s)
- Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Suvit Loprasert
- Department Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Mavis Daykin
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mongkol Kunakorn
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
23
|
Subsin B, Chambers CE, Visser MB, Sokol PA. Identification of genes regulated by the cepIR quorum-sensing system in Burkholderia cenocepacia by high-throughput screening of a random promoter library. J Bacteriol 2006; 189:968-79. [PMID: 17122351 PMCID: PMC1797291 DOI: 10.1128/jb.01201-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cenocepacia cepIR quorum-sensing system regulates expression of extracellular proteases, chitinase, and genes involved in ornibactin biosynthesis, biofilm formation, and motility. In a genome-wide screen we identified cepIR-regulated genes by screening a random promoter library of B. cenocepacia K56-2 constructed in a luminescence reporter detection plasmid for differential expression in response to N-octanoyl-l-homoserine lactone (OHL). Eighty-nine clones were identified; in 58 of these clones expression was positively regulated by cepIR, and in 31 expression was negatively regulated by cepIR. The expression profiles of the 89 promoter clones were compared in the cepI mutant K56-dI2 in medium supplemented with 30 pM OHL and K56-2 to confirm that the presence of OHL restored expression to wild-type levels. To validate the promoter library observations and to determine the effect of a cepR mutation on expression of selected genes, the mRNA levels of nine genes whose promoters were predicted to be regulated by cepR were quantitated by quantitative reverse transcription-PCR in the wild type and cepI and cepR mutants. The expression levels of all nine genes were similar in the cepI and cepR mutants and consistent with the promoter-lux reporter activity. The expression of four selected cepIR-regulated gene promoters was examined in a cciIR mutant, and two of these promoters were also regulated by cciIR. This study extends our understanding of genes whose expression is influenced by cepIR and indicates the global regulatory effect of the cepIR system in B. cenocepacia.
Collapse
Affiliation(s)
- Benchamas Subsin
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
24
|
Solis R, Bertani I, Degrassi G, Devescovi G, Venturi V. Involvement of quorum sensing and RpoS in rice seedling blight caused byBurkholderia plantarii. FEMS Microbiol Lett 2006; 259:106-12. [PMID: 16684109 DOI: 10.1111/j.1574-6968.2006.00254.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Burkholderia plantarii is a plant pathogen responsible for causing rice seedling blight. The molecular mechanisms responsible for this pathogenicity are currently unknown. In this study, we report the identification and characterization of N-acyl homoserine lactone quorum sensing and the stationary phase RpoS sigma factor of B. plantarii. Both global regulatory systems are involved in causing rice seedling blight. This is the first report of gene regulators of B. plantarii implicated in the disease.
Collapse
Affiliation(s)
- Renando Solis
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology Area, Trieste, Italy
| | | | | | | | | |
Collapse
|
25
|
Barnard AM, Salmond GP. Quorum Sensing: The Complexities of Chemical Communication between Bacteria. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Wopperer J, Cardona ST, Huber B, Jacobi CA, Valvano MA, Eberl L. A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex. Appl Environ Microbiol 2006; 72:1579-87. [PMID: 16461713 PMCID: PMC1392939 DOI: 10.1128/aem.72.2.1579-1587.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Collapse
Affiliation(s)
- Julia Wopperer
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Weingart CL, White CE, Liu S, Chai Y, Cho H, Tsai CS, Wei Y, Delay NR, Gronquist MR, Eberhard A, Winans SC. Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 2005; 57:452-67. [PMID: 15978077 DOI: 10.1111/j.1365-2958.2005.04656.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that can aggressively colonize the cystic fibrosis lung. This organism has a LuxR/LuxI-type quorum sensing system that enables cell-cell communication via exchange of acyl homoserine lactones (AHLs). The CepR and CepI proteins constitute a global regulatory system, controlling expression of at least 40 genes, including those controlling swarming motility and biofilm formation. In this study, we isolated seven lacZ fusions in a clinical isolate of B. cenocepacia that are inducible by octanoyl-HSL. Induction of all of these genes requires CepR. The cepI promoter was tested for induction by a set of 33 synthetic autoinducers and analogues, and was most strongly induced by long-chain AHLs lacking 3-oxo substitutions. Expression of this promoter was inhibited by high concentrations of three different autoinducers, each having six-carbon acyl chains. When CepR protein was overproduced in Escherichia coli, it accumulated in a soluble form in the presence of octanoyl-HSL, but accumulated only as insoluble inclusion bodies in its absence. Purified CepR-OHL complexes bound to specific DNA sequences at the cepI and aidA promoters with high specificity. These binding sites included a 16-nucleotide imperfect dyad symmetry. Both CepR binding sites are centred approximately 44 nucleotides upstream of the respective transcription start sites.
Collapse
|
28
|
Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol 2005; 71:5208-18. [PMID: 16151106 PMCID: PMC1214635 DOI: 10.1128/aem.71.9.5208-5218.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.
Collapse
Affiliation(s)
- Kerry L Tomlin
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | | | |
Collapse
|
29
|
Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA. Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 2005; 73:4982-92. [PMID: 16041013 PMCID: PMC1201253 DOI: 10.1128/iai.73.8.4982-4992.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several transmissible Burkholderia cenocepacia strains that infect multiple cystic fibrosis patients contain a genomic island designated as the cenocepacia island (cci). The cci contains a predicted N-acylhomoserine lactone (AHL) synthase gene, cciI, and a predicted response regulator gene, cciR. AHL production profiles indicated that CciI catalyzes the synthesis of N-hexanoyl-l-homoserine lactone and minor amounts of N-octanoyl-l-homoserine lactone. The cciI and cciR genes were found to be cotranscribed by reverse transcription-PCR analysis, and the expression of a cciIR::luxCDABE fusion in a cciR mutant suggested that the cciIR system negatively regulates its own expression. B. cenocepacia strains also have a cepIR quorum-sensing system. Expression of cepI::luxCDABE or cepR::luxCDABE fusions in a cciR mutant showed that CciR negatively regulates cepI but does not regulate cepR. Expression of the cciIR::luxCDABE fusion in a cepR mutant indicated that functional CepR is required for cciIR expression. Phylogenetic analysis suggested that the cciIR system was acquired by horizontal gene transfer from a distantly related organism and subsequently incorporated into the ancestral cepIR regulatory network. Mutations in cciI, cciR, cepI cciI, and cepR cciR were constructed in B. cenocepacia K56-2. The cciI mutant had greater protease activity and less swarming motility than the parent strain. The cciR mutant had less protease activity than the parent strain. The phenotypes of the cepI cciI and cepR cciR mutants were similar to cepI or cepR mutants, with less protease activity and swarming motility than the parent strain.
Collapse
Affiliation(s)
- Rebecca J Malott
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
30
|
Chambers CE, Visser MB, Schwab U, Sokol PA. Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol Lett 2005; 244:297-304. [PMID: 15766782 DOI: 10.1016/j.femsle.2005.01.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 12/24/2004] [Accepted: 01/31/2005] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa and species of the Burkholderia cepacia complex are the primary bacterial pathogens contributing to lung disease in patients with cystic fibrosis. Quorum sensing systems using N-acyl homoserine lactone (AHL) signal molecules are involved in the regulation of a number of virulence factors in these species. Extracts of mucopurulent respiratory secretions from 13 cystic fibrosis patients infected with P. aeruginosa and/or strains of the B. cepacia complex were fractionated using reverse-phase fast pressure liquid chromatography and analyzed for the presence of AHLs using a traI-luxCDABE-based reporter that responds to AHLs with acyl chains ranging between 4 and 12 carbons. Using this assay system, a broad range of AHLs were detected and identified despite being present at low concentrations in limited sample volumes. N-(3-oxo-dodecanoyl)-l-homoserine lactone, N-(3-oxo-decanoyl)-l-homoserine lactone and N-octanoyl-l-homoserine lactone (OHL) were the AHLs most frequently identified. OHL and N-decanoyl-l-homoserine lactone were detected in nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the AHLs identified.
Collapse
Affiliation(s)
- Catherine E Chambers
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alta., Canada T2N 4N1
| | | | | | | |
Collapse
|
31
|
Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 2004; 72:7220-30. [PMID: 15557647 PMCID: PMC529107 DOI: 10.1128/iai.72.12.7220-7230.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia H111, which was isolated from a cystic fibrosis patient, employs a quorum-sensing (QS) system, encoded by cep, to control the expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are expressed only when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. While the wild-type strain effectively kills the nematode Caenorhabditis elegans, the pathogenicity of mutants with defective quorum sensing is attenuated. To date, very little is known about the cep-regulated virulence factors required for nematode killing. Here we report the identification of a cep-regulated gene, whose predicted amino acid sequence is highly similar to the QS-regulated protein AidA of the plant pathogen Ralstonia solanacearum. By use of polyclonal antibodies directed against AidA, it is demonstrated that the protein is expressed in the late-exponential phase and accumulates during growth arrest. We show that B. cenocepacia H111 AidA is essential for slow killing of C. elegans but has little effect on fast killing, suggesting that the protein plays a role in the accumulation of the strain in the nematode gut. Thus, AidA appears to be required for establishing an infection-like process rather than acting as a toxin. Furthermore, evidence is provided that AidA is produced not only by B. cenocepacia but also by many other strains of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Birgit Huber
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Bertani I, Venturi V. Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 2004; 70:5493-502. [PMID: 15345437 PMCID: PMC520884 DOI: 10.1128/aem.70.9.5493-5502.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing is a cell population-density dependent regulatory system which in gram-negative bacteria often involves the production and detection of N-acyl homoserine lactones (AHLs). Some Pseudomonas putida strains have been reported to produce AHLs, and one quorum-sensing locus has been identified. However, it appears that the majority of strains do not produce AHLs. In this study we report the identification and regulation of the AHL-dependent system of rhizosphere P. putida WCS358. This system is identical to the recently identified system of P. putida strain IsoF and very similar to the las system of Pseudomonas aeruginosa. It is composed of three genes, the luxI family member ppuI, the putative repressor rsaL, and the luxR family member ppuR. A genomic ppuR::Tn5 mutant of strain WCS358 was identified by its inability to produce AHLs when it was cross-streaked in close proximity to an AHL biosensor, whereas an rsaL::Tn5 genomic mutant was identified by its ability to overproduce AHL molecules. Using transcriptional promoter fusions, we studied expression profiles of the rsaL, ppuI, and ppuR promoters in various genetic backgrounds. At the onset of the stationary phase, the autoinducer synthase ppuI gene expression is under positive regulation by PpuR-AHL and under negative regulation by RsaL, indicating that the molecules could be in competition for binding at the ppuI promoter. In genomic rsaL::Tn5 mutants ppuI expression and production of AHL levels increased dramatically; however, both processes were still under growth phase regulation, indicating that RsaL is not involved in repressing AHL production at low cell densities. The roles of the global response regulator GacA and the stationary-phase sigma factor RpoS in the regulation of the AHL system at the onset of the stationary phase were also investigated. The P. putida WCS358 gacA gene was cloned and inactivated in the genome. It was determined that the three global regulatory systems are closely linked, with quorum sensing and RpoS regulating each other and GacA positively regulating ppuI expression. Studies of the regulation of AHL quorum-sensing systems have lagged behind other studies and are important for understanding how these systems are integrated into the overall growth phase and metabolic status of the cells.
Collapse
Affiliation(s)
- Iris Bertani
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | |
Collapse
|
33
|
Kim J, Kim JG, Kang Y, Jang JY, Jog GJ, Lim JY, Kim S, Suga H, Nagamatsu T, Hwang I. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 2004; 54:921-34. [PMID: 15522077 DOI: 10.1111/j.1365-2958.2004.04338.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Burkholderia glumae BGR1 produces a broad-host range phytotoxin, called toxoflavin, which is a key pathogenicity factor in rice grain rot and wilt in many field crops. Our molecular and genetic analyses of toxoflavin-deficient mutants demonstrated that gene clusters for toxoflavin production consist of four transcriptional units. The toxoflavin biosynthesis genes were composed of five genes, toxA to toxE, as Suzuki et al. (2004) reported previously. Genes toxF to toxI, which are responsible for toxoflavin transport, were polycistronic and similar to the genes for resistance-nodulation-division (RND) efflux systems. Using Tn3-gusA reporter fusions, we found that ToxR, a LysR-type regulator, regulates both the toxABCDE and toxFGHI operons in the presence of toxoflavin as a coinducer. In addition, the expression of both operons required a transcriptional activator, ToxJ, whose expression is regulated by quorum sensing. TofI, a LuxI homologue, was responsible for the biosynthesis of both N-hexanoyl homoserine lactone and N-octanoyl homoserine lactone (C8-HSL). C8-HSL and its cognate receptor TofR, a LuxR homologue, activated toxJ expression. This is the first report that quorum sensing is involved in pathogenicity by the regulation of phytotoxin biosynthesis and its transport in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Jinwoo Kim
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Valade E, Thibault FM, Gauthier YP, Palencia M, Popoff MY, Vidal DR. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol 2004; 186:2288-94. [PMID: 15060030 PMCID: PMC412159 DOI: 10.1128/jb.186.8.2288-2294.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infection of humans and animals. The virulence of this pathogen is thought to depend on a number of secreted proteins, including the MprA metalloprotease. We observed that MprA is produced upon entry into the stationary phase, when the cell density is high, and this prompted us to study cell density-dependent regulation in B. pseudomallei. A search of the B. pseudomallei genome led to identification of a quorum-sensing system involving the LuxI-LuxR homologs PmlI-PmlR. PmlI directed the synthesis of an N-acylhomoserine lactone identified as N-decanoylhomoserine lactone. A B. pseudomallei pmlI mutant was significantly less virulent than the parental strain in a murine model of infection by the intraperitoneal, subcutaneous, and intranasal routes. Inactivation of pmlI resulted in overproduction of MprA at the onset of the stationary phase. A wild-type phenotype was restored following complementation with pmlI or addition of cell-free culture supernatant. In contrast, there was no significant difference between the virulence of a B. pseudomallei mprA mutant and the virulence of the wild-type strain. These results suggest that the PmlI-PmlR quorum-sensing system of B. pseudomallei is essential for full virulence in a mouse model and downregulates the production of MprA at a high cell density.
Collapse
Affiliation(s)
- E Valade
- Unité de Microbiologie, Département de biologie des agents transmissibles, Centre de Recherches du Service de Santé des Armées Emile Pardé, 38702 La Tronche, France.
| | | | | | | | | | | |
Collapse
|
35
|
Venturi V, Friscina A, Bertani I, Devescovi G, Aguilar C. Quorum sensing in the Burkholderia cepacia complex. Res Microbiol 2004; 155:238-44. [PMID: 15142620 DOI: 10.1016/j.resmic.2004.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 01/22/2004] [Indexed: 11/24/2022]
Abstract
Quorum sensing is a cell-density-dependent regulatory mechanism which, in Gram-negative bacteria, usually involves the production and detection of N-acyl homoserine lactones (HSLs). In the last four years HSL-dependent quorum sensing has been identified in members of the Burkholderia cepacia complex, and this mini-review summarizes initial findings and discusses future perspectives.
Collapse
Affiliation(s)
- Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|