1
|
Sha Y, Yan Q, Liu J, Yu J, Xu S, He Z, Ren J, Qu J, Zheng S, Wang G, Dong W. Homologous genes shared between probiotics and pathogens affect the adhesion of probiotics and exclusion of pathogens in the gut mucus of shrimp. Front Microbiol 2023; 14:1195137. [PMID: 37389343 PMCID: PMC10301755 DOI: 10.3389/fmicb.2023.1195137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Clarifying mechanisms underlying the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine is a central theme for shrimp health. Under experimental manipulation of probiotic strain (i.e., Lactiplantibacillus plantarum HC-2) adhesion to the shrimp mucus, this study tested the core hypothesis that homologous genes shared between probiotic and pathogen would affect the adhesion of probiotics and exclusion of pathogens by regulating the membrane proteins of probiotics. Results indicated that the reduction of FtsH protease activity, which significantly correlated with the increase of membrane proteins, could increase the adhesion ability of L. plantarum HC-2 to the mucus. These membrane proteins mainly involved in transport (glycine betaine/carnitine/choline ABC transporter choS, ABC transporter, ATP synthase subunit a atpB, amino acid permease) and regulation of cellular processes (histidine kinase). The genes encoding the membrane proteins were significantly (p < 0.05) up-regulated except those encoding ABC transporters and histidine kinases in L. plantarum HC-2 when co-cultured with Vibrio parahaemolyticus E1, indicating that these genes could help L. plantarum HC-2 to competitively exclude pathogens. Moreover, an arsenal of genes predicted to be involved in carbohydrate metabolism and bacteria-host interactions were identified in L. plantarum HC-2, indicating a clear strain adaption to host's gastrointestinal tract. This study advances our mechanistic understanding of the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine, and has important implications for screening and applying new probiotics for maintaining gut stability and host health.
Collapse
Affiliation(s)
- Yujie Sha
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jing Ren
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shiying Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Guomin Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Weiying Dong
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
2
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
3
|
Chen X, Wang W, Hu H, Tang H, Liu Y, Xu P, Lin K, Cui C. Insights from comparative proteomic analysis into degradation of phenanthrene and salt tolerance by the halophilic Martelella strain AD-3. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1499-1510. [PMID: 33244677 DOI: 10.1007/s10646-020-02310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A halophilic PAHs-degrading strain, Martelella AD-3, was previously isolated from highly saline petroleum-contaminated soil. In this study, label-free proteomics were performed to identify differentially expressed proteins (DEPs) under Group P (phenanthrene +5% salinity) and Group G (glycerol +1% salinity), which would help to reveal the mechanism of phenanthrene degradation and salt tolerance. A total of 307 up-regulated DEPs were found in Group P, including 17 phenanthrene degradation proteins. Among these phenanthrene-degrading proteins, the ferredoxin of aromatic ring-hydroxylating dioxygenase (RHD) was up-regulated by 110-fold and gentisate 1,2-dioxygenases (GDOs) were only expressed in Group P. Besides, we also found nine high salt stress response proteins, including ectoine synthase and transport protein of compatible (osmoprotectant) solutes, were differentially up-regulated. These results indicate that strain AD-3 mainly relied on RHD and dihydrodiol dehydrogenase to degrade phenanthrene, and accumulated compatible solutes for resistance to salt stress. This study provides strong theoretical guidance for understanding the degradation of phenanthrene by strain AD-3 in high salt environments.
Collapse
Affiliation(s)
- Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Aragón-Aranda B, Palacios-Chaves L, Salvador-Bescós M, de Miguel MJ, Muñoz PM, Vences-Guzmán MÁ, Zúñiga-Ripa A, Lázaro-Antón L, Sohlenkamp C, Moriyón I, Iriarte M, Conde-Álvarez R. The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Front Microbiol 2021; 12:614243. [PMID: 34421831 PMCID: PMC8371380 DOI: 10.3389/fmicb.2021.614243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leyre Palacios-Chaves
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | | | - Amaia Zúñiga-Ripa
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leticia Lázaro-Antón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ignacio Moriyón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
6
|
Lemos LN, Medeiros JD, Dini-Andreote F, Fernandes GR, Varani AM, Oliveira G, Pylro VS. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol 2019; 28:4259-4271. [PMID: 31446647 DOI: 10.1111/mec.15208] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
The size of bacterial genomes is often associated with organismal metabolic capabilities determining ecological breadth and lifestyle. The recently proposed Candidate Phyla Radiation (CPR)/Patescibacteria encompasses mostly unculturable bacterial taxa with relatively small genome sizes with potential for co-metabolism interdependencies. As yet, little is known about the ecology and evolution of CPR, particularly with respect to how they might interact with other taxa. Here, we reconstructed two novel genomes (namely, Candidatus Saccharibacter sossegus and Candidatus Chaer renensis) of taxa belonging to the class Saccharimonadia within the CPR/Patescibacteria using metagenomes obtained from acid mine drainage (AMD). By testing the hypothesis of genome streamlining or symbiotic lifestyle, our results revealed clear signatures of gene losses in these genomes, such as those associated with de novo biosynthesis of essential amino acids, nucleotides, fatty acids and cofactors. In addition, co-occurrence analysis provided evidence supporting potential symbioses of these organisms with Hydrotalea sp. in the AMD system. Together, our findings provide a better understanding of the ecology and evolution of CPR/Patescibacteria and highlight the importance of genome reconstruction for studying metabolic interdependencies between unculturable Saccharimonadia representatives.
Collapse
Affiliation(s)
- Leandro N Lemos
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, Brazil
| | - Julliane D Medeiros
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gabriel R Fernandes
- Biosystems Informatics and Genomics Group, René Rachou Institute, FIOCRUZ-Minas, Belo Horizonte, Brazil
| | - Alessandro M Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Brazil
| | | | - Victor S Pylro
- Microbial Ecology and Bioinformatics Laboratory, Department of Biology, Federal University of Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
7
|
Khan HM, MacKerell AD, Reuter N. Cation-π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J Chem Theory Comput 2018; 15:7-12. [PMID: 30562013 DOI: 10.1021/acs.jctc.8b00839] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cation-π interactions between tryptophan and choline or trimethylated lysines are vital for many biological processes. The performance of the additive CHARMM36 force field against target quantum mechanical data is shown to reproduce QM equilibrium geometries but required modified Lennard-Jones potentials to accurately reproduce the QM interaction energies. The modified parameter set allows accurate modeling, including free energies, of cation-π indole-choline and indole-trimethylated lysines interactions relevant for protein-ligand, protein-membrane, and protein-protein interfaces.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway.,Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway.,Department of Chemistry , University of Bergen , N-5020 Bergen , Norway
| |
Collapse
|
8
|
Jia C, Zuo W, Yang D, Chen Y, Cao L, Custelcean R, Hostaš J, Hobza P, Glaser R, Wang YY, Yang XJ, Wu B. Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box. Nat Commun 2017; 8:938. [PMID: 29038482 PMCID: PMC5643546 DOI: 10.1038/s41467-017-00915-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/04/2017] [Indexed: 11/15/2022] Open
Abstract
In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, l-carnitine, and glycine betaine effectively. The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.
Collapse
Affiliation(s)
- Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Wei Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Yanming Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA
| | - Jiří Hostaš
- Institute of Organic Chemistry and Biochemistry, 16010, Prague 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Albertov 6, 12843, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, 16010, Prague 6, Czech Republic.,Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University, 77146, Olomouc, Czech Republic
| | - Robert Glaser
- Department of Chemistry, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China.
| |
Collapse
|
9
|
Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Piccinetti C, Puente M, Berini CA, Pérez PR, Soto G, Ayub N. Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence. J Biotechnol 2017; 263:52-54. [PMID: 29050878 DOI: 10.1016/j.jbiotec.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 11/25/2022]
Abstract
We here characterized the stress-tolerant alfalfa microsymbiont Sinorhizobium meliloti B401. B401-treated plants showed high nitrogen fixation rates under humid and semiarid environments. The production of glycine betaine in isolated bacteroids positively correlated with low precipitation levels, suggesting that this compound acts as a critical osmoprotectant under field conditions. Genome analysis revealed that strain B401 contains alternative pathways for the biosynthesis and uptake of glycine betaine and its precursors. Such genomic information will offer substantial insight into the environmental physiology of this biotechnologically valuable nitrogen-fixing bacterium.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina; Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Silvina Brambilla
- Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Romina Frare
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina; Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Margarita Stritzler
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina; Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Carlos Piccinetti
- Instituto de Microbiología y Zoología Agrícola (INTA), Buenos Aires, Argentina
| | - Mariana Puente
- Instituto de Microbiología y Zoología Agrícola (INTA), Buenos Aires, Argentina
| | | | - Pedro Reyes Pérez
- Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina; Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina
| | - Nicolás Ayub
- Consejo Nacional de Investigaciones Científicas y Técnicas, CABA, Argentina; Instituto de Genética Ewald A. Favret (INTA), Buenos Aires, Argentina.
| |
Collapse
|
10
|
|
11
|
Gu S, Silva DA, Meng L, Yue A, Huang X. Quantitatively characterizing the ligand binding mechanisms of choline binding protein using Markov state model analysis. PLoS Comput Biol 2014; 10:e1003767. [PMID: 25101697 PMCID: PMC4125059 DOI: 10.1371/journal.pcbi.1003767] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/22/2014] [Indexed: 01/05/2023] Open
Abstract
Protein-ligand recognition plays key roles in many biological processes. One of the most fascinating questions about protein-ligand recognition is to understand its underlying mechanism, which often results from a combination of induced fit and conformational selection. In this study, we have developed a three-pronged approach of Markov State Models, Molecular Dynamics simulations, and flux analysis to determine the contribution of each model. Using this approach, we have quantified the recognition mechanism of the choline binding protein (ChoX) to be ∼90% conformational selection dominant under experimental conditions. This is achieved by recovering all the necessary parameters for the flux analysis in combination with available experimental data. Our results also suggest that ChoX has several metastable conformational states, of which an apo-closed state is dominant, consistent with previous experimental findings. Our methodology holds great potential to be widely applied to understand recognition mechanisms underlining many fundamental biological processes.
Collapse
Affiliation(s)
- Shuo Gu
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Daniel-Adriano Silva
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Luming Meng
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Alexander Yue
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Biomedical Engineering, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Center of Systems Biology and Human Health, Institute for Advance Study and School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- * E-mail:
| |
Collapse
|
12
|
Rudder S, Doohan F, Creevey CJ, Wendt T, Mullins E. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 2014; 15:268. [PMID: 24708309 PMCID: PMC4051167 DOI: 10.1186/1471-2164-15-268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/19/2014] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. RESULTS The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. CONCLUSIONS This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).
Collapse
Affiliation(s)
- Steven Rudder
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- Current address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK
| | - Toni Wendt
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- Current address: Carlsberg Research Centre, Gamle Carlsberg Vej 4-10, 1799 Copenhagen V, Denmark
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| |
Collapse
|
13
|
Aktas M, Danne L, Möller P, Narberhaus F. Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:109. [PMID: 24723930 PMCID: PMC3972451 DOI: 10.3389/fpls.2014.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/07/2014] [Indexed: 05/25/2023]
Abstract
Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions, the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens. OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild type suggesting a reduced host defense response in the absence of OLs. In contrast, A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a rare component of bacterial membranes but amount to ~22% of all PLs in A. tumefaciens. PC biosynthesis occurs via two pathways. The phospholipid N-methyltransferase PmtA methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA and pcs double mutants show reduced motility, enhanced biofilm formation and increased sensitivity towards detergent and thermal stress. In summary, there is cumulative evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial physiology and tumor formation.
Collapse
Affiliation(s)
| | | | | | - Franz Narberhaus
- *Correspondence: Franz Narberhaus, Microbial Biology, Department for Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany e-mail:
| |
Collapse
|
14
|
Salt Tolerance in Astragalus cicer Microsymbionts: The Role of Glycine Betaine in Osmoprotection. Curr Microbiol 2013; 66:428-36. [DOI: 10.1007/s00284-012-0293-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/07/2012] [Indexed: 11/26/2022]
|
15
|
Identification and characterization of a high-affinity choline uptake system of Brucella abortus. J Bacteriol 2012; 195:493-501. [PMID: 23161032 DOI: 10.1128/jb.01929-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC), a common phospholipid of the eukaryotic cell membrane, is present in the cell envelope of the intracellular pathogen Brucella abortus, the etiological agent of bovine brucellosis. In this pathogen, the biosynthesis of PC proceeds mainly through the phosphatidylcholine synthase pathway; hence, it relies on the presence of choline in the milieu. These observations imply that B. abortus encodes an as-yet-unknown choline uptake system. Taking advantage of the requirement of choline uptake for PC synthesis, we devised a method that allowed us to identify a homologue of ChoX, the high-affinity periplasmic binding protein of the ABC transporter ChoXWV. Disruption of the choX gene completely abrogated PC synthesis at low choline concentrations in the medium, thus indicating that it is a high-affinity transporter needed for PC synthesis via the PC synthase (PCS) pathway. However, the synthesis of PC was restored when the mutant was incubated in media with higher choline concentrations, suggesting the presence of an alternative low-affinity choline uptake activity. By means of a fluorescence-based equilibrium-binding assay and using the kinetics of radiolabeled choline uptake, we show that ChoX binds choline with an extremely high affinity, and we also demonstrate that its activity is inhibited by increasing choline concentrations. Cell infection assays indicate that ChoX activity is required during the first phase of B. abortus intracellular traffic, suggesting that choline concentrations in the early and intermediate Brucella-containing vacuoles are limited. Altogether, these results suggest that choline transport and PC synthesis are strictly regulated in B. abortus.
Collapse
|
16
|
Li W, Cong Q, Pei J, Kinch LN, Grishin NV. The ABC transporters in Candidatus Liberibacter asiaticus. Proteins 2012; 80:2614-28. [PMID: 22807026 PMCID: PMC3688454 DOI: 10.1002/prot.24147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022]
Abstract
Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Qian Cong
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Nick V Grishin
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| |
Collapse
|
17
|
Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter. J Bacteriol 2011; 193:5119-29. [PMID: 21803998 DOI: 10.1128/jb.05421-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding.
Collapse
|
18
|
Pittelkow M, Tschapek B, Smits SHJ, Schmitt L, Bremer E. The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J Mol Biol 2011; 411:53-67. [PMID: 21658392 DOI: 10.1016/j.jmb.2011.05.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis can synthesize the compatible solute glycine betaine as an osmoprotectant from an exogenous supply of the precursor choline. Import of choline is mediated by two osmotically inducible ABC transport systems: OpuB and OpuC. OpuC catalyzes the import of various osmoprotectants, whereas OpuB is highly specific for choline. OpuBC is the substrate-binding protein of the OpuB transporter, and we have analyzed the affinity of the OpuBC/choline complex by intrinsic tryptophan fluorescence and determined a K(d) value of about 30 μM. The X-ray crystal structure of the OpuBC/choline complex was solved at a resolution of 1.6 Å and revealed a fold typical of class II substrate-binding proteins. The positively charged trimethylammonium head group of choline is wedged into an aromatic cage formed by four tyrosine residues and is bound via cation-pi interactions. The hydroxyl group of choline protrudes out of this aromatic cage and makes a single interaction with residue Gln19. The substitution of this residue by Ala decreases choline binding affinity by approximately 15-fold. A water network stabilizes choline within its substrate-binding site and promotes indirect interactions between the two lobes of the OpuBC protein. Disruption of this intricate water network by site-directed mutagenesis of selected residues in OpuBC either strongly reduces choline binding affinity (between 18-fold and 25-fold) or abrogates ligand binding. The crystal structure of the OpuBC/choline complex provides a rational for the observed choline specificity of the OpuB ABC importer in vivo and explains its inability to catalyze the import of glycine betaine into osmotically stressed B. subtilis cells.
Collapse
Affiliation(s)
- Marco Pittelkow
- Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 2010; 89:888-94. [PMID: 20656373 DOI: 10.1016/j.ejcb.2010.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Phosphatidylcholine (PC), a typical eukaryotic membrane phospholipid, is present in only about 10% of all bacterial species, in particular in bacteria interacting with eukaryotes. A number of studies revealed that PC plays a fundamental role in symbiotic and pathogenic microbe-host interactions. Agrobacterium tumefaciens mutants lacking PC are unable to elicit plant tumors. The human pathogens Brucella abortus and Legionella pneumophila require PC for full virulence. The plant symbionts Bradyrhizobium japonicum and Sinorhizobium meliloti depend on wild-type levels of PC to establish an efficient root nodule symbiosis. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (Pcs) pathway. The methylation pathway involves a three-step methylation of phosphatidylethanolamine by at least one phospholipid N-methyltransferase to yield phosphatidylcholine. In the Pcs pathway, choline is condensed directly with CDP-diacylglycerol to form PC. This review focuses on the biosynthetic pathways and the significance of PC in bacteria with an emphasis on plant-microbe interactions.
Collapse
Affiliation(s)
- Meriyem Aktas
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Bermejo GA, Strub MP, Ho C, Tjandra N. Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 2010; 49:1893-902. [PMID: 20141110 PMCID: PMC2831130 DOI: 10.1021/bi902045p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to undergo large-scale domain rearrangements is essential for the substrate-binding function of periplasmic binding proteins (PBPs), which are indispensable for nutrient uptake in Gram-negative bacteria. Crystal structures indicate that PBPs typically adopt either an "open" unliganded configuration or a "closed" liganded one. However, it is not clear whether, as a general rule, PBPs remain open until ligand-induced interdomain closure or are in equilibrium with a minor population of unliganded, closed species. Evidence for the latter has been recently reported on maltose-binding protein (MBP) in aqueous solution [Tang, C., et al. (2007) Nature 449, 1078-1082] via paramagnetic relaxation enhancement (PRE), a technique able to probe lowly populated regions of conformational space. Here, we use PRE to study the unliganded open-closed transition of another PBP: glutamine-binding protein (GlnBP). Through a combination of domain structure knowledge and intermolecular and concentration dependence PRE experiments, a set of surface residues was found to be involved in intermolecular interactions. Barring such residues, PRE data on ligand-free GlnBP, paramagnetically labeled at two sites (one at a time), could be appropriately explained by the unliganded, open crystal structure in that it both yielded a good PRE fit and was not significantly affected by PRE-based refinement. Thus, contrary to MBP, our data did not particularly suggest the coexistence of a minor closed conformer. Several possibilities were explored to explain the observed differences in such closely structurally related systems; among them, a particularly interesting one arises from close inspection of the interdomain "hinge" region of various PBPs: strong hydrogen bond interactions discourage large-scale interdomain dynamics.
Collapse
Affiliation(s)
- Guillermo A. Bermejo
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Chen C, Malek AA, Wargo MJ, Hogan DA, Beattie GA. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 2009; 75:29-45. [PMID: 19919675 DOI: 10.1111/j.1365-2958.2009.06962.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.
Collapse
Affiliation(s)
- Chiliang Chen
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
23
|
Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation. Biol Chem 2009; 390:1163-70. [DOI: 10.1515/bc.2009.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe periplasmic ligand-binding protein ChoX is part of the ABC transport system ChoVWX that imports choline as a nutrient into the soil bacteriumSinorhizobium meliloti. We have recently reported the crystal structures of ChoX in complex with its ligands choline and acetylcholine and the structure of a fully closed but substrate-free state of ChoX. This latter structure revealed an architecture of the ligand-binding site that is superimposable to the closed, ligand-bound form of ChoX. We report here the crystal structure of ChoX in an unusual, ligand-free conformation that represents a semi-closed form of ChoX. The analysis revealed a subdomain movement in the N-lobe of ChoX. Comparison with the two well-characterized substrate binding proteins, MBP and HisJ, suggests the presence of a similar subdomain in these proteins.
Collapse
|
24
|
Jasinski M, Banasiak J, Radom M, Kalitkiewicz A, Figlerowicz M. Full-size ABC transporters from the ABCG subfamily in medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:921-31. [PMID: 19589068 DOI: 10.1094/mpmi-22-8-0921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Full-size ATP-binding cassette (ABC) transporters belonging to the ABCG subfamily are unique for plants and fungi. There is growing evidence that certain of these proteins play a role in plant defense or signaling systems. As yet, a complete set of full-size ABCG protein genes has been inventoried and classified in only two plants: Arabidopsis thaliana and Oryza sativa. Recently, a domain-based clustering analysis has predicted the presence of at least 12 genes encoding such proteins in the Lotus japonicus genome. Here, we identify and classify 19 genes coding full-size ABCG proteins in Medicago truncatula, a model legume plant. We have found that the majority of these genes are expressed in roots and flowers whereas only a few are expressed in leaves. Expression of several has been induced upon pathogenic infection in both roots and leaves. ABCG messenger RNAs have been detected in root nodules forming during symbiosis of legume plants and nitrogen-fixing bacteria. The data presented provide a scaffold for further studies of the physiological function of Medicago ABCG transporters and their possible role in modulating plant-microorganism interactions.
Collapse
Affiliation(s)
- Michal Jasinski
- Institute of Bioorganic Chemistry PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | | | | | | |
Collapse
|
25
|
Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol 2008; 191:365-74. [PMID: 18978052 DOI: 10.1128/jb.01183-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylcholine (PC), or lecithin, is the major phospholipid in eukaryotic membranes, whereas only 10% of all bacteria are predicted to synthesize PC. In Rhizobiaceae, including the phytopathogenic bacterium Agrobacterium tumefaciens, PC is essential for the establishment of a successful host-microbe interaction. A. tumefaciens produces PC via two alternative pathways, the methylation pathway and the Pcs pathway. The responsible genes, pmtA (coding for a phospholipid N-methyltransferase) and pcs (coding for a PC synthase), are located on the circular chromosome of A. tumefaciens C58. Recombinant expression of pmtA and pcs in Escherichia coli revealed that the individual proteins carry out the annotated enzyme functions. Both genes and a putative ABC transporter operon downstream of PC are constitutively expressed in A. tumefaciens. The amount of PC in A. tumefaciens membranes reaches around 23% of total membrane lipids. We show that PC is distributed in both the inner and outer membranes. Loss of PC results in reduced motility and increased biofilm formation, two processes known to be involved in virulence. Our work documents the critical importance of membrane lipid homeostasis for diverse cellular processes in A. tumefaciens.
Collapse
|
26
|
Fox MA, Karunakaran R, Leonard ME, Mouhsine B, Williams A, East AK, Downie JA, Poole PS. Characterization of the quaternary amine transporters of Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Lett 2008; 287:212-20. [PMID: 18721149 DOI: 10.1111/j.1574-6968.2008.01307.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K(m), 168 and 294 nM, respectively).
Collapse
Affiliation(s)
- Marc A Fox
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Oswald C, Smits SHJ, Höing M, Sohn-Bösser L, Dupont L, Le Rudulier D, Schmitt L, Bremer E. Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J Biol Chem 2008; 283:32848-59. [PMID: 18779321 DOI: 10.1074/jbc.m806021200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter ChoVWX is one of several choline import systems operating in Sinorhizobium meliloti. Here fluorescence-based ligand binding assays were used to quantitate substrate binding by the periplasmic ligand-binding protein ChoX. These data confirmed that ChoX recognizes choline and acetylcholine with high and medium affinity, respectively. We also report the crystal structures of ChoX in complex with either choline or acetylcholine. These structural investigations revealed an architecture of the ChoX binding pocket and mode of substrate binding similar to that reported previously for several compatible solute-binding proteins. Additionally the ChoX-acetylcholine complex permitted a detailed structural comparison with the carbamylcholine-binding site of the acetylcholine-binding protein from the mollusc Lymnaea stagnalis. In addition to the two liganded structures of ChoX, we were also able to solve the crystal structure of ChoX in a closed, substrate-free conformation that revealed an architecture of the ligand-binding site that is superimposable to the closed, ligand-bound form of ChoX. This structure is only the second of its kind and raises the important question of how ATP-binding cassette transporters are capable of distinguishing liganded and unliganded-closed states of the binding protein.
Collapse
Affiliation(s)
- Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gu ZJ, Wang L, Le Rudulier D, Zhang B, Yang SS. Characterization of the Glycine Betaine Biosynthetic Genes in the Moderately Halophilic Bacterium Halobacillus dabanensis D-8T. Curr Microbiol 2008; 57:306-11. [DOI: 10.1007/s00284-008-9194-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
|
29
|
Oswald C, Smits SHJ, Bremer E, Schmitt L. Microseeding - a powerful tool for crystallizing proteins complexed with hydrolyzable substrates. Int J Mol Sci 2008; 9:1131-1141. [PMID: 19325794 PMCID: PMC2635726 DOI: 10.3390/ijms9071131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/28/2022] Open
Abstract
Hydrolysis is an often-encountered obstacle in the crystallization of proteins complexed with their substrates. As the duration of the crystallization process, from nucleation to the growth of the crystal to its final size, commonly requires several weeks, non-enzymatic hydrolysis of an “unstable” ligand occurs frequently. In cases where the crystallization conditions exhibit non neutral pH values this hydrolysis phenomenon may be even more pronounced. ChoX, the substrate binding protein of a choline ABC-importer, produced crystals with its substrate acetylcholine after one month. However, these crystals exhibited only choline, an acetylcholine hydrolysis product, in the binding site. To overcome this obstacle we devised a microseeding protocol leading to crystals of ChoX with bound acetylcholine within 24 hours. One drawback we encountered was the high twinning fraction of the crystals, possibly was due to the rapid crystal growth.
Collapse
Affiliation(s)
- Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps University Marbrug, Karl-von-Frisch Str., 35032 Marburg, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
- Author to whom correspondence should be addressed: Tel. +49-211-81-10773; Fax: +49-211-81-15310; E-mail:
| |
Collapse
|
30
|
Kuribayashi M, Tsuzuki M, Sato K, Abo M, Yoshimura E. A Rapid Analytical Method for Free Choline by LC and Its Application for Bacterial Culture Medium Samples. Chromatographia 2007. [DOI: 10.1365/s10337-007-0487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Chen C, Beattie GA. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function. J Bacteriol 2007; 189:6901-12. [PMID: 17660277 PMCID: PMC2045199 DOI: 10.1128/jb.00763-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake of choline than for uptake of glycine betaine. Of four putative osmoregulatory ABC transporters in DC3000, one, designated OpuC, functioned as the primary or sole transporter for glycine betaine and as one of multiple transporters for choline under high osmolarity. Surprisingly, the homolog of the well-characterized ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function in osmoprotection. The P. syringae pv. tomato OpuC transporter was more closely related to the Bacillus subtilis and Listeria monocytogenes OpuC transporters than to known osmoprotectant transporters in gram-negative bacteria based on sequence similarity and genetic arrangement. The P. syringae pv. tomato OpuC transporter had a high affinity for glycine betaine, a low affinity for choline, and a broad substrate specificity that included acetylcholine, carnitine, and proline betaine. Tandem cystathionine-beta-synthase (CBS) domains in the ATP-binding component of OpuC were required for transporter function. The presence of these CBS domains was correlated with osmoregulatory function among the putative transporters examined in DC3000 and was found to be predictive of functional osmoregulatory transporters in other pseudomonads. These results provide the first functional evaluation of an osmoprotectant transporter in a Pseudomonas species and demonstrate the usefulness of the CBS domains as predictors of osmoregulatory activity.
Collapse
Affiliation(s)
- Chiliang Chen
- Iowa State University, Department of Plant Pathology, 207 Science I, Ames, IA 50011-3211, USA
| | | |
Collapse
|
32
|
Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 2006; 13:205-28. [PMID: 17164256 DOI: 10.1093/dnares/dsl013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATP-binding cassette (ABC) proteins constitute a large family in plants with more than 120 members each in Arabidopsis and rice, and have various functions including the transport of auxin and alkaloid, as well as the regulation of stomata movement. In this report, we carried out genome-wide analysis of ABC protein genes in a model legume plant, Lotus japonicus. For analysis of the Lotus genome sequence, we devised a new method 'domain-based clustering analysis', where domain structures like the nucleotide-binding domain (NBD) and transmembrane domain (TMD), instead of full-length amino acid sequences, are used to compare phylogenetically each other. This method enabled us to characterize fragments of ABC proteins, which frequently appear in a draft sequence of the Lotus genome. We identified 91 putative ABC proteins in L. japonicus, i.e. 43 'full-size', 40 'half-size' and 18 'soluble' putative ABC proteins. The characteristic feature of the composition is that Lotus has extraordinarily many paralogs similar to AtMRP14 and AtPDR12, which are at least six and five members, respectively. Expression analysis of the latter genes performed with real-time quantitative reverse transcription-PCR revealed their putative involvement in the nodulation process.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 2006; 103:17933-8. [PMID: 17101990 PMCID: PMC1635973 DOI: 10.1073/pnas.0606673103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximately 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.
Collapse
Affiliation(s)
- T. H. Mauchline
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - J. E. Fowler
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. K. East
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - A. L. Sartor
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - R. Zaheer
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. H. F. Hosie
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - P. S. Poole
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| | - T. M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
34
|
Alloing G, Travers I, Sagot B, Le Rudulier D, Dupont L. Proline betaine uptake in Sinorhizobium meliloti: Characterization of Prb, an opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol 2006; 188:6308-17. [PMID: 16923898 PMCID: PMC1595395 DOI: 10.1128/jb.00585-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB.
Collapse
Affiliation(s)
- Geneviève Alloing
- Unité Interactions Plantes-Microorganismes et Santé Végétale, UMR6192 CNRS-INRA-Université de Nice Sophia Antipolis, Centre INRA Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cédex, France.
| | | | | | | | | |
Collapse
|
35
|
Fox MA, White JP, Hosie AHF, Lodwig EM, Poole PS. Osmotic upshift transiently inhibits uptake via ABC transporters in gram-negative bacteria. J Bacteriol 2006; 188:5304-7. [PMID: 16816205 PMCID: PMC1539945 DOI: 10.1128/jb.00262-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-binding cassette transporters from several rhizobia and Salmonella enterica serovar Typhimurium, but not secondarily coupled systems, were inhibited by high concentrations (100 to 500 mM) of various osmolytes, an effect reversed by the removal of the osmolyte. ABC systems were also inactivated in isolated pea bacteroids, probably due to the obligatory use of high-osmolarity isolation media. Measurement of nutrient cycling in isolated pea bacteroids is impeded by this effect.
Collapse
Affiliation(s)
- M A Fox
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom.
| | | | | | | | | |
Collapse
|
36
|
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. THE PLANT CELL 2005. [PMID: 16243904 DOI: 10.1105/tpc.105.035816.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redirection of auxin from the root tip. Reporter gene studies showed that PGP4 was strongly expressed in root cap and epidermal cells. PGP4 exhibits apolar plasma membrane localization in the root cap and polar localization in tissues above. Root gravitropic bending and elongation as well as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited reduced basipetal auxin transport in roots and a small decrease in shoot-to-root transport consistent with a partial loss of the redirective auxin sink in the root. Seedlings overexpressing PGP4 exhibited increased shoot-to-root auxin transport. Heterologous expression of PGP4 in mammalian cells resulted in 1-N-naphthylthalamic acid-reversible net uptake of [3H]indole-3-acetic acid. These results indicate that PGP4 functions primarily in the uptake of redirected or newly synthesized auxin in epidermal root cells.
Collapse
Affiliation(s)
- Kazuyoshi Terasaka
- Laboratory of Molecular and Cellular Biology of Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. THE PLANT CELL 2005; 17:2922-39. [PMID: 16243904 PMCID: PMC1276020 DOI: 10.1105/tpc.105.035816] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redirection of auxin from the root tip. Reporter gene studies showed that PGP4 was strongly expressed in root cap and epidermal cells. PGP4 exhibits apolar plasma membrane localization in the root cap and polar localization in tissues above. Root gravitropic bending and elongation as well as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited reduced basipetal auxin transport in roots and a small decrease in shoot-to-root transport consistent with a partial loss of the redirective auxin sink in the root. Seedlings overexpressing PGP4 exhibited increased shoot-to-root auxin transport. Heterologous expression of PGP4 in mammalian cells resulted in 1-N-naphthylthalamic acid-reversible net uptake of [3H]indole-3-acetic acid. These results indicate that PGP4 functions primarily in the uptake of redirected or newly synthesized auxin in epidermal root cells.
Collapse
Affiliation(s)
- Kazuyoshi Terasaka
- Laboratory of Molecular and Cellular Biology of Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Todd JD, Sawers G, Johnston AWB. Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol Genet Genomics 2005; 273:197-206. [PMID: 15856304 DOI: 10.1007/s00438-005-1127-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 01/31/2005] [Indexed: 12/26/2022]
Abstract
The wide-ranging effects of RirA, a novel Fe-responsive regulator of gene expression in Rhizobium leguminosarum bv. viciae, were monitored on 2D gels. Approximately 100 proteins were expressed at higher levels in a RirA(-) mutant, compared to wild type. These included the products of the sufS(2)BCDS(1)XA operon, which probably specifies the synthesis of [FeS] clusters. Using lac fusions, this operon was confirmed to be regulated by RirA in response to Fe availability. Genes for some ABC transporters, and a protein that may be involved in making a phenazine-like molecule, were also repressed by Fe in a RirA-dependent way. Strikingly, at least 17 proteins were reduced in abundance in the RirA(-) mutant. These included three ABC transporters, a GatB-like enzyme involved in tRNA modification, and a protein that may confer bacteriocin resistance. As judged by lac reporter fusions, this apparently positive control by RirA was probably due to post-transcriptional effects, in at least some cases. Therefore, although RirA shows no sequence similarity to Fur or DtxR, it functions as a wide-ranging, Fe-responsive regulator.
Collapse
Affiliation(s)
- Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|