1
|
Wang Z, Song L, Liu X, Shen X, Li X. Bacterial second messenger c-di-GMP: Emerging functions in stress resistance. Microbiol Res 2023; 268:127302. [PMID: 36640720 DOI: 10.1016/j.micres.2023.127302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.
Collapse
Affiliation(s)
- Zhuo Wang
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin Li
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China.
| |
Collapse
|
2
|
Kolodziejek AM, Bearden SW, Maes S, Montenieri JM, Gage KL, Hovde CJ, Minnich SA. Yersinia pestis Δ ail Mutants Are Not Susceptible to Human Complement Bactericidal Activity in the Flea. Appl Environ Microbiol 2023; 89:e0124422. [PMID: 36744930 PMCID: PMC9973026 DOI: 10.1128/aem.01244-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6+ wild type, a Δail mutant, and the Δail/ail+ control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (AilF100V E108_S109insS) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6+ Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott W. Bearden
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John M. Montenieri
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kenneth L. Gage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
3
|
Variability of <i>pgm</i>‑Region Genes in <i>Yersinia pestis</i> Strains from the Caspian Sandy and Adjacent Plague Foci. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-57-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The aim of the study was to compare the nucleotide sequences of pgm‑region genes in Yersinia pestis strains isolated on the territory of the Caspian sandy and adjacent plague foci in 1925–2015. Materials and methods. 65 Y. pestis strains from the Caspian sandy and adjacent plague foci were used in the work. DNA isolation was performed using the PureLink Genomic DNA Mini Kit. Whole genome sequencing was conducted in Ion S5 XL System (Thermo Fischer Scientific). Data processing was carried out using Ion Torrent Suite software package 3.4.2 and NewblerGS Assembler 2.6. To compare the obtained sequences with the NCBI GenBank database, the Blast algorithm was used. The phylogenetic analysis was performed according to the data of whole genome SNP analysis based on 1183 identified SNPs. The search for marker SNPs was performed using the Snippy 4.6 program. The phylogenetic tree was constructed using the Maximum Likelihood algorithm, the GTR nucleotide substitution model. Results and discussion. The nucleotide sequences of pgm‑region genes of 65 Y. pestis strains from the Caspian sandy and adjacent plague foci have been assessed. Single nucleotide substitutions have been identified in Y. pestis strains from the Caspian sandy and Kobystan plain-foothill foci in the hmsR, astB, ybtS, ypo1944, ypo1943, ypo1936 genes, as well as a deletion of 5 bp in the ypo1945 gene, which is characteristic of strains of one of the phylogenetic lines of Y. pestis from the foci of Caucasus and Transcaucasia, isolated in 1968–2001. The data obtained can be used to differentiate Y. pestis strains from the Caspian sandy focus, as well as to establish the directions of microevolution of the plague pathogen in this region and adjacent foci.
Collapse
|
4
|
Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Microb Pathog 2022; 169:105659. [PMID: 35760284 DOI: 10.1016/j.micpath.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Collapse
|
5
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
6
|
Deletion of Yersinia pestis ail causes temperature sensitive pleiotropic effects including cell lysis that are suppressed by carbon source, cations, or loss of phospholipase A activity. J Bacteriol 2021; 203:e0036121. [PMID: 34398663 PMCID: PMC8508112 DOI: 10.1128/jb.00361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of phospholipid (PL) and lipopoly- or lipooligo-saccharide (LPS or LOS) asymmetry in the outer membrane (OM) of Gram-negative bacteria is essential but poorly understood. The Yersinia pestis OM Ail protein was required to maintain lipid homeostasis and cell integrity at elevated temperature (37° C). Loss of this protein had pleiotropic effects. A Y. pestis Δail mutant and KIM6+ wild- type were systematically compared for (i) growth requirements at 37° C, (ii) cell structure, (iii) antibiotic and detergent sensitivity, (iv) proteins released into supernates, (v) induction of the heat shock response, and (vi) physiological and genetic suppressors that restored the wild- type phenotype. The Δail mutant grew normally at 28° C but lysed at 37° C when it entered stationary phase as shown by cell count, SDS-PAGE of cell supernatants, and electron microscopy. Immuno-fluorescent microscopy showed that the Δail mutant did not assemble Caf1 capsule. Expression of heat shock promoters rpoE or rpoH fused to a lux operon reporter were not induced when the Δail mutant was shifted from the 28° C to 37° C (p<0.001 and p<0.01 respectively). Mutant lysis was suppressed by addition of 11 mM glucose, 22 or 44 mM glycerol, 2.5 mM Ca2+, or 2.5 mM Mg2+ to the growth medium, or by a mutation in the phospholipase A gene (pldA::miniTn5, ΔpldA, or PldAS164A). A model, accounting for the temperature-sensitive lysis of the Δail mutant and the Ail-dependent stabilization of the OM tetraacylated LOS at 37°C is presented. IMPORTANCE The Gram-negative pathogen, Yersinia pestis, transitions between a flea vector (ambient temperature) and a mammalian host (37° C). In response to 37° C, Y. pestis modifies its outer membrane (OM) by reducing the fatty acid content in lipid A, changing the outer leaflet from being predominantly hexaacylated to being predominantly tetraacylated. It also increases the Ail concentration, so it becomes the most prominent OM protein. Both measures are needed for Y. pestis to evade the host innate immune response. Deletion of ail destabilizes the OM at 37° C causing the cells to lyse. These results show that a protein is essential for maintaining lipid asymmetry and lipid homeostasis in the bacterial OM.
Collapse
|
7
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
8
|
Lon Protease- and Temperature-Dependent Activity of a Lysis Cassette Located in the Insecticidal Island of Yersinia enterocolitica. J Bacteriol 2021; 203:JB.00616-20. [PMID: 33288626 DOI: 10.1128/jb.00616-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
The Yersinia genus comprises pathogens that can adapt to an environmental life cycle stage as well as to mammals. Yersinia enterocolitica strain W22703 exhibits both insecticidal and nematocidal activity conferred by the tripartite toxin complex (Tc) that is encoded on the 19-kb pathogenicity island Tc-PAI Ye All tc genes follow a strict temperature regulation in that they are silenced at 37°C but activated at lower temperatures. Four highly conserved phage-related genes, located within the Tc-PAI Ye , were recently demonstrated to encode a biologically functional holin-endolysin gene cassette that lyses its own host W22703 at 37°C. Conditions transcriptionally activating the cassette are not yet known. In contrast to Escherichia coli, the overproduction of holin and endolysin did not result in cell lysis of strain W22703 at 15°C. When the holin-endolysin genes were overexpressed at 15°C in four Y. enterocolitica biovars and in four other Yersinia spp., a heterogenous pattern of phenotypes was observed, ranging from lysis resistance of a biovar 1A strain to the complete growth arrest of a Y. kristensenii strain. To decipher the molecular mechanism underlying this temperature-dependent lysis, we constructed a Lon protease-negative mutant of W22703 in which the overexpression of the lysis cassette leads to cell death at 15°C. Overexpressed endolysin exhibited a high proteolytic susceptibility in strain W22703 but remained stable in the W22703 Δlon strain or in Y. pseudotuberculosis Although artificial overexpression was applied here, the data indicate that Lon protease plays a role in the control of the temperature-dependent lysis in Y. enterocolitica W22703.IMPORTANCE The investigation of the mechanisms that help pathogens survive in the environment is a prerequisite to understanding their evolution and their virulence capacities. In members of the genus Yersinia, many factors involved in virulence, metabolism, motility, or biofilm formation follow a strict temperature-dependent regulation. While the molecular mechanisms underlying the activation of determinants at body temperature have been analyzed in detail, the molecular basis of low-temperature-dependent phenotypes is largely unknown. Here, we demonstrate that a novel phage-related lysis cassette, which is part of the insecticidal and nematocidal pathogenicity island of Y. enterocolitica, does not lyse its own host following overexpression at 15°C and that the Lon protease is involved in this phenotype.
Collapse
|
9
|
Lemon A, Cherzan N, Vadyvaloo V. Influence of Temperature on Development of Yersinia pestis Foregut Blockage in Xenopsylla cheopis (Siphonaptera: Pulicidae) and Oropsylla montana (Siphonaptera: Ceratophyllidae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1997-2007. [PMID: 32533162 DOI: 10.1093/jme/tjaa113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Plague, caused by the flea-transmitted bacterial pathogen Yersinia pestis, is primarily a disease of wild rodents distributed in temperate and tropical zones worldwide. The ability of Y. pestis to develop a biofilm blockage that obstructs the flea foregut proventriculus facilitates its efficient transmission through regurgitation into the host bite site during flea blood sucking. While it is known that temperature influences transmission, it is not well-known if blockage dynamics are similarly in accord with temperature. Here, we determine the influence of the biologically relevant temperatures, 10 and 21°C, on blockage development in flea species, Xenopsylla cheopis (Rothschild) and Oropsylla montana (Baker), respectively, characterized by geographical distribution as cosmopolitan, tropical or endemic, temperate. We find that both species exhibit delayed development of blockage at 10°C. In Y. pestis infected X. cheopis, this is accompanied by significantly lower survival rates and slightly decreased blockage rates, even though these fleas maintain similar rates of persistent infection as at 21°C. Conversely, irrespective of infection status, O. montana withstand 21 and 10°C similarly well and show significant infection rate increases and slightly greater blocking rates at 10 versus 21°C, emphasizing that cooler temperatures are favorable for Y. pestis transmission from this species. These findings assert that temperature is a relevant parameter to consider in assessing flea transmission efficiency in distinct flea species residing in diverse geographical regions that host endemic plague foci. This is important to predict behavioral dynamics of plague regarding epizootic outbreaks and enzootic maintenance and improve timeous implementation of flea control programs.
Collapse
Affiliation(s)
- Athena Lemon
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
| | - Nathan Cherzan
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
| |
Collapse
|
10
|
Inactivation of the sfgtr4 Gene of Shigella flexneri Induces Biofilm Formation and Affects Bacterial Pathogenicity. Microorganisms 2020; 8:microorganisms8060841. [PMID: 32512756 PMCID: PMC7355660 DOI: 10.3390/microorganisms8060841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Biofilm formation is a significant cause for the environmental persistence of foodborne pathogens. This phenomenon remains misunderstood in Shigellaflexneri whose pathogenicity is mainly associated with the virulence plasmid pWR100. Sequence analysis of the latter predicts a putative lipopolysaccharides (LPS) glycosyltransferase (Gtr) encoded by Sfgtr4, which is the second gene of the SfpgdA-orf186-virK-msbB2 locus. We demonstrated here that purified SfGtr4 exhibited a Gtr activity in vitro by transferring glucose to lipid A. To establish the role of SfGtr4 in virulence, we generated a Sfgtr4 mutant and assessed its phenotype in vitro. Sfgtr4 mutant significantly reduced HeLa cells invasion without impairing type III effectors secretion, increased susceptibility to lysozyme degradation, and enhanced bacterial killing by polymorphonuclear neutrophils (PMNs). SfGtr4 is related to proteins required in biofilm formation. We established conditions whereby wild-type Shigella formed biofilm and revealed that its appearance was accelerated by the Sfgtr4 mutant. Additional phenotypical analysis revealed that single SfpdgA and double SfpgdA-Sfgtr4 mutants behaved similarly to Sfgtr4 mutant. Furthermore, a molecular interaction between SfGtr4 and SfPgdA was identified. In summary, the dual contribution of SfGtr4 and SfPgdA to the pathogenicity and the regulation biofilm formation by S. flexneri was demonstrated here.
Collapse
|
11
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Biggins DE, Eads DA. Prairie Dogs, Persistent Plague, Flocking Fleas, and Pernicious Positive Feedback. Front Vet Sci 2019; 6:75. [PMID: 30984769 PMCID: PMC6447679 DOI: 10.3389/fvets.2019.00075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Plague (caused by the bacterium Yersinia pestis) is a deadly flea-borne disease that remains a threat to public health nearly worldwide and is particularly disruptive ecologically where it has been introduced. We review hypotheses regarding maintenance and transmission of Y. pestis, emphasizing recent data from North America supporting maintenance by persistent transmission that results in sustained non-epizootic (but variable) rates of mortality in hosts. This maintenance mechanism may facilitate periodic epizootic eruptions "in place" because the need for repeated reinvasion from disjunct sources is eliminated. Resulting explosive outbreaks that spread rapidly in time and space are likely enhanced by synergistic positive feedback (PFB) cycles involving flea vectors, hosts, and the plague bacterium itself. Although PFB has been implied in plague literature for at least 50 years, we propose this mechanism, particularly with regard to flea responses, as central to epizootic plague rather than a phenomenon worthy of just peripheral mention. We also present new data on increases in flea:host ratios resulting from recreational shooting and poisoning as possible triggers for the transition from enzootic maintenance to PFB cycles and epizootic explosions. Although plague outbreaks have received much historic attention, PFB cycles that result in decimation of host populations lead to speculation that epizootic eruptions might not be part of the adaptive evolutionary strategy of Y. pestis but might instead be a tolerated intermittent cost of its modus operandi. We also speculate that there may be mammal communities where epizootics, as we define them, are rare or absent. Absence of plague epizootics might translate into reduced public health risk but does not necessarily equate to inconsequential ecologic impact.
Collapse
Affiliation(s)
- Dean E. Biggins
- United States Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States
| | - David A. Eads
- United States Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Differential Gene Expression Patterns of Yersinia pestis and Yersinia pseudotuberculosis during Infection and Biofilm Formation in the Flea Digestive Tract. mSystems 2019; 4:mSystems00217-18. [PMID: 30801031 PMCID: PMC6381227 DOI: 10.1128/msystems.00217-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, the etiologic agent of plague, emerged as a fleaborne pathogen only within the last 6,000 years. Just five simple genetic changes in the Yersinia pseudotuberculosis progenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropodborne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performed in vivo transcriptional profiling of Y. pestis, a Y. pseudotuberculosis wild-type strain (unable to form biofilm in the flea foregut), and a Y. pseudotuberculosis mutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious blood meal. Surprisingly, the Y. pseudotuberculosis mutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change the expression levels of the hms genes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. The Y. pseudotuberculosis mutant uniquely expressed much higher levels of Yersinia type VI secretion system 4 (T6SS-4) in the flea, and this locus was required for flea blockage by Y. pseudotuberculosis but not for blockage by Y. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing-related genes, transcription regulation genes, and stress response genes were evident during flea infection. IMPORTANCE Y. pestis emerged as a highly virulent, arthropod-transmitted pathogen on the basis of relatively few and discrete genetic changes from Y. pseudotuberculosis. Parallel comparisons of the in vitro and in vivo transcriptomes of Y. pestis and two Y. pseudotuberculosis variants that produce a nontransmissible infection and a transmissible infection of the flea vector, respectively, provided insights into how Y. pestis has adapted to life in its flea vector and point to evolutionary changes in the regulation of metabolic and biofilm development pathways in these two closely related species.
Collapse
|
14
|
Schachterle JK, Stewart RM, Schachterle MB, Calder JT, Kang H, Prince JT, Erickson DL. Yersinia pseudotuberculosis BarA-UvrY Two-Component Regulatory System Represses Biofilms via CsrB. Front Cell Infect Microbiol 2018; 8:323. [PMID: 30280093 PMCID: PMC6153318 DOI: 10.3389/fcimb.2018.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
The formation of biofilms by Yersinia pseudotuberculosis (Yptb) and Y. pestis requires the hmsHFRS genes, which direct production of a polysaccharide extracellular matrix (Hms-ECM). Despite possessing identical hmsHFRS sequences, Yptb produces much less Hms-ECM than Y. pestis. The regulatory influences that control Yptb Hms-ECM production and biofilm formation are not fully understood. In this study, negative regulators of biofilm production in Yptb were identified. Inactivation of the BarA/UvrY two-component system or the CsrB regulatory RNA increased binding of Congo Red dye, which correlates with extracellular polysaccharide production. These mutants also produced biofilms that were substantially more cohesive than the wild type strain. Disruption of uvrY was not sufficient for Yptb to cause proventricular blockage during infection of Xenopsylla cheopis fleas. However, this strain was less acutely toxic toward fleas than wild type Yptb. Flow cytometry measurements of lectin binding indicated that Yptb BarA/UvrY/CsrB mutants may produce higher levels of other carbohydrates in addition to poly-GlcNAc Hms-ECM. In an effort to characterize the relevant downstream targets of the BarA/UvrY system, we conducted a proteomic analysis to identify proteins with lower abundance in the csrB::Tn5 mutant strain. Urease subunit proteins were less abundant and urease enzymatic activity was lower, which likely reduced toxicity toward fleas. Loss of CsrB impacted expression of several potential regulatory proteins that may influence biofilms, including the RcsB regulator. Overexpression of CsrB did not alter the Congo-red binding phenotype of an rcsB::Tn5 mutant, suggesting that the effect of CsrB on biofilms may require RcsB. These results underscore the regulatory and compositional differences between Yptb and Y. pestis biofilms. By activating CsrB expression, the Yptb BarA/UvrY two-component system has pleiotropic effects that impact biofilm production and stability.
Collapse
Affiliation(s)
- Jeffrey K Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Ryan M Stewart
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - M Brett Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Joshua T Calder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Huan Kang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John T Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - David L Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
15
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
16
|
Ren GX, Fan S, Guo XP, Chen S, Sun YC. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis. Front Microbiol 2016; 7:821. [PMID: 27375563 PMCID: PMC4891359 DOI: 10.3389/fmicb.2016.00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.
Collapse
Affiliation(s)
- Gai-Xian Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Sai Fan
- Institute of Nutrition and Food Hygiene, Beijing Centre for Disease Control and Prevention Beijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
17
|
Piercey MJ, Hingston PA, Truelstrup Hansen L. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C. Int J Food Microbiol 2016; 223:63-74. [PMID: 26900648 DOI: 10.1016/j.ijfoodmicro.2016.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium whose persistence in food processing environments is in part attributed to its biofilm formation. Most biofilm studies have been carried out at 30-37 °C rather than at temperatures found in the food processing plants (i.e., 10-20 °C). The objective of the present study was to mine for novel genes that contribute to L. monocytogenes biofilm formation at 15 °C using the random insertional mutagenesis approach. A library of 11,024 L. monocytogenes 568 (serotype 1/2a) Himar1 insertional mutants was created. Mutants with reduced or enhanced biofilm formation at 15 °C were detected in microtiter plate assays with crystal violet and safranin staining. Fourteen mutants expressed enhanced biofilm phenotypes, and harbored transposon insertions in genes encoding cell wall biosynthesis, motility, metabolism, stress response, and cell surface associated proteins. Deficient mutants (n=5) contained interruptions in genes related to peptidoglycan, teichoic acid, or lipoproteins. Enhanced mutants produced significantly (p<0.05) higher cell densities in biofilm formed on stainless steel (SS) coupons at 15 °C (48 h) than deficient mutants, which were also more sensitive to benzalkonium chloride. All biofilm deficient mutants and four enhanced mutants in the microtiter plate assay (flaA, cheR, lmo2563 and lmo2488) formed no biofilm in a peg lid assay (Calgary biofilm device) while insertions in lmo1224 and lmo0543 led to excess biofilm in all assays. Two enhanced biofilm formers were more resistant to enzymatic removal with DNase, proteinase K or pectinase than the parent strain. Scanning electron microscopy of individual biofilms made by five mutants and the parent on SS surfaces showed formation of heterogeneous biofilm with dense zones by immotile mutants, while deficient mutants exhibited sparse growth. In conclusion, interruptions of 9 genes not previously linked to biofilm formation in L. monocytogenes (lmo2572, lmo2488 (uvrA), lmo1224, lmo0434 (inlB), lmo0263 (inlH), lmo0543, lmo0057 (EsaA), lmo2563, lmo0453), caused enhanced biofilm formation in the bacterium at 15 °C. The remaining mutants harbored interruptions in 10 genetic loci previously associated with biofilm formation at higher temperatures, indicating some temperature driven differences in the formation of biofilm by L. monocytogenes.
Collapse
Affiliation(s)
- Marta J Piercey
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | - Patricia A Hingston
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| | - Lisbeth Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax B3H 4R2, Canada.
| |
Collapse
|
18
|
Zhu H, Mao XJ, Guo XP, Sun YC. The hmsT 3' untranslated region mediates c-di-GMP metabolism and biofilm formation in Yersinia pestis. Mol Microbiol 2016; 99:1167-78. [PMID: 26711808 DOI: 10.1111/mmi.13301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 02/04/2023]
Abstract
Yersinia pestis, the cause of plague, forms a biofilm in the proventriculus of its flea vector to enhance transmission. Biofilm formation in Y. pestis is regulated by the intracellular levels of cyclic diguanylate (c-di-GMP). In this study, we investigated the role of the 3' untranslated region (3'UTR) in hmsT mRNA, a transcript that encodes a diguanylate cyclase that stimulates biofilm formation in Y. pestis by synthesizing the second messenger c-di-GMP. Deletion of the 3'UTR increased the half-life of hmsT mRNA, thereby upregulating c-di-GMP levels and biofilm formation. Our findings indicate that multiple regulatory sequences might be present in the hmsT 3'UTR that function together to mediate mRNA turnover. We also found that polynucleotide phosphorylase is partially responsible for hmsT 3'UTR-mediated mRNA decay. In addition, the hmsT 3'UTR strongly repressed gene expression at 37°C and 26°C, but affected gene expression only slightly at 21°C. Our findings suggest that the 3'UTR might be involved in precise and rapid regulation of hmsT expression, allowing Y. pestis to fine-tune c-di-GMP synthesis and consequently regulate biofilm production to adapt to the changing host environment.
Collapse
Affiliation(s)
- Hui Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xu-Jian Mao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
19
|
Bland DM, Hinnebusch BJ. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS Negl Trop Dis 2016; 10:e0004413. [PMID: 26829486 PMCID: PMC4734780 DOI: 10.1371/journal.pntd.0004413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea's competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics. METHODOLOGY/PRINCIPAL FINDINGS Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3-4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected. CONCLUSIONS The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict transmission by both early-phase and proventricular biofilm-dependent mechanisms.
Collapse
Affiliation(s)
- David M. Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
20
|
Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 2015; 5:18385. [PMID: 26681339 PMCID: PMC4683393 DOI: 10.1038/srep18385] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022] Open
Abstract
The dispersal phase that completes the biofilm lifecycle is of particular interest for its potential to remove recalcitrant, antimicrobial tolerant biofilm infections. Here we found that temperature is a cue for biofilm dispersal and a rise by 5 °C or more can induce the detachment of Pseudomonas aeruginosa biofilms. Temperature upshifts were found to decrease biofilm biomass and increase the number of viable freely suspended cells. The dispersal response appeared to involve the secondary messenger cyclic di-GMP, which is central to a genetic network governing motile to sessile transitions in bacteria. Furthermore, we used poly((oligo(ethylene glycol) methyl ether acrylate)-block-poly(monoacryloxy ethyl phosphate)-stabilized iron oxide nanoparticles (POEGA-b-PMAEP@IONPs) to induce local hyperthermia in established biofilms upon exposure to a magnetic field. POEGA-b-PMAEP@IONPs were non-toxic to bacteria and when heated induced the detachment of biofilm cells. Finally, combined treatments of POEGA-b-PMAEP@IONPs and the antibiotic gentamicin reduced by 2-log the number of colony-forming units in both biofilm and planktonic phases after 20 min, which represent a 3.2- and 4.1-fold increase in the efficacy against planktonic and biofilm cells, respectively, compared to gentamicin alone. The use of iron oxide nanoparticles to disperse biofilms may find broad applications across a range of clinical and industrial settings.
Collapse
|
21
|
Vadyvaloo V, Hinz AK. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. PLoS One 2015; 10:e0137508. [PMID: 26348850 PMCID: PMC4562620 DOI: 10.1371/journal.pone.0137508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm–mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, 99164, United States of America
- * E-mail:
| | - Angela K. Hinz
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, 99164, United States of America
| |
Collapse
|
22
|
Abstract
Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health.
Collapse
Affiliation(s)
- Oliver Lam
- a The Sir William Dunn School of Pathology ; University of Oxford ; Oxford , UK
| | | | | |
Collapse
|
23
|
CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA. PLoS One 2015; 10:e0135481. [PMID: 26305456 PMCID: PMC4549057 DOI: 10.1371/journal.pone.0135481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023] Open
Abstract
The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production, suggesting CsrA enables potent Y. pestis biofilm production through cyclic diguanylate regulation.
Collapse
|
24
|
Kanaujia PK, Bajaj P, Virdi JS. Analysis of iron acquisition and storage-related genes in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. APMIS 2015. [PMID: 26223204 DOI: 10.1111/apm.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Possession of mechanisms for iron acquisition and its storage enhances the ability of the bacteria to survive in the iron-limiting environment of the host. In this study, 81 strains of Yersinia enterocolitica biovar 1A isolated from various clinical (n = 51) and non-clinical (n = 30) sources were investigated for the presence of the genes related to iron acquisition and storage. Important genes which were present in more than 85% of the strains included hasA, foxA, bfr, bfd, ftnA, and hmsT as well as the fhuCDB, fepBDGCfesfepA, feoAB, yfuABCD, hemPRSTUV, and hmsHFRS gene clusters. Majority of these genes is being reported for the first time in biovar 1A strains and showed significant homology with genes present in the known pathogenic biovars of Y. enterocolitica. However, no significant difference was observed in the distribution of iron acquisition and storage-related genes among clinical and non-clinical biovar 1A strains. Thus, it may be suggested that the presence of iron acquisition and storage-related genes per se might not be responsible for the supposedly better ability of clinical biovar 1A strains to cause infections in humans. However, in the backdrop of this data, the need to undertake functional studies are highly recommended.
Collapse
Affiliation(s)
- Pawan Kumar Kanaujia
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Priyanka Bajaj
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jugsharan Singh Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
25
|
Fang N, Yang H, Fang H, Liu L, Zhang Y, Wang L, Han Y, Zhou D, Yang R. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. Sci Rep 2015; 5:9566. [PMID: 25828910 PMCID: PMC4381331 DOI: 10.1038/srep09566] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/11/2015] [Indexed: 02/04/2023] Open
Abstract
Biofilm formation in flea gut is important for flea-borne transmission of Yersinia pestis. There are enhancing factors (HmsHFRS, HmsCDE, and HmsT) and inhibiting one (HmsP) for Yersinia pestis biofilm formation. The RcsAB regulatory complex acts as a repressor of Yesinia biofilm formation, and adaptive pseudogenization of rcsA promotes Y. pestis to evolve the ability of biofilm formation in fleas. In this study, we constructed a set of isogenic strains of Y. pestis biovar Microtus, namely WT (RscB+ and RcsA-), c-rcsA (RscB+ and RcsA+), ΔrcsB (RscB- and RcsA-), and ΔrcsB/c-rcsA (RscB- and RcsA+). The phenotypic assays confirmed that RcsB alone (but not RcsA alone) had an inhibiting effect on biofilm/c-di-GMP production whereas assistance of RcsA to RcsB greatly enhanced this inhibiting effect. Further gene regulation experiments showed that RcsB in assistance of RcsA tightly bound to corresponding promoter-proximal regions to achieve transcriptional repression of hmsCDE, hmsT and hmsHFRS and, meanwhile, RcsAB positively regulated hmsP most likely in an indirect manner. Data presented here disclose that pseudogenization of rcsA leads to dramatic remodeling of RcsAB-dependent hms gene expression between Y. pestis and its progenitor Y. pseudotuberculosis, enabling potent production of Y. pestis biofilms in fleas.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
26
|
Starke M, Fuchs TM. YmoA negatively controls the expression of insecticidal genes in Yersinia enterocolitica. Mol Microbiol 2014; 92:287-301. [PMID: 24548183 DOI: 10.1111/mmi.12554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Yersinia enterocolitica is toxic towards invertebrates due to the presence of the toxin complex (tc) genes that are activated by the thermolabile regulator TcaR2. In the search for further regulatory factors involved in insecticidal gene expression, the modulator of yersinial virulence, YmoA, was identified to silence all tc genes of the Y. enterocolitica strain W22703 (biovar 2, serovar O:9). Using promoter fusions with the luciferase reporter, we found that the deletion of ymoA results in elevated transcription of tcaR1, tcaR2, tcaA, tcaB, tcaC, tccC1 and tccC2 at both 15 °C and 37 °C. Complementation by episomal ymoA significantly reduced tc gene expression, thus validating the inhibitory activity of YmoA on the production of insecticidal proteins. YmoA contributes to the binding properties of H-NS to the tc promoters by forming a complex with this nucleoid-associated protein, and this complex not only binds to the upstream regions of all tc genes, but also to intragenic sites of tcaA and tcaB that play an important role in controlling the expression of both genes. At low temperature, the intracellular amount of thermostable YmoA is not reduced, but the repressor is less functional. These data point to H-NS/YmoA as an antagonist of the inducer TcaR2.
Collapse
Affiliation(s)
- Mandy Starke
- Lehrstuhl für Mikrobielle Ökologie, Department für biowissenschaftliche Grundlagen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | | |
Collapse
|
27
|
Bobrov AG, Kirillina O, Vadyvaloo V, Koestler BJ, Hinz AK, Mack D, Waters CM, Perry RD. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector. Environ Microbiol 2014; 17:947-59. [PMID: 25586342 DOI: 10.1111/1462-2920.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
The second messenger molecule cyclic diguanylate is essential for Yersinia pestis biofilm formation that is important for blockage-dependent plague transmission from fleas to mammals. Two diguanylate cyclases (DGCs) HmsT and Y3730 (HmsD) are responsible for biofilm formation in vitro and biofilm-dependent blockage in the oriental rat flea Xenopsylla cheopis respectively. Here, we have identified a tripartite signalling system encoded by the y3729-y3731 operon that is responsible for regulation of biofilm formation in different environments. We present genetic evidence that a putative inner membrane-anchored protein with a large periplasmic domain Y3729 (HmsC) inhibits HmsD DGC activity in vitro while an outer membrane Pal-like putative lipoprotein Y3731 (HmsE) counteracts HmsC to activate HmsD in the gut of X. cheopis. We propose that HmsE is a critical element in the transduction of environmental signal(s) required for HmsD-dependent biofilm formation.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ren GX, Yan HQ, Zhu H, Guo XP, Sun YC. HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis. Environ Microbiol 2013; 16:1202-16. [PMID: 24192006 DOI: 10.1111/1462-2920.12323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/28/2013] [Indexed: 01/25/2023]
Abstract
Yersinia pestis, the cause of plague, forms a biofilm in the foregut of its flea vector to enhance transmission. Biofilm formation in Y. pestis is controlled by the intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP). HmsT and Y3730, the two diguanylate cyclases (DGC) in Y. pestis, are responsible for the synthesis of c-di-GMP. Y3730, which we name here as HmsD, has little effect on in vitro biofilms, but has a major effect on biofilm formation in the flea. The mechanism by which HmsD plays differential roles in vivo and in vitro is not understood. In this study, we show that hmsD is part of a three-gene operon (y3729-31), which we designate as hmsCDE. Deletion of hmsC resulted in increased, hmsD-dependent biofilm formation, while deletion or overexpression of hmsE did not affect biofilm formation. Localization experiments suggest that HmsC resides in the periplasmic space. In addition, we provide evidence that HmsC might interact directly with the periplasmic domain of HmsD and cause the proteolysis of HmsD. We propose that HmsC senses the environmental signals, which in turn regulates HmsD, and controls the c-di-GMP synthesis and biofilm formation in Y. pestis.
Collapse
Affiliation(s)
- Gai-Xian Ren
- MOH key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 9, Dongdan Santiao, Dongcheng District, Beijing, 100730, China
| | | | | | | | | |
Collapse
|
29
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1228] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
30
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|
31
|
Starke M, Richter M, Fuchs TM. The insecticidal toxin genes ofYersinia enterocoliticaare activated by the thermolabile LTTR-like regulator TcaR2 at low temperatures. Mol Microbiol 2013; 89:596-611. [DOI: 10.1111/mmi.12296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
|
32
|
Biofilm switch and immune response determinants at early stages of infection. Trends Microbiol 2013; 21:364-71. [PMID: 23816497 DOI: 10.1016/j.tim.2013.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
Abstract
Biofilm development is recognized as a major virulence factor underlying most chronic bacterial infections. When a biofilm community is established, planktonic cells growing in the surroundings of a tissue switch to a sessile lifestyle and start producing a biofilm matrix. The initial steps of in vivo biofilm development are poorly characterized and difficult to assess experimentally. A great amount of in vitro evidence has shown that accumulation of high levels of cyclic dinucleotides (c-di-NMPs) is the most prevalent hallmark governing the initiation of biofilm development by bacteria. As mentioned above, recent studies also link detection of c-di-NMPs by host cells with the activation of a type I interferon immune response against bacterial infections. We discuss here c-di-NMP signaling and the host immune response in the context of the initial steps of in vivo biofilm development.
Collapse
|
33
|
Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AKK, Maira-Litràn T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 2013; 110:E2209-18. [PMID: 23716675 PMCID: PMC3683766 DOI: 10.1073/pnas.1303573110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Rosane B. DeOliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy S. Garrett
- Departments of Immunology and Infectious Diseases, Genetics and Complex Diseases, Dana–Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Jennifer O’Malley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Kathryn Kinzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Astrid Rey
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Christophe Perrin
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Alexander K. K. Kayatani
- Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Tomas Maira-Litràn
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Lauren O. Bakaletz
- The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Stephen I. Pelton
- Department of Pediatric Infectious Diseases, Boston University Medical Center, Boston, MA 02118
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
35
|
Williams SK, Schotthoefer AM, Montenieri JA, Holmes JL, Vetter SM, Gage KL, Bearden SW. Effects of low-temperature flea maintenance on the transmission of Yersinia pestis by Oropsylla montana. Vector Borne Zoonotic Dis 2013; 13:468-78. [PMID: 23590319 DOI: 10.1089/vbz.2012.1017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, is primarily a rodent-associated, flea-borne zoonosis maintained in sylvatic foci throughout western North America. Transmission to humans is mediated most commonly by the flea vector Oropsylla montana and occurs predominantly in the southwestern United States. With few exceptions, previous studies showed O. montana to be an inefficient vector at transmitting Y. pestis at ambient temperatures, particularly when such fleas were fed on susceptible hosts more than a few days after ingesting an infectious blood meal. We examined whether holding fleas at subambient temperatures affected the transmissibility of Y. pestis by this vector. An infectious blood meal containing a virulent Y. pestis strain (CO96-3188) was given to colony-reared O. montana fleas. Potentially infected fleas were maintained at different temperatures (6°C, 10°C, 15°C, or 23°C). Transmission efficiencies were tested by allowing up to 15 infectious fleas to feed on each of 7 naïve CD-1 mice on days 1-4, 7, 10, 14, 17, and 21 postinfection (p.i.). Mice were monitored for signs of infection for 21 days after exposure to infectious fleas. Fleas held at 6°C, 10°C, and 15°C were able to effectively transmit at every time point p.i. The percentage of transmission to naïve mice by fleas maintained at low temperatures (46.0% at 6°C, 71.4% at 10°C, 66.7% at 15°C) was higher than for fleas maintained at 23°C (25.4%) and indicates that O. montana fleas efficiently transmit Y. pestis at low temperatures. Moreover, pooled percent per flea transmission efficiencies for flea cohorts maintained at temperatures of 10°C and 15°C (8.67% and 7.87%, respectively) showed a statistically significant difference in the pooled percent per flea transmission efficiency from fleas maintained at 23°C (1.94%). This is the first comprehensive study to demonstrate efficient transmission of Y. pestis by O. montana fleas maintained at temperatures as low as 6°C. Our findings further contribute to the understanding of plague ecology in temperate climates by providing support for the hypothesis that Y. pestis is able to overwinter within the flea gut and potentially cause infection during the following transmission season. The findings also might hold implications for explaining the focality of plague in tropical regions.
Collapse
Affiliation(s)
- Shanna K Williams
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yuan B, Cheng A, Wang M. Polysaccharide export outer membrane proteins in Gram-negative bacteria. Future Microbiol 2013; 8:525-35. [DOI: 10.2217/fmb.13.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polysaccharide export outer membrane proteins of Gram-negative bacteria are involved in the export of polysaccharides across the outer membrane. The mechanisms of polysaccharide export across the outer membrane in Gram-negative bacteria are not yet completely clear. However, the mechanisms of polysaccharide assembly in Escherichia coli have been intensively investigated. Here, we mainly review the current understanding of the assembly mechanisms of group 1 capsular polysaccharide, group 2 capsular polysaccharide and lipopolysaccharide of E. coli, and the current structures and interactions of some polysaccharide export outer membrane proteins with other proteins involved in polysaccharide export in Gram-negative bacteria. In addition, LptD may be targeted by peptidomimetic antibiotics in Gram-negative bacteria. We also give insights into the directions of future research regarding the mechanisms of polysaccharide export.
Collapse
Affiliation(s)
- Biao Yuan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46 Xinkang Road, Ya’an, Sichuan 625014, China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46 Xinkang Road, Ya’an, Sichuan 625014, China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan 611130, China
| |
Collapse
|
37
|
Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 2012; 195:417-28. [PMID: 23161026 DOI: 10.1128/jb.01789-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.
Collapse
|
38
|
Bellows LE, Koestler BJ, Karaba SM, Waters CM, Lathem WW. Hfq-dependent, co-ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen Yersinia pestis. Mol Microbiol 2012; 86:661-74. [PMID: 22924957 DOI: 10.1111/mmi.12011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 01/14/2023]
Abstract
Yersinia pestis, the cause of the disease plague, forms biofilms to enhance flea-to-mammal transmission. Biofilm formation is dependent on exopolysaccharide synthesis and is controlled by the intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP), but the mechanisms by which Y. pestis regulates c-di-GMP synthesis and turnover are not fully understood. Here we show that the small RNA chaperone Hfq contributes to the regulation of c-di-GMP levels and biofilm formation by modulating the abundance of both the c-di-GMP phosphodiesterase HmsP and the diguanylate cyclase HmsT. To do so, Hfq co-ordinately promotes hmsP mRNA accumulation while simultaneously decreasing the stability of the hmsT transcript. Hfq-dependent regulation of HmsP occurs at the transcriptional level while the regulation of HmsT is post-transcriptional and is localized to the 5' untranslated region/proximal coding sequence of the hmsT transcript. Decoupling HmsP from Hfq-based regulation is sufficient to overcome the effects of Δhfq on c-di-GMP and biofilm formation. We propose that Y. pestis utilizes Hfq to link c-di-GMP levels to environmental conditions and that the disregulation of c-di-GMP turnover in the absence of Hfq may contribute to the severe attenuation of Y. pestis lacking this RNA chaperone in animal models of plague.
Collapse
Affiliation(s)
- Lauren E Bellows
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | | | |
Collapse
|
39
|
The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 2012; 80:3880-91. [PMID: 22927049 DOI: 10.1128/iai.00086-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD(50)) relative to the Yfe(+) Feo(+) parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified.
Collapse
|
40
|
Poly-N-acetylglucosamine expression by wild-type Yersinia pestis is maximal at mammalian, not flea, temperatures. mBio 2012; 3:e00217-12. [PMID: 22893384 PMCID: PMC3419525 DOI: 10.1128/mbio.00217-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous bacteria, including Yersinia pestis, express the poly-N-acetylglucosamine (PNAG) surface carbohydrate, a major component of biofilms often associated with a specific appearance of colonies on Congo red agar. Biofilm formation and PNAG synthesis by Y. pestis have been reported to be maximal at 21 to 28°C or “flea temperatures,” facilitating the regurgitation of Y. pestis into a mammalian host during feeding, but production is diminished at 37°C and thus presumed to be decreased during mammalian infection. Most studies of PNAG expression and biofilm formation by Y. pestis have used a low-virulence derivative of strain KIM, designated KIM6+, that lacks the pCD1 virulence plasmid, and an isogenic mutant without the pigmentation locus, which contains the hemin storage genes that encode PNAG biosynthetic proteins. Using confocal microscopy, fluorescence-activated cell sorter analysis and growth on Congo red agar, we confirmed prior findings regarding PNAG production with the KIM6+ strain. However, we found that fully virulent wild-type (WT) strains KIM and CO92 had maximal PNAG expression at 37°C, with lower PNAG production at 28°C both in broth medium and on Congo red agar plates. Notably, the typical dark colony morphology appearing on Congo red agar was maintained at 28°C, indicating that this phenotype is not associated with PNAG expression in WT Y. pestis. Extracts of WT sylvatic Y. pestis strains from the Russian Federation confirmed the maximal expression of PNAG at 37°C. PNAG production by WT Y. pestis is maximal at mammalian and not insect vector temperatures, suggesting that this factor may have a role during mammalian infection. Yersinia pestis transitions from low-temperature residence and replication in insect vectors to higher-temperature replication in mammalian hosts. Prior findings based primarily on an avirulent derivative of WT (wild-type) KIM, named KIM6+, showed that biofilm formation associated with synthesis of poly-N-acetylglucosamine (PNAG) is maximal at 21 to 28°C and decreased at 37°C. Biofilm formation was purported to facilitate the transmission of Y. pestis from fleas to mammals while having little importance in mammalian infection. Here we found that for WT strains KIM and CO92, maximal PNAG production occurs at 37°C, indicating that temperature regulation of PNAG production in WT Y. pestis is not mimicked by strain KIM6+. Additionally, we found that Congo red binding does not always correlate with PNAG production, despite its widespread use as an indicator of biofilm production. Taken together, the findings show that a role for PNAG in WT Y. pestis infection should not be disregarded and warrants further study.
Collapse
|
41
|
Yersinia--flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol 2012; 15:239-46. [PMID: 22406208 DOI: 10.1016/j.mib.2012.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023]
Abstract
Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food-borne and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment.
Collapse
|
42
|
The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J Bacteriol 2012; 194:2020-6. [PMID: 22328676 DOI: 10.1128/jb.06243-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis, which causes bubonic plague, forms biofilms in fleas, its insect vectors, as a means to enhance transmission. Biofilm development is positively regulated by hmsT, encoding a diguanylate cyclase that synthesizes the bacterial second messenger cyclic-di-GMP. Biofilm development is negatively regulated by the Rcs phosphorelay signal transduction system. In this study, we show that Rcs-negative regulation is accomplished by repressing transcription of hmsT.
Collapse
|
43
|
A proteome reference map and virulence factors analysis of Yersinia pestis 91001. J Proteomics 2012; 75:894-907. [DOI: 10.1016/j.jprot.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023]
|
44
|
Schotthoefer AM, Bearden SW, Holmes JL, Vetter SM, Montenieri JA, Williams SK, Graham CB, Woods ME, Eisen RJ, Gage KL. Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period. Parasit Vectors 2011; 4:191. [PMID: 21958555 PMCID: PMC3195756 DOI: 10.1186/1756-3305-4-191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/29/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Traditionally, efficient flea-borne transmission of Yersinia pestis, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of Xenopsylla cheopis with a wild type strain of Y. pestis and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using Y. pestis-specific antigen or antibody detection assays on mouse tissues. RESULTS Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted Y. pestis infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures. CONCLUSIONS Our results suggest that temperature does not significantly effect the per flea efficiency of Y. pestis transmission by X. cheopis, but that temperature is likely to influence the dynamics of Y. pestis flea-borne transmission, perhaps by affecting persistence of the bacteria in the flea gut or by influencing flea survival. Whether Y. pestis biofilm production is important for transmission at different temperatures remains unresolved, although our results support the hypothesis that blockage is not necessary for efficient transmission.
Collapse
Affiliation(s)
- Anna M Schotthoefer
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI 54449, USA
| | - Scott W Bearden
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Jennifer L Holmes
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Sara M Vetter
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Minnesota Department of Health, P. O. Box 64975, St Paul, MN 55164, USA
| | - John A Montenieri
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Shanna K Williams
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Michael E Woods
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Lawrence Livermore National Laboratory, 7000 East Avenue. L-174, Livermore, CA 94550, USA
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Kenneth L Gage
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
45
|
Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2011. [DOI: 10.21055/0370-1069-2011-4(110)-5-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 2011; 6:e19267. [PMID: 21559445 PMCID: PMC3084805 DOI: 10.1371/journal.pone.0019267] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/25/2011] [Indexed: 11/25/2022] Open
Abstract
Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.
Collapse
Affiliation(s)
- Yi-Cheng Sun
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kaman WE, Hawkey S, van der Kleij D, Broekhuijsen MP, Silman NJ, Bikker FJ. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague. Folia Microbiol (Praha) 2011; 56:95-102. [PMID: 21468758 PMCID: PMC3109262 DOI: 10.1007/s12223-011-0027-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/04/2011] [Indexed: 01/15/2023]
Abstract
We determined the role of Yersinia pestis virulence markers in an animal model of pneumonic plague. Eleven strains of Y. pestis were characterized using PCR assays to detect the presence of known virulence genes both encoded by the three plasmids as well as chromosomal markers. The virulence of all Y. pestis strains was compared in a mouse model for pneumonic plague. The presence of all known virulence genes correlated completely with virulence in the Balb/c mouse model. Strains which lacked HmsF initially exhibited visible signs of disease whereas all other strains (except wild-type strains) did not exhibit any disease signs. Forty-eight hours post-infection, mice which had received HmsF– strains regained body mass and were able to control infection; those infected with strains possessing a full complement of virulence genes suffered from fatal disease. The bacterial loads observed in the lung and other tissues reflected the observed clinical signs as did the cytokine changes measured in these animals. We can conclude that all known virulence genes are required for the establishment of pneumonic plague in mammalian animal models, the role of HmsF being of particular importance in disease progression.
Collapse
Affiliation(s)
- W E Kaman
- TNO Defence, Security and Safety, 2280 AA, Rijswijk, the Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 2010; 79:533-51. [PMID: 21219468 DOI: 10.1111/j.1365-2958.2010.07470.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a signalling molecule that governs the transition between planktonic and biofilm states. Previously, we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-β-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-β-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signalling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signalling network likely resulting from the different disease cycles of these human pathogens.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miller MC, Fetherston JD, Pickett CL, Bobrov AG, Weaver RH, DeMoll E, Perry RD. Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis. MICROBIOLOGY-SGM 2010; 156:2226-2238. [PMID: 20413552 PMCID: PMC3068685 DOI: 10.1099/mic.0.037945-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis of the siderophore yersiniabactin (Ybt) proceeds by a mixed nonribosomal peptide synthetase/polyketide synthase mechanism. Transcription of ybt genes encoding biosynthetic and transport functions is repressed under excess iron conditions by Fur, but is also activated by Ybt via the transcriptional regulator YbtA. While mutations in most biosynthetic genes and ybtA negate transcription activation from the regulated promoters, three biosynthetic mutations do not reduce this transcriptional activation. Here we show that two of these mutants, one lacking the putative type II thioesterase (TE) YbtT and the other with a mutation in the TE domain of HMWP1, produce reduced levels of authentic Ybt that are capable of signalling activity. Alanine substitutions in two residues of YbtT that are essential for catalytic activity in other type II TEs reduced the ability of Yersinia pestis to grow under iron-chelated conditions. The third mutant, which lacks the salicylate synthase YbtS, did not make authentic Ybt but did produce a signalling molecule. Finally, a Δpgm strain of Y. pestis, which lacks essential Ybt biosynthetic genes, also produced a signalling molecule that can activate transcription of ybt genes. The non-Ybt signal molecules from these two mutants are likely separate compounds. While these compounds are not biologically relevant to normal Ybt regulation, a comparison of the structures of Ybt and other signalling molecules will help in determining the chemical structures recognized as a Ybt signal.
Collapse
Affiliation(s)
- M Clarke Miller
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Carol L Pickett
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Robert H Weaver
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| | - Edward DeMoll
- Department of Biology, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St. MS-415 Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
50
|
Wortham BW, Oliveira MA, Fetherston JD, Perry RD. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 2010; 12:2034-47. [PMID: 20406298 DOI: 10.1111/j.1462-2920.2010.02219.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously showed that mutations in the genes encoding the two main biosynthetic enzymes responsible for polyamine production, arginine decarboxylase (SpeA) and ornithine decarboxylase (SpeC) cause a loss of biofilm formation in Yersinia pestis. In Y. pestis the development of a biofilm is dependent on 6 Hms (hemin storage) proteins (HmsH, F, R, S, T and P) grouped into 3 operons; hmsHFRS, hmsT and hmsP. In this article we show that polyamines are necessary to maintain the levels of key Hms proteins. In the absence of polyamines there is an approximately 93%, approximately 43% and approximately 90% reduction in protein levels of HmsR, HmsS and HmsT respectively. Overexpression of hmsR and hmsT from plasmids alone can restore biofilm formation to a SpeA(-)SpeC(-) mutant. Addition of exogenous putrescine also restores normal levels of HmsR, HmsS, HmsT and biofilm production. Analyses using transcriptional reporters and quantitative RT-PCR indicate that the initiation of transcription and mRNA stability are not reduced by polyamine deficiency. Instead, translational reporters indicate that polyamines function at least in part by modulating the translation of HmsR and HmsT. Although construction of a consensus Shine-Dalgarno sequence upstream of hmsT modestly reduced the stimulation of translation by putrescine, additional mechanisms likely contribute to the polyamine-dependent expression of HmsT. Finally, we have shown that polyamines play a role in bubonic plague.
Collapse
Affiliation(s)
- Brian W Wortham
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|