1
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
2
|
Gabriel A, Costa S, Henriques I, Lopes I. Effects of Long-Term Exposure to Increased Salinity on the Amphibian Skin Bacterium Erwinia toletana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:779-788. [PMID: 33877369 DOI: 10.1007/s00244-021-00845-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.
Collapse
Affiliation(s)
- Antonieta Gabriel
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.
| | - Sara Costa
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, CESAM, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Lopes
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
3
|
Pandin C, Caroff M, Condemine G. Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii. Appl Environ Microbiol 2016; 82:6423-6430. [PMID: 27565623 PMCID: PMC5066359 DOI: 10.1128/aem.01757-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. IMPORTANCE Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be characterized.
Collapse
Affiliation(s)
- Caroline Pandin
- Université Lyon, INSA de Lyon, CNRS UMR5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Martine Caroff
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France LPS-BioSciences, Université de Paris-Sud, Orsay, France
| | - Guy Condemine
- Université Lyon, INSA de Lyon, CNRS UMR5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| |
Collapse
|
4
|
Roselli S, Nadalig T, Vuilleumier S, Bringel F. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study. PLoS One 2013; 8:e56598. [PMID: 23593113 PMCID: PMC3621897 DOI: 10.1371/journal.pone.0056598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/11/2013] [Indexed: 12/24/2022] Open
Abstract
Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate-bound one-carbon units, and central metabolism. The mosaic organization of plasmid pCMU01 and the clustering of genes coding for dehalogenase enzymes and for biosynthesis of associated cofactors suggests a history of gene acquisition related to chloromethane utilization.
Collapse
Affiliation(s)
- Sandro Roselli
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Thierry Nadalig
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Stéphane Vuilleumier
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
| | - Françoise Bringel
- Département Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, UMR7156, Centre national de la recherche scientifique, Strasbourg, France
- * E-mail:
| |
Collapse
|
5
|
Chun L, Li-bo L, Di S, Jing C, Ning L. Response of Osmotic Adjustment of Lactobacillus bulgaricus to NaCl Stress. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s1006-8104(13)60054-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Li J, Wang N. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. MOLECULAR PLANT PATHOLOGY 2011; 12:381-96. [PMID: 21453433 PMCID: PMC6640450 DOI: 10.1111/j.1364-3703.2010.00681.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas citri ssp. citri (Xcc) causes citrus canker, one of the most economically damaging diseases affecting citrus worldwide. Biofilm formation is important for the pathogen to survive epiphytically in planta prior to the induction of canker symptoms. In this study, two EZ-Tn5 transposon mutants of Xcc strain 306, affected in biofilm formation, were isolated; subsequent analyses led to the identification of a novel gene locus XAC3596 (designated as wxacO), encoding a putative transmembrane protein, and the rfbC gene, encoding a truncated O-antigen biosynthesis protein. Sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed that lipopolysaccharide (LPS) biosynthesis was affected in both wxacO and rfbC mutants. The wxacO mutant was impaired in the formation of a structured biofilm on glass or host plant leaves, as shown in confocal laser scanning microscopy analysis of strains containing a plasmid expressing the green fluorescent protein. Both wxacO and rfbC mutants were more sensitive than the wild-type strain to different environmental stresses, and more susceptible to the antimicrobial peptide polymyxin B. The two mutants were attenuated in swimming motility, but not in flagellar formation. The mutants also showed reduced virulence and decreased growth on host leaves when spray inoculated. The affected phenotypes of the wxacO and rfbC mutants were complemented to wild-type levels by the intact wxacO and rfbC genes, respectively. This report identifies a new gene influencing LPS production by Xcc. In addition, our results suggest that a structurally intact LPS is critical for survival in the phyllosphere and for the virulence of Xcc.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | | |
Collapse
|
7
|
Yamanaka T, Sumita-Sasazaki Y, Sugimori C, Matsumoto-Mashimo C, Yamane K, Mizukawa K, Yoshida M, Hayashi H, Nambu T, Leung KP, Fukushima H. Biofilm-like structures and pathogenicity of Escherichia hermannii YS-11, a clinical isolate from a persistent apical periodontitis lesion. ACTA ACUST UNITED AC 2010; 59:456-65. [PMID: 20553325 DOI: 10.1111/j.1574-695x.2010.00700.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia hermannii, formerly classified as enteric group 11 of Escherichia coli, is considered to be nonpathogenic. In this report, we described some of the pathogenic properties of a viscous material-producing E. hermannii strain YS-11, which was clinically isolated from a persistent apical periodontitis lesion. YS-11 possessed cell surface-associated meshwork-like structures that are found in some biofilm-forming bacteria and its viscous materials contained mannose-rich exopolysaccharides. To further examine the biological effect of the extracellular viscous materials and the meshwork structures, we constructed a number of mutants using transposon mutagenesis. Strain 455, which has a transposon inserted into wzt, a gene that encodes an ATP-binding cassette transporter, lacked the expression of the cell surface-associated meshwork structures and the ability to produce extracellular materials. Complementation of the disrupted wzt in strain 455 with an intact wzt resulted in the restoration of these phenotypes. We also compared these strains in terms of their ability to induce abscess formation in mice as an indication of their pathogenicity. Strains with meshwork-like structures induced greater abscesses than those induced by strains that lacked such structures. These results suggest that the ability to produce mannose-rich exopolysaccharides and to form meshwork-like structures on E. hermannii might contribute to its pathogenicity.
Collapse
Affiliation(s)
- Takeshi Yamanaka
- Department of Bacteriology, Osaka Dental University, Hirakata-shi, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology (Reading) 2009; 155:4058-4068. [DOI: 10.1099/mic.0.031807-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azospirillum brasilense is a plant root-colonizing bacterium that exerts beneficial effects on the growth of many agricultural crops. Extracellular polysaccharides of the bacterium play an important role in its interactions with plant roots. The pRhico plasmid of A. brasilense Sp7, also named p90, carries several genes involved in synthesis and export of cell surface polysaccharides. We generated two Sp7 mutants impaired in two pRhico-located genes, noeJ and noeL, encoding mannose-6-phosphate isomerase and GDP-mannose 4,6-dehydratase, respectively. Our results demonstrate that in A. brasilense Sp7, noeJ and noeL are involved in lipopolysaccharide and exopolysaccharide synthesis. noeJ and noeL mutant strains were significantly altered in their outer membrane and cytoplasmic/periplasmic protein profiles relative to the wild-type strain. Moreover, both noeJ and noeL mutations significantly affected the bacterial responses to several stresses and antimicrobial compounds. Disruption of noeL, but not noeJ, affected the ability of the A. brasilense Sp7 to form biofilms. The pleiotropic alterations observed in the mutants could be due, at least partially, to their altered lipopolysaccharides and exopolysaccharides relative to the wild-type.
Collapse
|
9
|
Lerner A, Okon Y, Burdman S. The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology (Reading) 2009; 155:791-804. [DOI: 10.1099/mic.0.021824-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several genes involved in the interaction between Azospirillum brasilense Sp7 and plants are located on the pRhico plasmid. Here we report the characterization of an Sp7 mutant strain with impairment of the pRhico-located gene wzm. This gene encodes an inner-membrane component of an ATP-binding cassette (ABC) transporter with similarity to transporters involved in surface polysaccharide export. Indeed, SDS-PAGE revealed that LPS synthesis is affected in the wzm mutant. No significant differences were observed between wild-type and mutant strains in exopolysaccharide (EPS) amount; however, several differences were observed between them in EPS monosaccharide composition, and only wild-type colonies stained positively with Congo red. Microscopy revealed that wzm mutant cells are longer and thinner, and exhibit several differences in their cell surface relative to the wild-type. The wzm mutant was more resistant to oxidative stress, starvation, desiccation, heat and osmotic shock than the wild-type. In contrast, the mutant was more susceptible than the wild-type to UV radiation and saline stress. The strains also differed in their susceptibility to different antibiotics. Differences between the strains were also observed in their outer-membrane protein composition. No differences were observed between strains in their ability to attach to sweet corn roots and seeds, and to promote growth under the tested conditions. As LPS plays an important role in cell envelope structural integrity, we propose that the pleiotropic phenotypic changes observed in the wzm mutant are due to its altered LPS relative to the wild-type.
Collapse
Affiliation(s)
- Anat Lerner
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yaacov Okon
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Le Marrec C, Bon E, Lonvaud-Funel A. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int J Food Microbiol 2007; 115:335-42. [PMID: 17320992 DOI: 10.1016/j.ijfoodmicro.2006.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 12/07/2006] [Indexed: 12/01/2022]
Abstract
Growth of the lactic acid bacterium Oenococcus oeni under hyperosmotic constraint was investigated in a chemically defined medium. The bacterium could grow on media with an elevated osmolality, preferably below 1.5 Osm kg(-)(1) H(2)O. At osmolalities comprised between 0.6 and 1.5 Osm kg(-)(1) H(2)O, the growth deficit elicited by the sugars glucose and fructose was slightly more severe than with salts (NaCl or KCl). In contrast to what was observed in other lactic acid bacteria, proline, glycine betaine and related molecules were unable to relieve inhibition of growth of O. oeni under osmotic constraint. This was correlated to the absence of sequences homologous to the genes coding for glycine betaine and/or proline transporters described in Lactococcus lactis and Lactobacillus plantarum. The amino acid aspartate proved to be osmoprotective under electrolyte and non-electrolyte stress. Examination of the role of peptides during osmoregulation showed that proline- and glutamate-containing peptides were protective under salt-induced stress, and not under sugar-induced stress. Under high salt, PepQ a cytoplasmic prolidase that specifically liberated proline from di-peptides increased activity, while PepX (X-prolyl-dipeptidyl aminopeptidase) and PepI (iminopeptidase) activities were unaffected. Our data suggest that proline- and glutamate-containing peptides may contribute to the adaptation of O. oeni to high salt through their intracellular hydrolysis and/or direct accumulation.
Collapse
Affiliation(s)
- Claire Le Marrec
- Faculté d'Oenologie, UMR Oenologie-Ampélologie, INRA-Université Victor Segalen Bordeaux 2-Université Bordeaux 1, 351, Cours de la Libération, 33405 Talence, France.
| | | | | |
Collapse
|