1
|
Liufu S, Wang K, Chen B, Chen W, Liu X, Wen S, Li X, Xu D, Ma H. Effect of host breeds on gut microbiome and fecal metabolome in commercial pigs. BMC Vet Res 2024; 20:458. [PMID: 39390513 PMCID: PMC11465751 DOI: 10.1186/s12917-024-04308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gut microbial composition and its metabolites are crucial for livestock production performance. Metabolite profiles from autopsied biospecimens provide vital information on the basic mechanisms that affect the overall health and production traits in livestock animals. However, the role of the host breed in the gut microbiome and fecal metabolome of commercial pigs remains unclear. In this work, differences in microbiota composition among three commercial pig breeds Duroc, Yorkshire, and Landrace were measured by 16S rRNA gene sequencing. Fecal metabolite compositions of the three pig breeds were detected using untargeted metabolomics. RESULTS There were significant differences in the gut microbiomes of the three species, indicating that host breed affects the diversity and structure of gut microbiota. Several breed-associated microorganisms were identified at different taxonomic levels. Notely, most microbial taxa were annotated as Lactobacillacea, Muribaculaceae, and Oscillospiraceae. Several bacteria, including Lactobacillus, Subdoligranulum, Faecalibacterium, Oscillospira, Oscillospiraceae_UCG-002, and Christensenellaceae_R-7_group, could be considered as biomarkers for improving the backfat thickness (BF) for commercial pigs. Additionally, KEGG analysis of gut microbiota further revealed that arginine biosynthesis, pyruvate metabolism, and fatty acid biosynthesis varied greatly among pig breeds. Multiple gut bacterial metabolites (e.g., spermidine, estradiol, and palmitic acid) were identified as breed-associated. Mediation analysis ultimately revealed the cross-talk among gut microbiota, metabolites, and BF thickness, proclaiming that the microbial and metabolic biomarkers identified in this study could be used as biomarkers for improving BF phenotype. CONCLUSIONS This work provides vital insights into breed effects on gut microbiota and metabolite compositions of commercial pigs and uncovers potential biomarkers that are significant for pig breed improvement.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Sheng Wen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, PR, 414000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China.
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, PR, 410128, China.
- Yuelushan Laboratory, Changsha, PR, 410128, China.
| |
Collapse
|
2
|
Kim DY, Park JY, Gee HY. Lactobacillus plantarum ameliorates NASH-related inflammation by upregulating L-arginine production. Exp Mol Med 2023; 55:2332-2345. [PMID: 37907736 PMCID: PMC10689779 DOI: 10.1038/s12276-023-01102-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023] Open
Abstract
Lactobacillus is a probiotic with therapeutic potential for several diseases, including liver disease. However, the therapeutic effect of L. plantarum against nonalcoholic steatohepatitis (NASH) and its underlying mechanisms remain unelucidated. Therefore, we delineated the L. plantarum-mediated NASH regulation in a mouse model to understand its therapeutic effect. We used a choline-deficient high-fat diet (CD-HFD)-induced murine model that recapitulated the critical features of human metabolic syndrome and investigated the effect of L. plantarum on NASH pathogenesis using transcriptomic, metagenomic, and immunohistochemistry analyses. Validation experiments were performed using liver organoids and a murine model fed a methionine-choline-deficient (MCD) diet. L. plantarum treatment in mice significantly decreased liver inflammation and improved metabolic phenotypes, such as insulin tolerance and the hepatic lipid content, compared with those in the vehicle group. RNA-sequencing analysis revealed that L. plantarum treatment significantly downregulated inflammation-related pathways. Shotgun metagenomic analysis revealed that L-arginine biosynthesis-related microbial genes were significantly upregulated in the L. plantarum group. We also confirmed the elevated arginine levels in the serum of the L. plantarum group. We further used liver organoids and mice fed an MCD diet to demonstrate that L-arginine alone was sufficient to alleviate liver inflammation. Our data revealed a novel and counterintuitive therapeutic effect of L. plantarum on alleviating NASH-related liver inflammation by increasing circulating L-arginine.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of South Korea
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of South Korea
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of South Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of South Korea.
| |
Collapse
|
3
|
Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2022; 12:819604. [PMID: 35003049 PMCID: PMC8739951 DOI: 10.3389/fmicb.2021.819604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.
Collapse
Affiliation(s)
- D Isabel Petrescu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Preston L Dilbeck
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Mariutti RB, Hernández-González JE, Nascimento AFZ, de Morais MAB, Murakami MT, Carareto CMA, Arni RK. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor. Biochim Biophys Acta Gen Subj 2020; 1864:129597. [PMID: 32156582 DOI: 10.1016/j.bbagen.2020.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo B Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| | | | - Andrey F Z Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mariana A B de Morais
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mario T Murakami
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Claudia M A Carareto
- Laboratory of Molecular Evolution IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
5
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
6
|
Gilyazeva AG, Toymentseva AA, Mardanova AM. Analysis of Genome Grimelysin-Containing Locus in the Genome of Serratia grimesii A2. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, Fang W, Song H. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions. Front Microbiol 2017; 8:145. [PMID: 28217122 PMCID: PMC5291005 DOI: 10.3389/fmicb.2017.00145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti-repression in an arginine-dependent way.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhimei Dong
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Xiao Han
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Sun
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Hang Wang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Li Jiang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Yongchun Yang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Tiantian Ma
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Zhongwei Chen
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Jing Yu
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| | - Weihuan Fang
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F UniversityLin'an, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Houhui Song
- College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University Lin'an, China
| |
Collapse
|
8
|
Ran S, Liu B, Jiang W, Sun Z, Liang J. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress. Front Microbiol 2015; 6:795. [PMID: 26300863 PMCID: PMC4528170 DOI: 10.3389/fmicb.2015.00795] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.
Collapse
Affiliation(s)
- Shujun Ran
- Shanghai Key Laboratory of Stomatology, Department of Endodontics and Operative Dentistry, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Stomatology, Department of Endodontics and Operative Dentistry, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Wei Jiang
- Shanghai Key Laboratory of Stomatology, Department of Endodontics and Operative Dentistry, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Zhe Sun
- Shanghai Key Laboratory of Stomatology, Department of Endodontics and Operative Dentistry, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Jingping Liang
- Shanghai Key Laboratory of Stomatology, Department of Endodontics and Operative Dentistry, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
9
|
Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol 2015; 97:281-300. [PMID: 25855127 DOI: 10.1111/mmi.13023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 01/13/2023]
Abstract
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.
Collapse
Affiliation(s)
| | - Jill C Robinson
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek S Samarian
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Kolderman
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sufian A Yassin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deepti Bettampadi
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Bashton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander H Rickard
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Regulation of the arginine deiminase system by ArgR2 interferes with arginine metabolism and fitness of Streptococcus pneumoniae. mBio 2014; 5:mBio.01858-14. [PMID: 25538192 PMCID: PMC4278536 DOI: 10.1128/mbio.01858-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is auxotrophic for arginine, and molecular analysis of the pneumococcal genome showed that the gene encoding an arginine-ornithine antiporter (ArcD) is organized in a cluster together with the arcABC genes encoding the arginine deiminase system (ADS) of pneumococci. The ADS consists of the arginine deiminase (AD), the catabolic ornithine carbamoyltransferase (cOCT), and the carbamate kinase (CK). Pneumococcal genomes contain three ArgR-type regulators (ArgR1, ArgR2, and AhrC) that are supposed to be involved in the regulation of arginine metabolism. Here, we identified ArgR2 of TIGR4 as the regulator of the ADS and ArcD. ArgR2 binds to promoter sequences of the arc operon, and the deficiency of ArgR2 in TIGR4 abrogates expression of the ADS, including the arginine-ornithine antiporter ArcD. Intranasal infection of mice and real-time bioimaging revealed that deletion of the arcABCDT genes attenuates TIGR4. However, the acute-pneumonia model and coinfection experiments indicated that the arginine-ornithine antiporter ArcD is essential to maintain fitness, while the deficiency of ADS enzymes has a minor impact on pneumococcal fitness under in vivo conditions. Strikingly, argR2 mutant TIGR4 outcompeted the wild type in the respiratory tract, suggesting an increase in fitness and further regulatory functions of ArgR2. In contrast to TIGR4, other pneumococci, such as D39, lacking expression of ArgR2, constitutively express the ADS with a truncated nonfunctional AD. On the basis of these results, we propose that the arginine-ornithine antiporter is essential to maintain pneumococcal fitness and that the genes of the ADS cluster are positively regulated in a strain-specific manner by ArgR2. Pneumococci are the major etiologic agents of community-acquired pneumonia, causing more than 1.5 million deaths annually worldwide. These versatile pathogens are highly adapted to the nutrients provided by the host niches encountered. Physiological fitness is of major importance for colonization of the nasopharyngeal cavity and dissemination during invasive infections. This work identifies the regulator ArgR2 as the activator of the S. pneumoniae TIGR4 ADS and the arginine-ornithine transporter ArcD, which is needed for uptake of the essential amino acid arginine. Although ArgR2 activates ArcD expression and uptake of arginine is required to maintain pneumococcal fitness, the deficiency of ArgR2 increases TIGR4 virulence under in vivo conditions, suggesting that other factors regulated by ArgR2 counterbalance the reduced uptake of arginine by ArcD. Thus, this work illustrates that the physiological homeostasis of pneumococci is complex and that ArgR2 plays a key role in maintaining bacterial fitness.
Collapse
|
11
|
Kloosterman TG, Kuipers OP. Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. J Biol Chem 2011; 286:44594-605. [PMID: 22084243 DOI: 10.1074/jbc.m111.295832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we investigated for the first time the transcriptional response of the human pathogen Streptococcus pneumoniae to fluctuating concentrations of arginine, an essential amino acid for this bacterium. By means of DNA microarray analyses, several operons and genes were found, the expression of which was affected by the concentration of arginine in the medium. Five of the identified operons were demonstrated to be directly repressed in the presence of high arginine concentrations via the concerted action of the ArgR-type regulators ArgR1 and AhrC. These ArgR1/AhrC targets encompass the putative amino acid transport genes artPQ, abpA, abpB, and aapA; the arginine biosynthetic genes argGH; and the virulence genes aliB and lmB/adcAII-phtD encoding an oligopeptide-binding lipoprotein and cell surface Zn(2+)-scavenging units, respectively. In addition, the data indicate that three of the amino acid transport genes encode an arginine ATP-binding cassette transporter unit required for efficient growth during arginine limitation. Instead of regulating arginine biosynthetic and catabolic genes as has been reported for other Gram-positive bacteria, our findings suggest that the physiological function of ArgR1/AhrC in S. pneumoniae is to ensure optimal uptake of arginine from the surrounding milieu.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
12
|
Theron G, Reid SJ. ArgR-promoter interactions inCorynebacterium glutamicumarginine biosynthesis. Biotechnol Appl Biochem 2011. [DOI: 10.1002/bab.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ryan S, Begley M, Gahan CGM, Hill C. Molecular characterization of the arginine deiminase system inListeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 2009; 11:432-45. [DOI: 10.1111/j.1462-2920.2008.01782.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Bringel F, Hammann P, Kugler V, Arsène-Ploetze F. Lactobacillus plantarum response to inorganic carbon concentrations: PyrR2-dependent and -independent transcription regulation of genes involved in arginine and nucleotide metabolism. MICROBIOLOGY-SGM 2008; 154:2629-2640. [PMID: 18757797 DOI: 10.1099/mic.0.2008/018184-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactobacillus plantarum susbp. plantarum is a capnophilic Gram-positive heterotroph with optimal growth in 4 % CO(2)-enriched air. At low inorganic carbon (C(i)) concentrations, the pyr genes encoding the enzymes of the pyrimidine biosynthetic pathway were overexpressed, in agreement with a previous study showing that these genes are regulated at the transcription level in response to C(i) via a PyrR(2)-mediated mechanism. A previous study of high-CO(2)-requiring (HCR) mutants revealed an unknown genetic link between arginine regulation and C(i)-dependent nutritional needs. To better understand L. plantarum's adaptation to C(i) availability, additional C(i)-responsive genes were sought in the arginine biosynthetic pathway (arg and car genes) using slot-blot hybridization and a proteomic differential 2D gel electrophoresis (DIGE) global approach. Besides the nine pyr-encoded proteins, 16 new Icr (inorganic-carbon-regulated) proteins accumulated differentially in response to C(i) availability, suggesting that the C(i) response involves several metabolic pathways and adaptation processes. Among these Icr proteins only argininosuccinate lyase, encoded by argH, was involved in arginine biosynthesis. Three proteins involved in the purine biosynthetic pathway and nucleotide conversion, adenylate kinase (Adk), GMP synthase (GuaA), and IMP dehydrogenase (GuaB), accumulated differentially in response to changes in C(i) levels. Expression of the Icr protein-encoding genes argH and guaB was regulated at the transcription level or by RNA stability in response to C(i) availability, as previously demonstrated for the pyr genes. However, PyrR(2) was not essential for the C(i)-regulated transcription of argH and guaB, demonstrating that PyrR(2) modulates only a subset of C(i)-regulated genes. These results suggest that the C(i) response may involve at least two regulatory mechanisms in L. plantarum.
Collapse
Affiliation(s)
- Françoise Bringel
- Université Louis-Pasteur Strasbourg-I, Strasbourg, France.,CNRS, UMR7156, Génétique Moléculaire, Génomique Microbiologie, Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083 Strasbourg, France
| | - Philippe Hammann
- CNRS, FRC 1589, Plateforme Protéomique Esplanade, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Valérie Kugler
- Université Louis-Pasteur Strasbourg-I, Strasbourg, France.,CNRS, UMR7156, Génétique Moléculaire, Génomique Microbiologie, Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083 Strasbourg, France
| | - Florence Arsène-Ploetze
- Université Louis-Pasteur Strasbourg-I, Strasbourg, France.,CNRS, UMR7156, Génétique Moléculaire, Génomique Microbiologie, Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083 Strasbourg, France
| |
Collapse
|
15
|
Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 2008; 74:4768-71. [PMID: 18539789 DOI: 10.1128/aem.00117-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have shown that direct protein-protein interaction between the two regulators ArgR and AhrC in Lactococcus lactis is required for arginine-dependent repression of the biosynthetic argC promoter and the activation of the catabolic arcA promoter. Here, we establish the global ArgR and AhrC regulons by transcriptome analyses and show that both regulators are dedicated to the control of arginine metabolism in L. lactis.
Collapse
|
16
|
Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 2008; 190:3646-57. [PMID: 18359813 DOI: 10.1128/jb.00088-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions involving genetically distinct bacteria, for example, between oral streptococci and actinomyces, are central to dental plaque development. A DNA microarray identified Streptococcus gordonii genes regulated in response to coaggregation with Actinomyces naeslundii. The expression of 23 genes changed >3-fold in coaggregates, including that of 9 genes involved in arginine biosynthesis and transport. The capacity of S. gordonii to synthesize arginine was assessed using a chemically defined growth medium. In monoculture, streptococcal arginine biosynthesis was inefficient and streptococci could not grow aerobically at low arginine concentrations. In dual-species cultures containing coaggregates, however, S. gordonii grew to high cell density at low arginine concentrations. Equivalent cocultures without coaggregates showed no growth until coaggregation was evident (9 h). An argH mutant was unable to grow at low arginine concentrations with or without A. naeslundii, indicating that arginine biosynthesis was essential for coaggregation-induced streptococcal growth. Using quantitative reverse transcriptase PCR, the expression of argC, argG, and pyrA(b) was strongly (10- to 100-fold) up-regulated in S. gordonii monocultures after 3 h of growth when exogenous arginine was depleted. Cocultures without induced coaggregation showed similar regulation. However, within 1 h after coaggregation with A. naeslundii, the expression of argC, argG, and pyrA(b) in S. gordonii was partially up-regulated although arginine was plentiful, and mRNA levels did not increase further when arginine was diminished. Thus, A. naeslundii stabilizes S. gordonii expression of arginine biosynthesis genes in coaggregates but not cocultures and enables aerobic growth when exogenous arginine is limited.
Collapse
|
17
|
Bringel F, Vuilleumier S, Arsène-Ploetze F. Low carbamoyl phosphate pools may drive Lactobacillus plantarum CO2-dependent growth phenotype. J Mol Microbiol Biotechnol 2008; 14:22-30. [PMID: 17957107 DOI: 10.1159/000107966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lactobacillus plantarum is often found in nutrient-rich habitats with elevated levels of inorganic carbon (IC), and IC-dependent growth is commonly encountered in natural isolates of this species. High CO(2)-requiring (HCR) prototrophs are unable to grow under conditions of low IC unless arginine and pyrimidines are provided. Prototrophy is restored under high IC conditions, that is in 4% CO(2)-enriched air or bicarbonate-supplemented medium. Bicarbonate is required for the synthesis of carbamoyl phosphate (CP), a precursor of both arginine and pyrimidine biosynthesis. We hypothesize that at low IC levels, intracellular CP pools limit growth through the limitation of arginine and nucleotide supplies. HCR mutants obtained in the laboratory can be classified into 3 functional groups: mutants with impaired CP synthesis, increased CP consumption or increased CP requirements relative to wild type. This classification provides a framework for investigating the origin of the HCR phenotype in natural environmental isolates of Lactobacillus species, and to investigate the hypothesis that a low level of carbamoyl phosphate is a major determinant of the CO(2)-dependent growth phenotype often observed in L. plantarum isolates.
Collapse
Affiliation(s)
- Françoise Bringel
- UMR 7156 Université Louis Pasteur, CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Microorganismes, Génomes, Environnement, Strasbourg, France.
| | | | | |
Collapse
|
18
|
Arsène-Ploetze F, Kugler V, Martinussen J, Bringel F. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1. J Bacteriol 2006; 188:8607-16. [PMID: 17041052 PMCID: PMC1698236 DOI: 10.1128/jb.00985-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic carbon (IC), such as bicarbonate or carbon dioxide, stimulates the growth of Lactobacillus plantarum. At low IC levels, one-third of natural isolated L. plantarum strains are nutritionally dependent on exogenous arginine and pyrimidine, a phenotype previously defined as high-CO2-requiring (HCR) prototrophy. IC enrichment significantly decreased the amounts of the enzymes in the pyrimidine biosynthetic pathway encoded by the pyrR1BCAa1Ab1DFE operon, as demonstrated by proteomic analysis. Northern blot and reverse transcription-PCR experiments demonstrated that IC levels regulated pyr genes mainly at the level of transcription or RNA stability. Two putative PyrR regulators with 62% amino acid identity are present in the L. plantarum genome. PyrR1 is an RNA-binding protein that regulates the pyr genes in response to pyrimidine availability by a mechanism of transcriptional attenuation. In this work, the role of PyrR2 was investigated by allelic gene replacement. Unlike the pyrR1 mutant, the DeltapyrR2 strain acquired a demand for both pyrimidines and arginine unless bicarbonate or CO2 was present at high concentrations, which is known as an HCR phenotype. Analysis of the IC- and pyrimidine-mediated regulation in pyrR1 and pyrR2 mutants suggested that only PyrR2 positively regulates the expression levels of the pyr genes in response to IC levels but had no effect on pyrimidine-mediated repression. A model is proposed for the respective roles of PyrR1 and PyrR2 in the pyr regulon expression.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- UMR7156 Université Louis Pasteur/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083 Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Arsène-Ploetze F, Nicoloff H, Kammerer B, Martinussen J, Bringel F. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies. J Bacteriol 2006; 188:4777-86. [PMID: 16788187 PMCID: PMC1483017 DOI: 10.1128/jb.00195-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-alpha-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- UMR7156, Université Louis Pasteur/CNRS, Génétique Moléculaire, Génomique, Microbiologie, 28 rue Goethe, F-67083 Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Burgess CM, Smid EJ, Rutten G, van Sinderen D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 2006; 5:24. [PMID: 16848883 PMCID: PMC1570366 DOI: 10.1186/1475-2859-5-24] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/18/2006] [Indexed: 12/05/2022] Open
Abstract
Background This study describes a strategy to select and isolate spontaneous riboflavin-overproducing strains of Lactobacillus (Lb.) plantarum, Leuconostoc (Lc.) mesenteroides and Propionibacterium (P.) freudenreichii. Results The toxic riboflavin analogue roseoflavin was used to isolate natural riboflavin-overproducing variants of the food grade micro-organisms Lb. plantarum, Lc. mesenteroides and P. freudenreichii strains. The method was successfully employed for strains of all three species. The mutation(s) responsible for the observed overproduction of riboflavin were identified for isolates of two species. Conclusion Selection for spontaneous roseoflavin-resistant mutants was found to be a reliable method to obtain natural riboflavin-overproducing strains of a number of species commonly used in the food industry. This study presents a convenient method for deriving riboflavin-overproducing strains of bacterial starter cultures, which are currently used in the food industry, by a non-recombinant methodology. Use of such starter strains can be exploited to increase the vitamin content in certain food products.
Collapse
Affiliation(s)
- Catherine M Burgess
- Department of Microbiology and Biosciences Institute, National University of Ireland Cork, Western Road, Cork, Ireland
- current address: Dept of Food Safety, Teagasc-Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Eddy J Smid
- NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
| | - Ger Rutten
- NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands
| | - Douwe van Sinderen
- Department of Microbiology and Biosciences Institute, National University of Ireland Cork, Western Road, Cork, Ireland
- Alimentary Pharmabiotic Centre, Biosciences Institute, National University of Ireland Cork, Western Road, Cork, Ireland
| |
Collapse
|
21
|
Arsène-Ploetze F, Nicoloff H, Bringel F. Lactobacillus plantarum ccl gene is non-essential, arginine-repressed and codes for a conserved protein in Firmicutes. Arch Microbiol 2005; 183:307-16. [PMID: 15864550 DOI: 10.1007/s00203-005-0774-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/17/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Among proteins specifically found in most gram-positive bacteria of the phylum Firmicutes, conserved proteins of the family pfam06177-DUF988-COG4708 are of unknown function. The citrulline cluster-linked (ccl) gene of Lactobacillus plantarum codes one such protein and is adjacent to the citrulline biosynthesis operon argCJBDF, a situation also found in Lactococcus lactis. This gene is well conserved among L. plantarum species, and 1 isolate out of 24 harbored two ccl copies. Northern hybridization with a ccl probe revealed two arginine-repressed transcripts with sizes corresponding to the predicted argCJBDF-ccl operon and the ccl gene alone. Transcription start sites of both transcripts were characterized. Four different 5' ends were mapped at the argF-ccl intergenic region, resulting from either regulated transcription initiation or maturation of the transcripts. Transcriptional ccl-gusA gene fusion confirmed the promoter activity of the argF-ccl intergenic region. Thus, the ccl gene is arginine-repressed and transcribed both monocistronically and polycistronically in the argCJBDF-ccl operon. The ccl gene is not essential in L. plantarum, because a ccl gene deletion was obtained in strain CCM 1904. Although no functions were found in the tested laboratory conditions, the Ccl-like proteins may play a role in environmental conditions of life.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université Louis Pasteur/CNRS, 28 rue Goethe, 67083, Strasbourg, France
| | | | | |
Collapse
|
22
|
Larsen R, Kok J, Kuipers OP. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis. J Biol Chem 2005; 280:19319-30. [PMID: 15749710 DOI: 10.1074/jbc.m413983200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of arginine metabolism in Lactococcus lactis is controlled by the two homologous transcriptional regulators ArgR and AhrC. Genome sequence analyses have shown that the occurrence of multiple homologues of the ArgR family of transcriptional regulators is a common feature of many low-G + C Gram-positive bacteria. Detailed studies of ArgR type regulators have previously only been carried out in bacteria containing single regulators. Here, we present a first characterization of the two L. lactis arginine regulators by means of gel retardation and DNase I footprinting. ArgR of L. lactis was shown to bind to the promoter regions of both the arginine biosynthetic argCJDBF operon and the arginine catabolic arcABD1C1C2TD2yvaD operon, but in an arginine-independent manner. Surprisingly, AhrC alone was unable to bind to DNA. Arginine-dependent DNA binding was obtained by mixing the two regulators in gel retardation assays. With both regulators present, the addition of arginine led to increased binding of ArgR-AhrC to the biosynthetic argC promoter but also to diminished binding to the catabolic arcA promoter. Footprinting showed ArgR-AhrC protection of regions containing ARG box operator sequences preceding argC. In the absence of AhrC, ArgR protected sites in the arcA promoter region with similarity to ARG box half-sites, here called ARC boxes. We propose a model for repression of arginine biosynthesis and activation of catabolism by anti-repression, involving arginine-dependent interaction between the two L. lactis regulator proteins, ArgR and AhrC.
Collapse
Affiliation(s)
- Rasmus Larsen
- Department of Molecular Genetics, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|