1
|
Black ME, Fei C, Alert R, Wingreen NS, Shaevitz JW. Capillary interactions drive the self-organization of bacterial colonies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596252. [PMID: 38853967 PMCID: PMC11160631 DOI: 10.1101/2024.05.28.596252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.
Collapse
|
2
|
Chen Y, Topo EJ, Nan B, Chen J. Mathematical modeling of mechanosensitive reversal control in Myxococcus xanthus. Front Microbiol 2024; 14:1294631. [PMID: 38260904 PMCID: PMC10803039 DOI: 10.3389/fmicb.2023.1294631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Adjusting motility patterns according to environmental cues is important for bacterial survival. Myxococcus xanthus, a bacterium moving on surfaces by gliding and twitching mechanisms, modulates the reversal frequency of its front-back polarity in response to mechanical cues like substrate stiffness and cell-cell contact. In this study, we propose that M. xanthus's gliding machinery senses environmental mechanical cues during force generation and modulates cell reversal accordingly. To examine our hypothesis, we expand an existing mathematical model for periodic polarity reversal in M. xanthus, incorporating the experimental data on the intracellular dynamics of the gliding machinery and the interaction between the gliding machinery and a key polarity regulator. The model successfully reproduces the dependence of cell reversal frequency on substrate stiffness observed in M. xanthus gliding. We further propose reversal control networks between the gliding and twitching motility machineries to explain the opposite reversal responses observed in wild type M. xanthus cells that possess both motility mechanisms. These results provide testable predictions for future experimental investigations. In conclusion, our model suggests that the gliding machinery in M. xanthus can function as a mechanosensor, which transduces mechanical cues into a cell reversal signal.
Collapse
Affiliation(s)
- Yirui Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Elias J. Topo
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Murphy P, Comstock J, Khan T, Zhang J, Welch R, Igoshin OA. Cell behaviors underlying Myxococcus xanthus aggregate dispersal. mSystems 2023; 8:e0042523. [PMID: 37747885 PMCID: PMC10654071 DOI: 10.1128/msystems.00425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Understanding the processes behind bacterial biofilm formation, maintenance, and dispersal is essential for addressing their effects on health and ecology. Within these multicellular communities, various cues can trigger differentiation into distinct cell types, allowing cells to adapt to their specific local environment. The soil bacterium Myxococcus xanthus forms biofilms in response to starvation, marked by cells aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while others disperse after initial formation for unknown reasons. Here, we use a combination of cell tracking analysis and computational simulations to identify behaviors at the cellular level that contribute to aggregate dispersal. Our results suggest that cells in aggregates actively determine whether to disperse or persist and undergo a transition to sporulation based on a self-produced cue related to the aggregate size. Identifying these cues is an important step in understanding and potentially manipulating bacterial cell-fate decisions.
Collapse
Affiliation(s)
- Patrick Murphy
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Center for Theoretical Physical Biology, Rice University, Houston, Texas, USA
| | - Jessica Comstock
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Trosporsha Khan
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Jiangguo Zhang
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Center for Theoretical Physical Biology, Rice University, Houston, Texas, USA
| | - Roy Welch
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Center for Theoretical Physical Biology, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Do H, Madukoma CS, Sundaresan V, Shrout JD, Hoffman AJ, Bohn PW. Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions. Anal Bioanal Chem 2021; 414:1691-1698. [PMID: 34850244 DOI: 10.1007/s00216-021-03795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chinedu S Madukoma
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Anthony J Hoffman
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
5
|
Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during Myxococcus xanthus development. Proc Natl Acad Sci U S A 2021; 118:2111706118. [PMID: 34732578 DOI: 10.1073/pnas.2111706118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Starving Myxococcus xanthus bacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that "transitioning cells" (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal-dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development.
Collapse
|
6
|
Quantification of Myxococcus xanthus Aggregation and Rippling Behaviors: Deep-Learning Transformation of Phase-Contrast into Fluorescence Microscopy Images. Microorganisms 2021; 9:microorganisms9091954. [PMID: 34576849 PMCID: PMC8468851 DOI: 10.3390/microorganisms9091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Myxococcus xanthus bacteria are a model system for understanding pattern formation and collective cell behaviors. When starving, cells aggregate into fruiting bodies to form metabolically inert spores. During predation, cells self-organize into traveling cell-density waves termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting image intensities lose their correlation with cell density. The intensities of fluorescence microscopy images, on the other hand, are well-correlated with cell density, enabling better segmentation of aggregates and better visualization of streaming patterns in between aggregates; however, fluorescence microscopy requires the engineering of cells to express fluorescent proteins and can be phototoxic to cells. To combine the advantages of both imaging methodologies, we develop a generative adversarial network that converts phase-contrast into synthesized fluorescent images. By including an additional histogram-equalized output to the state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their boundaries. Further training on ripple patterns enables accurate estimation of the rippling wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern formation studies.
Collapse
|
7
|
Abstract
Self-organization into spatial patterns is evident in many multicellular phenomena. Even for the best-studied systems, our ability to dissect the mechanisms driving coordinated cell movement is limited. While genetic approaches can identify mutations perturbing multicellular patterns, the diverse nature of the signaling cues coupled to significant heterogeneity of individual cell behavior impedes our ability to mechanistically connect genes with phenotype. Small differences in the behaviors of mutant strains could be irrelevant or could sometimes lead to large differences in the emergent patterns. Here, we investigate rescue of multicellular aggregation in two mutant strains of Myxococcus xanthus mixed with wild-type cells. The results demonstrate how careful quantification of cell behavior coupled to data-driven modeling can identify specific motility features responsible for cell aggregation and thereby reveal important synergies and compensatory mechanisms. Notably, mutant cells do not need to precisely recreate wild-type behaviors to achieve complete aggregation. Single mutations frequently alter several aspects of cell behavior but rarely reveal whether a particular statistically significant change is biologically significant. To determine which behavioral changes are most important for multicellular self-organization, we devised a new methodology using Myxococcus xanthus as a model system. During development, myxobacteria coordinate their movement to aggregate into spore-filled fruiting bodies. We investigate how aggregation is restored in two mutants, csgA and pilC, that cannot aggregate unless mixed with wild-type (WT) cells. To this end, we use cell tracking to follow the movement of fluorescently labeled cells in combination with data-driven agent-based modeling. The results indicate that just like WT cells, both mutants bias their movement toward aggregates and reduce motility inside aggregates. However, several aspects of mutant behavior remain uncorrected by WT, demonstrating that perfect recreation of WT behavior is unnecessary. In fact, synergies between errant behaviors can make aggregation robust. IMPORTANCE Self-organization into spatial patterns is evident in many multicellular phenomena. Even for the best-studied systems, our ability to dissect the mechanisms driving coordinated cell movement is limited. While genetic approaches can identify mutations perturbing multicellular patterns, the diverse nature of the signaling cues coupled to significant heterogeneity of individual cell behavior impedes our ability to mechanistically connect genes with phenotype. Small differences in the behaviors of mutant strains could be irrelevant or could sometimes lead to large differences in the emergent patterns. Here, we investigate rescue of multicellular aggregation in two mutant strains of Myxococcus xanthus mixed with wild-type cells. The results demonstrate how careful quantification of cell behavior coupled to data-driven modeling can identify specific motility features responsible for cell aggregation and thereby reveal important synergies and compensatory mechanisms. Notably, mutant cells do not need to precisely recreate wild-type behaviors to achieve complete aggregation.
Collapse
|
8
|
Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization. Mol Biol Rep 2019; 46:2101-2110. [PMID: 30729391 DOI: 10.1007/s11033-019-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Truncated globins are 20-40 amino acids shorter than full length globins. Till date, globins have been characterized predominantly from bacteria involved in pathogenicity, nitrogen fixation and photosynthesis, where they are implicated in bacterial virulence within the host, protection of nitrogenase from oxygen inactivation and prevention of oxidative damage to the photosynthetic machinery respectively. Myxococcus xanthus, the model myxobacterium, is an obligate aerobe with a multicellular stage in its life cycle where cells encounter oxygen limitation. This work was undertaken to investigate the potential role of the truncated globin in M. xanthus. To examine the role of globins in this unique group of bacteria, the gene coding for a putative truncated globin (HbO) was identified in the genome of M. xanthus DK 1622. The sequence analysis by bioinformatics approaches revealed that HbO from M. xanthus (Mx-HbO) likely adopts a 2-on-2 alpha helical fold of the truncated globins. The gene coding for Mx-HbO was cloned and its expression in E. coli imparted reddish tinge to the cells. The spectral analysis confirmed it to be a functional globin. The expression of Mx-HbO in the heterologous host improved its growth, resulting in the attainment of higher cell density in culture. The transcript of Mx-hbO was induced threefold in the host cells when grown under low aeration condition as compared to the cells grown under high aeration condition. In M. xanthus, an obligate aerobe, where cell growth accompanies swarming, there is a higher density of cells in the middle of the swarm. Our results suggest that Mx-HbO is a functional globin and could facilitate the growth of cells facing oxygen deprivation, the condition prevailing in the middle of the swarm.
Collapse
|
9
|
Wielgoss S, Fiegna F, Rendueles O, Yu YTN, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: A comparative analysis among natural isolates. Mol Ecol 2018; 27:3146-3158. [PMID: 29924883 DOI: 10.1111/mec.14773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
Abstract
Genetically similar cells of the soil bacterium Myxococcus xanthus cooperate at multiple social behaviours, including motility and multicellular development. Another social interaction in this species is outer membrane exchange (OME), a behaviour of unknown primary benefit in which cells displaying closely related variants of the outer membrane protein TraA transiently fuse and exchange membrane contents. Functionally incompatible TraA variants do not mediate OME, which led to the proposal that TraA incompatibilities determine patterns of intercellular cooperation in nature, but how this might occur remains unclear. Using natural isolates from a centimetre-scale patch of soil, we analyse patterns of TraA diversity and ask whether relatedness at TraA is causally related to patterns of kin discrimination in the form of both colony-merger incompatibilities (CMIs) and interstrain antagonisms. A large proportion of TraA functional diversity documented among global isolates is predicted to be contained within this cm-scale population. We find evidence of balancing selection on the highly variable PA14-portion of TraA and extensive transfer of traA alleles across genomic backgrounds. CMIs are shown to be common among strains identical at TraA, suggesting that CMIs are not generally caused by TraA dissimilarity. Finally, it has been proposed that interstrain antagonisms might be caused by OME-mediated toxin transfer. However, we predict that most strain pairs previously shown to exhibit strong antagonisms are incapable of OME due to TraA dissimilarity. Overall, our results suggest that most documented patterns of kin discrimination in a natural population of M. xanthus are not causally related to the TraA sequences of interactants.
Collapse
Affiliation(s)
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Olaya Rendueles
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Microbial Evolutionary Genomics Unit, Institut Pasteur, Paris, France
| | - Yuen-Tsu N Yu
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
10
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
11
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
12
|
Ahrendt T, Dauth C, Bode HB. An iso-15 : 0 O-alkylglycerol moiety is the key structure of the E-signal in Myxococcus xanthus. MICROBIOLOGY-SGM 2015; 162:138-144. [PMID: 26346537 DOI: 10.1099/mic.0.000169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The E-signal is one of five intercellular signals (named A- to E-signal) guiding fruiting body development in Myxococcus xanthus, and it has been shown to be a combination of the branched-chain fatty acid (FA) iso-15 : 0 and the diacylmonoalkyl ether lipid TG1. Developmental mutants HB015 (Δbkd MXAN_4265::kan) and elbD (MXAN_1528::kan) are blocked at different stages of fruiting body and spore formation as they cannot form the required iso-FA or the actual ether lipid, respectively. In order to define the structural basis of the E-signal, different mono- and triglycerides containing ether or ester bonds were synthesized and used for complementation of these mutants. Here, the monoalkylglyceride dl-1-O-(13-methyltetradecyl)glycerol exhibited comparably high levels of complementation in both mutants, restoring fruiting body and spore formation, identifying iso-15 : 0 O-alkylglycerol, part of the natural lipid TG1, as the 'signalophore' of E-signalling.
Collapse
Affiliation(s)
- Tilman Ahrendt
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Christina Dauth
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Balagam R, Igoshin OA. Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria. PLoS Comput Biol 2015; 11:e1004474. [PMID: 26308508 PMCID: PMC4550276 DOI: 10.1371/journal.pcbi.1004474] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus cells can align and form clusters through pure mechanical interactions among cells and between cells and substrate. We test this hypothesis using an agent-based simulation framework in which each agent is based on the biophysical model of an individual M. xanthus cell. We show that model agents, under realistic cell flexibility values, can align and form cell clusters but only when periodic reversals of cell directions are suppressed. However, by extending our model to introduce the observed ability of cells to deposit and follow slime trails, we show that effective trail-following leads to clusters in reversing cells. Furthermore, we conclude that mechanical cell alignment combined with slime-trail-following is sufficient to explain the distinct clustering behaviors observed for wild-type and non-reversing M. xanthus mutants in recent experiments. Our results are robust to variation in model parameters, match the experimentally observed trends and can be applied to understand surface motility patterns of other bacterial species.
Collapse
Affiliation(s)
- Rajesh Balagam
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Oleg A. Igoshin
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Harvey CW, Alber M, Tsimring LS, Aranson IS. Continuum modeling of clustering of myxobacteria. NEW JOURNAL OF PHYSICS 2013; 15:035029. [PMID: 23712128 PMCID: PMC3663047 DOI: 10.1088/1367-2630/15/3/035029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper we develop a continuum theory of clustering in ensembles of self-propelled inelastically colliding rods with applications to collective dynamics of common gliding bacteria Myxococcus Xanthus. A multiphase hydrodynamic model that couples densities of oriented and isotropic phases is described. This model is used for the analysis of an instability that leads to spontaneous formation of directionally moving dense clusters within initially dilute isotropic "gas" of myxobacteria. Numerical simulations of this model confirm the existence of stationary dense moving clusters and also elucidate the properties of their collisions. The results are shown to be in a qualitative agreement with experiments.
Collapse
Affiliation(s)
- Cameron W. Harvey
- Center for the Study of Biocomplexity and Department of Physics, University of Notre Dame Notre Dame, Indiana 46556, USA
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, Department of Physics, and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46656, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lev S. Tsimring
- BioCircuits Institute and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Igor S. Aranson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439; Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Rd, Evanston, IL
60208, USA
| |
Collapse
|
15
|
Harvey CW, Du H, Xu Z, Kaiser D, Aranson I, Alber M. Interconnected cavernous structure of bacterial fruiting bodies. PLoS Comput Biol 2012; 8:e1002850. [PMID: 23300427 PMCID: PMC3531287 DOI: 10.1371/journal.pcbi.1002850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.
Collapse
Affiliation(s)
- Cameron W. Harvey
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Huijing Du
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Igor Aranson
- Material Science Division, Argonne National Lab, Argonne, Illinois, United States of America
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (IA); (MA)
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (IA); (MA)
| |
Collapse
|
16
|
Zhang Y, Ducret A, Shaevitz J, Mignot T. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 2011; 36:149-64. [PMID: 22091711 DOI: 10.1111/j.1574-6976.2011.00307.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/23/2011] [Accepted: 09/02/2011] [Indexed: 01/05/2023] Open
Abstract
In bird flocks, fish schools, and many other living organisms, regrouping among individuals of the same kin is frequently an advantageous strategy to survive, forage, and face predators. However, these behaviors are costly because the community must develop regulatory mechanisms to coordinate and adapt its response to rapid environmental changes. In principle, these regulatory mechanisms, involving communication between individuals, may also apply to cellular systems which must respond collectively during multicellular development. Dissecting the mechanisms at work requires amenable experimental systems, for example, developing bacteria. Myxococcus xanthus, a Gram-negative delatproteobacterium, is able to coordinate its motility in space and time to swarm, predate, and grow millimeter-size spore-filled fruiting bodies. A thorough understanding of the regulatory mechanisms first requires studying how individual cells move across solid surfaces and control their direction of movement, which was recently boosted by new cell biology techniques. In this review, we describe current molecular knowledge of the motility mechanism and its regulation as a lead-in to discuss how multicellular cooperation may have emerged from several layers of regulation: chemotaxis, cell-cell signaling, and the extracellular matrix. We suggest that Myxococcus is a powerful system to investigate collective principles that may also be relevant to other cellular systems.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratoire de Chimie Bactérienne - CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Université Aix-marseille, Marseille Cedex, France
| | | | | | | |
Collapse
|
17
|
Social interaction in synthetic and natural microbial communities. Mol Syst Biol 2011; 7:483. [PMID: 21487402 PMCID: PMC3101950 DOI: 10.1038/msb.2011.16] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/08/2011] [Indexed: 12/13/2022] Open
Abstract
How do molecular networks at the single-cell level define collective cell behavior? This Review discusses recent studies on synthetic and natural microbial communities that dissect the molecular and dynamical mechanisms underlying microbial social evolution. Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same ‘social interaction motifs' may be general to many cell populations.
Collapse
|
18
|
Hendrata M, Yang Z, Lux R, Shi W. Experimentally guided computational model discovers important elements for social behavior in myxobacteria. PLoS One 2011; 6:e22169. [PMID: 21811570 PMCID: PMC3139613 DOI: 10.1371/journal.pone.0022169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/16/2011] [Indexed: 12/29/2022] Open
Abstract
Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.
Collapse
Affiliation(s)
- Melisa Hendrata
- Department of Mathematics, California State University Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
19
|
Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates. Proc Natl Acad Sci U S A 2011; 108:5915-20. [PMID: 21436028 DOI: 10.1073/pnas.1018383108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Starving Myxococcus xanthus bacteria use their motility systems to self-organize into multicellular fruiting bodies, large mounds in which cells differentiate into metabolically inert spores. Despite the identification of the genetic pathways required for aggregation and the use of microcinematography to observe aggregation dynamics in WT and mutant strains, a mechanistic understanding of aggregation is still incomplete. For example, it is not clear why some of the initial aggregates mature into fruiting bodies, whereas others disperse, merge, or split into two. Here, we develop high-throughput image quantification and statistical analysis methods to gain insight into M. xanthus developmental aggregation dynamics. A quantitative metric of features characterizing each aggregate is used to deduce the properties of the aggregates that are correlated with each fate. The analysis shows that small aggregate size but not neighbor-related parameters correlate with aggregate dispersal. Furthermore, close proximity is necessary but not sufficient for aggregate merging. Finally, splitting occurs for those aggregates that are unusually large and elongated. These observations place severe constraints on the underlying aggregation mechanisms and present strong evidence against the role of long-range morphogenic gradients or biased cell exchange in the dispersal, merging, or splitting of transient aggregates. This approach can be expanded and adapted to study self-organization in other cellular systems.
Collapse
|
20
|
Janulevicius A, van Loosdrecht MCM, Simone A, Picioreanu C. Cell flexibility affects the alignment of model myxobacteria. Biophys J 2011; 99:3129-38. [PMID: 21081059 DOI: 10.1016/j.bpj.2010.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022] Open
Abstract
Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.
Collapse
Affiliation(s)
- Albertas Janulevicius
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 2011; 193:1681-9. [PMID: 21257775 DOI: 10.1128/jb.01541-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon starvation, a dense population of rod-shaped Myxococcus xanthus bacteria coordinate their movements to construct mounds in which some of the cells differentiate to spherical spores. During this process of fruiting body formation, short-range C-signaling between cells regulates their movements and the expression of genes important for sporulation. C-signaling activates FruA, a transcription factor that binds cooperatively with another transcription factor, MrpC2, upstream of the fmgA and fmgBC promoters, activating transcription. We have found that a third C-signal-dependent gene, herein named fmgD, is subject to combinatorial control by FruA and MrpC2. The two proteins appear to bind cooperatively upstream of the fmgD promoter and activate transcription. FruA binds proximal to the fmgD promoter, as in the fmgBC promoter region, whereas MrpC2 binds proximal to the fmgA promoter. A novel feature of the fmgD promoter region is the presence of a second MrpC2 binding site partially overlapping the promoter and therefore likely to mediate repression. The downstream MrpC2 site appears to overlap the FruA site, so the two transcription factors may compete for binding, which in both cases appears to be cooperative with MrpC2 at the upstream site. We propose that binding of MrpC2 to the downstream site represses fmgD transcription until C-signaling causes the concentration of active FruA to increase sufficiently to outcompete the downstream MrpC2 for cooperative binding with the upstream MrpC2. This would explain why fmgD transcription begins later during development and is more dependent on C-signaling than transcription of fmgA and fmgBC.
Collapse
|
22
|
Kaiser D, Robinson M, Kroos L. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2010; 2:a000380. [PMID: 20610548 PMCID: PMC2908774 DOI: 10.1101/cshperspect.a000380] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myxobacteria are renowned for the ability to sporulate within fruiting bodies whose shapes are species-specific. The capacity to build those multicellular structures arises from the ability of M. xanthus to organize high cell-density swarms, in which the cells tend to be aligned with each other while constantly in motion. The intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular polysaccharide through nozzles from the trailing pole. Regularly periodic reversal of the gliding direction was found to be required for swarming. Those reversals are generated by a G-protein switch which is driven by a sharply tuned oscillator. Starvation induces fruiting body development, and systematic reductions in the reversal frequency are necessary for the cells to aggregate rather than continue to swarm. Developmental gene expression is regulated by a network that is connected to the suppression of reversals.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
23
|
Hendrata M, Birnir B. Dynamic-energy-budget-driven fruiting-body formation in myxobacteria. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061902. [PMID: 20866435 DOI: 10.1103/physreve.81.061902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 03/11/2010] [Indexed: 05/29/2023]
Abstract
We develop an interacting particle model to simulate the life cycle of myxobacteria, which consists of two main stages--the swarming stage and the development (fruiting body formation) stage. As experiments have shown that the phase transition from swarming to development stage is triggered by starvation, we incorporate into the simulation a system of ordinary differential equations (ODEs) called the dynamic energy budget, which controls the uptake and use of energy by individuals. This inclusion successfully automates the phase transition in our simulation. Only one parameter, namely, the food density, controls the entire simulation of the life cycle.
Collapse
Affiliation(s)
- M Hendrata
- Department of Mathematics, California State University, 5151 State University Drive, Los Angeles, California 90032, USA.
| | | |
Collapse
|
24
|
Witzany G. Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 2010; 1:160-80. [PMID: 21541001 PMCID: PMC3083953 DOI: 10.4331/wjbc.v1.i5.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.
Collapse
Affiliation(s)
- Günther Witzany
- Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria
| |
Collapse
|
25
|
Holmes AB, Kalvala S, Whitworth DE. Spatial simulations of myxobacterial development. PLoS Comput Biol 2010; 6:e1000686. [PMID: 20195493 PMCID: PMC2829040 DOI: 10.1371/journal.pcbi.1000686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
Many bacteria exhibit multicellular behaviour, with individuals within a colony coordinating their actions for communal benefit. One example of complex multicellular phenotypes is myxobacterial fruiting body formation, where thousands of cells aggregate into large three-dimensional structures, within which sporulation occurs. Here we describe a novel theoretical model, which uses Monte Carlo dynamics to simulate and explain multicellular development. The model captures multiple behaviours observed during fruiting, including the spontaneous formation of aggregation centres and the formation and dissolution of fruiting bodies. We show that a small number of physical properties in the model is sufficient to explain the most frequently documented population-level behaviours observed during development in Myxococcus xanthus.
Collapse
Affiliation(s)
- Antony B Holmes
- MOAC Doctoral Training Centre, University of Warwick, Coventry, United Kingdom.
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
27
|
Abstract
Microcinematography was used to examine fruiting body development of Myxococcus xanthus. Wild-type cells progress through three distinct phases: a quiescent phase with some motility but little aggregation (0 to 8 h), a period of vigorous motility leading to raised fruiting bodies (8 to 16 h), and a period of maturation during which sporulation is initiated (16 to 48 h). Fruiting bodies are extended vertically in a series of tiers, each involving the addition of a cell monolayer on top of the uppermost layer. A pilA (MXAN_5783) mutant produced less extracellular matrix material and thus allowed closer examination of tiered aggregate formation. A csgA (MXAN_1294) mutant exhibited no quiescent phase, aberrant aggregation in phase 2, and disintegration of the fruiting bodies in the third phase.
Collapse
|
28
|
Abstract
Many bacteria simultaneously grow and spread rapidly over a surface that supplies them with nutrient. Called 'swarming', this pattern of movement directs new cells to the edge of the colony. Swarming reduces competition between cells for nutrients, speeding growth. Behind the swarm edge, where the cell density is higher, growth is limited by transport of nutrient from the subsurface to the overlying cells. Despite years of study, the choreography of swarm cell movement, the bacterial equivalent of dancing toward an exit in a very dense crowd of moving bodies, remains a mystery. Swarming can be propelled by rotating flagella, and either by pulling with type IV pili or by pushing with the secretion of slime. By identifying patterns of movement that are common to swarms making use of different engines, a model of swarm choreography can be proposed.
Collapse
Affiliation(s)
- Dale Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 2007; 189:3738-50. [PMID: 17369305 PMCID: PMC1913320 DOI: 10.1128/jb.00187-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.
Collapse
Affiliation(s)
- Poorna Viswanathan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
30
|
Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU. Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 2007; 5:230-9. [PMID: 17304251 DOI: 10.1038/nrmicro1600] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Quorum sensing faces evolutionary problems from non-producing or over-producing cheaters. Such problems are circumvented in diffusion sensing, an alternative explanation for quorum sensing. However, both explanations face the problems of signalling in complex environments such as the rhizosphere where, for example, the spatial distribution of cells can be more important for sensing than cell density, which we show by mathematical modelling. We argue that these conflicting concepts can be unified by a new hypothesis, efficiency sensing, and that some of the problems associated with signalling in complex environments, as well as the problem of maintaining honesty in signalling, can be avoided when the signalling cells grow in microcolonies.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute of Biomathematics and Biometry, GSF-National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D85764 Neuherberg/Munich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Mutations within the -12 and -24 elements provide evidence that the act promoter is recognized by sigma-54 RNA polymerase. Deletion of the -20 base pair, which lies between the two conserved elements of sigma-54 promoters, decreased expression by 90%. In addition, mutation of a potential enhancer sequence, around -120, led to an 80% reduction in act gene expression. actB, the second gene in the act operon, encodes a sigma-54 activator protein that is proposed to be an enhancer-binding protein for the act operon. All act genes, actA to actE, are expressed together and constitute an operon, because an in-frame deletion of actB decreased expression of actA and actE to the same extent. After an initially slow phase of act operon expression, which depends on FruA, there is a rapid phase. The rapid phase is shown to be due to the activation of the operon expression by ActB, which completes a positive feedback loop. That loop appears to be nested within a larger positive loop in which ActB is activated by the C signal via ActA, and the act operon activates transcription of the csgA gene. We propose that, as cells engage in more C signaling, positive feedback raises the number of C-signal molecules per cell and drives the process of fruiting body development forward.
Collapse
Affiliation(s)
- Thomas M A Gronewold
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
32
|
Abstract
Fortunately, I began research in 1950 when the basic concepts of microbial genetics could be explored experimentally. I began with bacteriophage lambda and tried to establish the colinearity of its linkage map with its DNA molecule. My students and I worked out the regulation of lambda repressor synthesis for the establishment and maintenance of lysogeny. We also investigated the proteins responsible for assembly of the phage head. Using cell extracts, we discovered how to package DNA inside the head in vitro. Around 1972, I began to use molecular genetics to understand the developmental biology of Myxococcus xanthus. In particular, I wanted to learn how myxococcus builds its multicellular fruiting body within which it differentiates spores. We identified two cell-to-cell signals used to coordinate development. We have elucidated, in part, the signal transduction pathway for C-signal that directs the morphogenesis of a fruiting body.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
33
|
Sozinova O, Jiang Y, Kaiser D, Alber M. A three-dimensional model of myxobacterial fruiting-body formation. Proc Natl Acad Sci U S A 2006; 103:17255-9. [PMID: 17088558 PMCID: PMC1859919 DOI: 10.1073/pnas.0605555103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Indexed: 11/18/2022] Open
Abstract
Myxobacterial cells are social; they swarm by gliding on surfaces as they feed cooperatively. When they sense starvation, tens of thousands of cells change their movement pattern from outward spreading to inward concentration and form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction that shares many features of chemical reaction-diffusion dynamics. The biological evidence, however, suggests that Myxococcus xanthus aggregation is the consequence of direct cell-contact interactions that are different from chemotaxis. To test whether local interactions suffice to explain the formation of fruiting bodies and the differentiation of spores within them, we have simulated the process. In this article, we present a unified 3D model that reproduces in one continuous simulation all the stages of fruiting-body formation that have been experimentally observed: nonsymmetric initial aggregates (traffic jams), streams, formation of toroidal aggregates, hemispherical 3D mounds, and finally sporulation within the fruiting body.
Collapse
Affiliation(s)
- Olga Sozinova
- *Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670
| | - Yi Jiang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545; and
| | - Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - Mark Alber
- *Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670
| |
Collapse
|
34
|
Sliusarenko O, Zusman DR, Oster G. Aggregation during fruiting body formation in Myxococcus xanthus is driven by reducing cell movement. J Bacteriol 2006; 189:611-9. [PMID: 17098901 PMCID: PMC1797407 DOI: 10.1128/jb.01206-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved, Myxococcus xanthus cells assemble themselves into aggregates of about 10(5) cells that grow into complex structures called fruiting bodies, where they later sporulate. Here we present new observations on the velocities of the cells, their orientations, and reversal rates during the early stages of fruiting body formation. Most strikingly, we find that during aggregation, cell velocities slow dramatically and cells orient themselves in parallel inside the aggregates, while later cell orientations are circumferential to the periphery. The slowing of cell velocity, rather than changes in reversal frequency, can account for the accumulation of cells into aggregates. These observations are mimicked by a continuous agent-based computational model that reproduces the early stages of fruiting body formation. We also show, both experimentally and computationally, how changes in reversal frequency controlled by the Frz system mutants affect the shape of these early fruiting bodies.
Collapse
|
35
|
Sliusarenko O, Chen J, Oster G. From biochemistry to morphogenesis in myxobacteria. Bull Math Biol 2006; 68:1039-51. [PMID: 16832738 DOI: 10.1007/s11538-006-9113-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 02/17/2006] [Indexed: 11/25/2022]
Abstract
Many aspects of metazoan morphogenesis find parallels in the communal behavior of microorganisms. The cellular slime mold D. discoideum has long provided a metaphor for multicellular embryogenesis. However, the spatial patterns in D.d. colonies are generated by an intercellular communication system based on diffusible morphogens, whereas the interactions between embryonic cells are more often mediated by direct cell contact. For this reason, the myxobacteria have emerged as a contending system in which to study spatial pattern formation, for their colony strutures rival those of D.d. in complexity, yet communication between cells in a colony is carried out by direct cell contacts. Here I sketch some of the progress my laboratory has made in modeling the life cycle of these organisms.
Collapse
|
36
|
Stein EA, Cho K, Higgs PI, Zusman DR. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 2006; 60:1414-31. [PMID: 16796678 DOI: 10.1111/j.1365-2958.2006.05195.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myxococcus xanthus has a complex life cycle that involves vegetative growth and development. Previously, we described the espAB locus that is involved in timing events during the initial stages of fruiting body formation. Deletion of espA caused early aggregation and sporulation, whereas deletion of espB caused delayed aggregation and sporulation resulting in reduced spore yields. In this study, we describe two genes, pktA5 and pktB8, that flank the espAB locus and encode Ser/Thr protein kinase (STPK) homologues. Cells deficient in pktA5 or pktB8 formed translucent mounds and produced low spore yields, similar in many respects to espB mutants. Double mutant analysis revealed that espA was epistatic to pktA5 and pktB8 with respect to aggregation and fruiting body morphology, but that pktA5 and pktB8 were epistatic to espA with respect to sporulation efficiency. Expression profiles of pktA5-lacZ and pktB8-lacZ fusions and Western blot analysis showed that the STPKs are expressed under vegetative and developmental conditions. In vitro kinase assays demonstrated that the RD kinase, PktA5, autophosphorylated on threonine residue(s) and phosphorylated the artificial substrate, myelin basic protein. In contrast, autophosphorylation of the non-RD kinase, PktB8, was not observed in vitro; however, the phenotype of a pktB8 kinase-dead point mutant resembled the pktB8 deletion mutant, indicating that this residue was important for function and that it likely functions as a kinase in vivo. Immunoprecipitation of Tap-tagged PktA5 and PktB8 revealed an interaction with EspA during development in M. xanthus. These results, taken together, suggest that PktA5 and PktB8 are STPKs that function during development by interacting with EspA and EspB to regulate M. xanthus development.
Collapse
Affiliation(s)
- Emily A Stein
- Graduate Group in Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
37
|
Pelling AE, Li Y, Cross SE, Castaneda S, Shi W, Gimzewski JK. Self-organized and highly ordered domain structures within swarms ofMyxococcus xanthus. ACTA ACUST UNITED AC 2006; 63:141-8. [PMID: 16421928 DOI: 10.1002/cm.20112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Coordinated group movement (swarming) is a key aspect of Myxococcus xanthus' social behavior. Here we report observation of domain structures formed by multiple cells within large three-dimensional swarming groups grown on amorphous glass substrates, using the atomic force microscope (AFM). Novel analyses revealed that 90% of the wild type swarms displayed some form of preferential cell alignment. In contrast, cells with mutations in the social and adventurous motility systems displayed a distinct lack of cell alignment. Video microscopy observations of domain features of in vivo swarming M. xanthus cells were also consistent with the AFM data. The results presented here reveal that unique domain formation within swarms of wild type cells is a biologically driven process requiring the social and adventurous motility systems and is not a statistical phenomenon or thermodynamic process arising from liquid crystal behavior.
Collapse
Affiliation(s)
- Andrew E Pelling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Srinivasan BS, Caberoy NB, Suen G, Taylor RG, Shah R, Tengra F, Goldman BS, Garza AG, Welch RD. Functional genome annotation through phylogenomic mapping. Nat Biotechnol 2005; 23:691-8. [PMID: 15940241 DOI: 10.1038/nbt1098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accurate determination of functional interactions among proteins at the genome level remains a challenge for genomic research. Here we introduce a genome-scale approach to functional protein annotation--phylogenomic mapping--that requires only sequence data, can be applied equally well to both finished and unfinished genomes, and can be extended beyond single genomes to annotate multiple genomes simultaneously. We have developed and applied it to more than 200 sequenced bacterial genomes. Proteins with similar evolutionary histories were grouped together, placed on a three dimensional map and visualized as a topographical landscape. The resulting phylogenomic maps display thousands of proteins clustered in mountains on the basis of coinheritance, a strong indicator of shared function. In addition to systematic computational validation, we have experimentally confirmed the ability of phylogenomic maps to predict both mutant phenotype and gene function in the delta proteobacterium Myxococcus xanthus.
Collapse
Affiliation(s)
- Balaji S Srinivasan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Karen L Visick
- Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
40
|
Abstract
The long, rod-shaped cells of myxobacteria are polarized by their gliding engines. At the rear, A-engines push while pili pull the front end forward. An hypothesis is developed whereby both engines are partially dis-assembled, then re-assembled at the opposite pole when cells reverse their movement direction. Reversals are induced by an Mgl G-protein switch that controls engine polarity. The switch is driven by an oscillatory circuit of Frizzy proteins. In growing cells, the circuit gives rise to an occasional reversal that makes swarming possible. Then, as myxobacteria begin fruiting body development, a rising level of C-signal input drives the oscillator and changes the reversal pattern. Cells reverse regularly every eight minutes in traveling waves, the reversal period is then prolonged enabling cells to form streams that enlarge tiny random aggregates into fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- B300 Beckman Center, Department of Developmental Biology, 279 Campus Drive, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
41
|
Sozinova O, Jiang Y, Kaiser D, Alber M. A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc Natl Acad Sci U S A 2005; 102:11308-12. [PMID: 16061806 PMCID: PMC1183571 DOI: 10.1073/pnas.0504259102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myxobacteria provide one of the simplest models of cell-cell interaction and organized cell movement leading to cellular differentiation. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis; a long-range cell interaction. However, myxobacterial aggregation is the consequence of direct cell-contact interactions, not chemotaxis. We present here a 3D stochastic lattice-gas cellular automata model of cell aggregation based on local cell-cell contact, and no chemotaxis. We demonstrate that a 3D discrete stochastic model can simulate two stages of cell aggregation. First, a "traffic jam" forms embedded in a field of motile cells. The jam then becomes an aggregation center that accumulates more cells. We show that, at high cell density, cells stream around the traffic jam, generating a 3D hemispherical mound. Later, when the nuclear traffic jam dissolves, the aggregation center becomes a 3D ring of streaming cells.
Collapse
Affiliation(s)
- Olga Sozinova
- Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Myxococcus xanthus is a common Gram-negative bacterium that moves by a process called gliding motility. In myxobacteria, two distinct mechanisms for gliding have been discovered. S-type motility requires the extension, attachment, and retraction of type IV pili. The other mechanism, designated as A-type motility, may be driven by the secretion and swelling of slime; however, experiments to confirm or refute this model are still lacking and the force exerted by this mechanism has not been measured. A previously published experiment found that when an M. xanthus cell became stuck at one end, the cell underwent flailing motions. Based on this experiment, I propose an elastic model that can estimate the force produced by the A-motility engine and the bending modulus of a single myxobacterial cell. The model estimates a bending modulus of 3 x 10(-14) erg cm and a force between 50-150 pN. This force is comparable to that predicted by slime extrusion, and the bending modulus is 30-fold smaller than that measured in Bacillus subtilis. This model suggests experiments that can further quantify this process.
Collapse
Affiliation(s)
- Charles W Wolgemuth
- Department of Cell Biology, University of Connecticut Health Center, Farmington, USA.
| |
Collapse
|
43
|
Igoshin OA, Goldbeter A, Kaiser D, Oster G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci U S A 2004; 101:15760-5. [PMID: 15496464 PMCID: PMC524859 DOI: 10.1073/pnas.0407111101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, Myxococcus xanthus cells produce a series of spatial patterns by coordinating their motion through a contact-dependent signal, the C-signal. C-signaling modulates the frequency at which cells reverse their gliding direction. It does this by interacting with the Frz system (a homolog of the Escherichia coli chemosensory system) via a cascade of covalent modifications. Here we show that introducing a negative feedback into this cascade results in oscillatory behavior of the signaling circuit. The model explains several aspects of M. xanthus behavior during development, including the nonrandom distribution of reversal times, and the differences in response of the reversal frequency to both moderate and high levels of C-signaling at different developmental stages. We also propose experiments to test the model.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.
Collapse
Affiliation(s)
- Maria A Kiskowski
- Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA
| | | | | |
Collapse
|
45
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
46
|
Alber MS, Kiskowski MA, Jiang Y. Two-stage aggregate formation via streams in myxobacteria. PHYSICAL REVIEW LETTERS 2004; 93:068102. [PMID: 15323665 DOI: 10.1103/physrevlett.93.068102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Indexed: 05/24/2023]
Abstract
In response to adverse conditions, myxobacteria form aggregates that develop into fruiting bodies. We model myxobacteria aggregation with a lattice cell model based entirely on short-range (nonchemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation mediated by transient streams. Aggregates resemble those observed in experiment and are stable against even very large perturbations. Noise in individual cell behavior increases the effects of streams and results in larger, more stable aggregates.
Collapse
Affiliation(s)
- M S Alber
- Mathematics Department, University of Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
47
|
Igoshin OA, Welch R, Kaiser D, Oster G. Waves and aggregation patterns in myxobacteria. Proc Natl Acad Sci U S A 2004; 101:4256-61. [PMID: 15020771 PMCID: PMC384728 DOI: 10.1073/pnas.0400704101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|