1
|
Abstract
To date, only three bacteriophages of leptospires-leptophages-are known. Nonetheless, numerous prophages have been found in the genus, especially in the genomes of pathogenic species. Thus, some laboratories attempt to isolate leptophage particles from environmental samples or following mitomycin C induction of bacterial cultures. Here, we propose multiple procedures to isolate, purify, and characterize bacteriophages, based on protocols used for LE3 and LE4 characterization.
Collapse
|
2
|
Abstract
This chapter covers the progress made in the Leptospira field since the application of mutagenesis techniques and how they have allowed the study of virulence factors and, more generally, the biology of Leptospira. The last decade has seen advances in our ability to perform molecular genetic analysis of Leptospira. Major achievements include the generation of large collections of mutant strains and the construction of replicative plasmids, enabling complementation of mutations. However, there are still no practical tools for routine genetic manipulation of pathogenic Leptospira strains, slowing down advances in pathogenesis research. This review summarizes the status of the molecular genetic toolbox for Leptospira species and highlights new challenges in the nascent field of Leptospira genetics.
Collapse
Affiliation(s)
- Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, 28 Rue Du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
3
|
Characterization of LE3 and LE4, the only lytic phages known to infect the spirochete Leptospira. Sci Rep 2018; 8:11781. [PMID: 30082683 PMCID: PMC6078989 DOI: 10.1038/s41598-018-29983-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Leptospira is a phylogenetically unique group of bacteria, and includes the causative agents of leptospirosis, the most globally prevalent zoonosis. Bacteriophages in Leptospira are largely unexplored. To date, a genomic sequence is available for only one temperate leptophage called LE1. Here, we sequenced and analysed the first genomes of the lytic phages LE3 and LE4 that can infect the saprophyte Leptospira biflexa using the lipopolysaccharide O-antigen as receptor. Bioinformatics analysis showed that the 48-kb LE3 and LE4 genomes are similar and contain 62% genes whose function cannot be predicted. Mass spectrometry led to the identification of 21 and 23 phage proteins in LE3 and LE4, respectively. However we did not identify significant similarities with other phage genomes. A search for prophages close to LE4 in the Leptospira genomes allowed for the identification of a related plasmid in L. interrogans and a prophage-like region in the draft genome of a clinical isolate of L. mayottensis. Long-read whole genome sequencing of the L. mayottensis revealed that the genome contained a LE4 phage-like circular plasmid. Further isolation and genomic comparison of leptophages should reveal their role in the genetic evolution of Leptospira.
Collapse
|
4
|
Jackson KM, Schwartz C, Wachter J, Rosa PA, Stewart PE. A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol Microbiol 2018; 108:77-89. [PMID: 29363884 DOI: 10.1111/mmi.13917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
Leptospires and other members of the evolutionarily ancient phylum of Spirochaetes are bacteria often characterized by long, highly motile spiral- or wave-shaped cells. Morphology and motility are critical factors in spirochete physiology, contributing to the ability of these bacteria to successfully colonize diverse environments. However, the mechanisms conferring the helical structure of Leptospira spp. have yet to be fully elucidated. We have identified five Leptospira biflexa bactofilin proteins, a recently characterized protein family with cytoskeletal properties. These five bactofilins are conserved in all species of the Leptospiraceae, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility and a decreased ability to tolerate cell wall stressors. The change in the helical spacing, combined with the motility and cell wall integrity defects, showcases the intimate relationship and coevolution between shape and motility in these spirochetes.
Collapse
Affiliation(s)
- Katrina M Jackson
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Cindi Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Philip E Stewart
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 2016; 101:625-44. [PMID: 27146086 DOI: 10.1111/mmi.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Matthew R Olm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachael E Rush
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
6
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
7
|
Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, Zhang Y, Liu B, Guo X, Zhao G, Qin J. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics 2015; 16:90. [PMID: 25887950 PMCID: PMC4338851 DOI: 10.1186/s12864-015-1321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Results Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans–Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Conclusions Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yunyi Zhang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Boyu Liu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Abstract
Recent advances in molecular genetics, such as the ability to construct defined mutants, have allowed the study of virulence factors and more generally the biology in Leptospira. However, pathogenic leptospires remain much less easily transformable than the saprophyte L. biflexa and further development and improvement of genetic tools are required. Here, we review tools that have been used to genetically manipulate Leptospira. We also describe the major advances achieved in both genomics and postgenomics technologies, including transcriptomics and proteomics.
Collapse
|
9
|
Zhu WN, Huang LL, Zeng LB, Zhuang XR, Chen CY, Wang YZ, Qin JH, Zhu YZ, Guo XK. Isolation and characterization of two novel plasmids from pathogenic Leptospira interrogans serogroup Canicola Serovar Canicola strain Gui44. PLoS Negl Trop Dis 2014; 8:e3103. [PMID: 25144555 PMCID: PMC4140679 DOI: 10.1371/journal.pntd.0003103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/01/2014] [Indexed: 12/01/2022] Open
Abstract
Background Previous genomic analysis of pathogenic Leptospira has identified two circular chromosomes but no plasmid. This study aims to investigate potential extrachromosomal elements of L.interrogans serovar Canicola strain Gui44. Methodology Two novel plasmids, pGui1 and pGui2, were isolated from the pathogenic strain Gui44, using a modified alkaline lysis method. Southern blotting was performed to determine the presence and size of them. Then, 454 and Hiseq sequencing were applied to obtain and analyze the complete sequences of the two plasmids. Furthermore, real-time quantitative PCR and next-generation sequencing were used to compare relative copy numbers of the two plasmids with that of the chromosomes. Finally, after serial passages in vitro for more than 2 years, the strain Gui44 was subsequently re-sequenced to estimate stability of the two plasmids. Principal Findings The larger plasmid, pGui1, 74,981 base pairs (bp) in length with GC content of 34.63%, possesses 62 open reading frames (ORFs). The smaller plasmid, pGui2, is 66,851 bp in length with GC content of 33.33%, and contains 63 ORFs. The replication initiation proteins encoded by pGui1 and pGui2 demonstrate significant sequence similarity with LA1839 (86% and 88%), a well-known replication protein in another pathogenic L.interrogans serovar Lai strain Lai, suggesting the ability for autonomous plasmid replication. Quantitative PCR and next-generation sequencing confirms a single copy of both plasmids and their stable presence in the strain Gui44 with in vitro serial passages after more than 2 years. Interestingly, the two plasmids both contain a significant number of novel genes (35 in pGui1 and 52 in pGui2). Conclusions This report confirms the presence of two separate circular plasmids in serovar Canicola strain Gui44 and provides a new understanding of genomic organization, adaptation, evolution and pathogenesis of Leptospira, which will aid in the development of in vivo genetic manipulation systems in pathogenic Leptospira species. Leptospira species are the causative agent of leptospirosis, one of the most common animal to human transmitted diseases. Previous genomic analysis of L.interrogans serovar Lai and Copenhageni has identified the presence of large (4.33 mega base) and small (350 kilo base) circular chromosomes without evidence of any plasmids. Detailed understanding of Leptospira and its pathogenicity was delayed by the lack of available genetic tools. In this study we confirm the existence of two novel plasmids in L.interrogans serovar Canicola strain Gui44, an epidemic strain in China. Some novel genes identified in the two plasmids may play important roles in the characterization of the strain. The two plasmids will provide useful information in understanding the diversity of Leptospira genome and markedly improve our understanding of the evolution and pathogenesis of L.interrogans. In particular, it will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
Collapse
Affiliation(s)
- Wei-Nan Zhu
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Huang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Soochow University Affiliated Children's Hospital, Soochow, China
| | - Ling-Bing Zeng
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Ran Zhuang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Yan Chen
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Zhuo Wang
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Hong Qin
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Zhang Zhu
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YZZ); (XKG)
| | - Xiao-Kui Guo
- Department of Immunology and Microbiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YZZ); (XKG)
| |
Collapse
|
10
|
Lehmann JS, Matthias MA, Vinetz JM, Fouts DE. Leptospiral pathogenomics. Pathogens 2014; 3:280-308. [PMID: 25437801 PMCID: PMC4243447 DOI: 10.3390/pathogens3020280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022] Open
Abstract
Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
Collapse
Affiliation(s)
- Jason S Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Michael A Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
11
|
Structural and functional characterization of an orphan ATP-binding cassette ATPase involved in manganese utilization and tolerance in Leptospira spp. J Bacteriol 2013; 195:5583-91. [PMID: 24123817 DOI: 10.1128/jb.00915-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogenic Leptospira species are the etiological agents of the widespread zoonotic disease leptospirosis. Most organisms, including Leptospira, require divalent cations for proper growth, but because of their high reactivity, these metals are toxic at high concentrations. Therefore, bacteria have acquired strategies to maintain metal homeostasis, such as metal import and efflux. By screening Leptospira biflexa transposon mutants for their ability to use Mn(2+), we have identified a gene encoding a putative orphan ATP-binding cassette (ABC) ATPase of unknown function. Inactivation of this gene in both L. biflexa and L. interrogans strains led to mutants unable to grow in medium in which iron was replaced by Mn(2+), suggesting an involvement of this ABC ATPase in divalent cation uptake. A mutation in this ATPase-coding gene increased susceptibility to Mn(2+) toxicity. Recombinant ABC ATPase of the pathogen L. interrogans exhibited Mg(2+)-dependent ATPase activity involving a P-loop motif. The structure of this ATPase was solved from a crystal containing two monomers in the asymmetric unit. Each monomer adopted a canonical two-subdomain organization of the ABC ATPase fold with an α/β subdomain containing the Walker motifs and an α subdomain containing the ABC signature motif (LSSGE). The two monomers were arranged in a head-to-tail orientation, forming a V-shaped particle with all the conserved ABC motifs at the dimer interface, similar to functional ABC ATPases. These results provide the first structural and functional characterization of a leptospiral ABC ATPase.
Collapse
|
12
|
Stella EJ, Franceschelli JJ, Tasselli SE, Morbidoni HR. Analysis of novel mycobacteriophages indicates the existence of different strategies for phage inheritance in mycobacteria. PLoS One 2013; 8:e56384. [PMID: 23468864 PMCID: PMC3585329 DOI: 10.1371/journal.pone.0056384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriophages have been essential in the development of mycobacterial genetics through their use in the construction of tools for genetic manipulation. Due to the simplicity of their isolation and variety of exploitable molecular features, we searched for and isolated 18 novel mycobacteriophages from environmental samples collected from several geographic locations. Characterization of these phages did not differ from most of the previously described ones in the predominant physical features (virion size in the 100–400 nm, genome size in the 50–70 kbp, morphological features compatible with those corresponding to the Siphoviridae family), however novel characteristics for propagation were noticed. Although all the mycobacteriophages propagated at 30°C, eight of them failed to propagate at 37°C. Since some of our phages yielded pinpoint plaques, we improved plaque detection by including sub-inhibitory concentrations of isoniazid or ampicillin-sulbactam in the culture medium. Thus, searches for novel mycobacteriophages at low temperature and in the presence of these drugs would allow for the isolation of novel members that would otherwise not be detected. Importantly, while eight phages lysogenized Mycobacterium smegmatis, four of them were also capable of lysogenizing Mycobacterium tuberculosis. Analysis of the complete genome sequence obtained for twelve mycobacteriophages (the remaining six rendered partial genomic sequences) allowed for the identification of a new singleton. Surprisingly, sequence analysis revealed the presence of parA or parA/parB genes in 7/18 phages including four that behaved as temperate in M. tuberculosis. In summary, we report here the isolation and preliminary characterization of mycobacteriophages that bring new information to the field.
Collapse
Affiliation(s)
- Emma J. Stella
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J. Franceschelli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina E. Tasselli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R. Morbidoni
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
13
|
Ricaldi JN, Fouts DE, Selengut JD, Harkins DM, Patra KP, Moreno A, Lehmann JS, Purushe J, Sanka R, Torres M, Webster NJ, Vinetz JM, Matthias MA. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis 2012; 6:e1853. [PMID: 23145189 PMCID: PMC3493377 DOI: 10.1371/journal.pntd.0001853] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/25/2012] [Indexed: 12/25/2022] Open
Abstract
The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835) provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae) that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT). Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for its infectiousness and its unique antigenic characteristics. Leptospirosis is one of the most common diseases transmitted by animals worldwide and is important because it is a major cause of febrile illness in tropical areas and also occurs in epidemic form associated with natural disasters and flooding. The mechanisms through which Leptospira cause disease are not well understood. In this study we have sequenced the genomes of two strains of Leptospira licerasiae isolated from a person and a marsupial in the Peruvian Amazon. These strains were thought to be able to cause only mild disease in humans. We have compared these genomes with other leptospires that can cause severe illness and death and another leptospire that does not infect humans or animals. These comparisons have allowed us to demonstrate similarities among the disease-causing Leptospira. Studying genes that are common among infectious strains will allow us to identify genetic factors necessary for infecting, causing disease and determining the severity of disease. We have also found that L. licerasiae seems to be able to uptake and incorporate genetic information from other bacteria found in the environment. This information will allow us to begin to understand how Leptospira species have evolved.
Collapse
Affiliation(s)
- Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jeremy D. Selengut
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Derek M. Harkins
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kailash P. Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Angelo Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Jason S. Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Janaki Purushe
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ravi Sanka
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael Torres
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nicholas J. Webster
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (JMV); (MAM)
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail: (JMV); (MAM)
| |
Collapse
|
14
|
Zhang L, Zhang C, Ojcius DM, Sun D, Zhao J, Lin X, Li L, Li L, Yan J. The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 2012; 83:1006-23. [DOI: 10.1111/j.1365-2958.2012.07985.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Figueira CP, Croda J, Choy HA, Haake DA, Reis MG, Ko AI, Picardeau M. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin. BMC Microbiol 2011; 11:129. [PMID: 21658265 PMCID: PMC3133549 DOI: 10.1186/1471-2180-11-129] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. Results The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. Conclusions This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.
Collapse
|
16
|
Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 2011; 193:2726-34. [PMID: 21441508 DOI: 10.1128/jb.00787-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TcdA and TcdB exotoxins are the main virulence factors of Clostridium difficile, one of the most deadly nosocomial pathogens. Recent data suggest that prophages can influence the regulation of toxin expression. Here we present the characterization of ϕCD38-2, a pac-type temperate Siphoviridae phage that stimulates toxin expression when introduced as a prophage into C. difficile. Host range analysis showed that ϕCD38-2 was able to infect 99/207 isolates of C. difficile representing 11 different PCR ribotypes. Of 89 isolates corresponding to the NAP1/027 hypervirulent strain, which recently caused several outbreaks in North America and Europe, 79 (89%) were sensitive to ϕCD38-2. The complete double-stranded DNA (dsDNA) genome was determined, and a putative function could be assigned to 24 of the 55 open reading frames. No toxins or virulence factors could be identified based on bioinformatics analyses. Our data also suggest that ϕCD38-2 replicates as a circular plasmid in C. difficile lysogens. Upon introduction of ϕCD38-2 into a NAP1/027 representative isolate, up to 1.6- and 2.1-fold more TcdA and TcdB, respectively, were detected by immunodot blotting in culture supernatants of the lysogen than in the wild-type strain. In addition, real-time quantitative reverse transcriptase PCR (qRT-PCR) analyses showed that the mRNA levels of all five pathogenicity locus (PaLoc) genes were higher in the CD274 lysogen. Our study provides the first genomic sequence of a new pac-type Siphoviridae phage family member infecting C. difficile and brings further evidence supporting the role of prophages in toxin production in this important nosocomial pathogen.
Collapse
|
17
|
Aviat F, Slamti L, Cerqueira GM, Lourdault K, Picardeau M. Expanding the genetic toolbox for Leptospira species by generation of fluorescent bacteria. Appl Environ Microbiol 2010; 76:8135-42. [PMID: 21037299 PMCID: PMC3008249 DOI: 10.1128/aem.02199-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/19/2010] [Indexed: 11/20/2022] Open
Abstract
Our knowledge of the genetics and molecular basis of the pathogenesis associated with Leptospira, in comparison to those of other bacterial species, is very limited. An improved understanding of pathogenic mechanisms requires reliable genetic tools for functional genetic analysis. Here, we report the expression of gfp and mRFP1 genes under the control of constitutive spirochetal promoters in both saprophytic and pathogenic Leptospira strains. We were able to reliably measure the fluorescence of Leptospira by fluorescence microscopy and a fluorometric microplate reader-based assay. We showed that the expression of the gfp gene had no significant effects on growth in vivo and pathogenicity in L. interrogans. We constructed an expression vector for L. biflexa that contains the lacI repressor, an inducible lac promoter, and gfp as the reporter, demonstrating that the lac system is functional in Leptospira. Green fluorescent protein (GFP) expression was induced by the addition of isopropyl-β-d-thiogalactopyranoside (IPTG) in L. biflexa transformants harboring the expression vector. Finally, we showed that GFP can be used as a reporter to assess promoter activity in different environmental conditions. These results may facilitate further advances for studying the genetics of Leptospira spp.
Collapse
Affiliation(s)
- Florence Aviat
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France, Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Leyla Slamti
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France, Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Gustavo M. Cerqueira
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France, Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Kristel Lourdault
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France, Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Mathieu Picardeau
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France, Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Ko AI, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 2009; 7:736-47. [PMID: 19756012 PMCID: PMC3384523 DOI: 10.1038/nrmicro2208] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptospirosis is a zoonotic disease that has emerged as an important cause of morbidity and mortality among impoverished populations. One hundred years after the discovery of the causative spirochaetal agent, little is understood about Leptospira spp. pathogenesis, which in turn has hampered the development of new intervention strategies to address this neglected disease. However, the recent availability of complete genome sequences for Leptospira spp. and the discovery of genetic tools for their transformation have led to important insights into the biology of these pathogens and their pathogenesis. We discuss the life cycle of the bacterium, the recent advances in our understanding and the implications for the future prevention of leptospirosis.
Collapse
Affiliation(s)
- Albert I. Ko
- Division of Infectious Disease, Weill Medical College of Cornell University, New York, USA
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Laboratoire de Recherche en Bactériologie, Nouméa, New-Caledonia
| | | |
Collapse
|
19
|
Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML. The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 2009; 388:48-70. [PMID: 19285085 DOI: 10.1016/j.jmb.2009.03.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/01/2009] [Accepted: 03/02/2009] [Indexed: 11/18/2022]
Abstract
We report the genome sequence of Bacillus subtilis phage SPO1. The unique genome sequence is 132,562 bp long, and DNA packaged in the virion (the chromosome) has a 13,185-bp terminal redundancy, giving a total of 145,747 bp. We predict 204 protein-coding genes and 5 tRNA genes, and we correlate these findings with the extensive body of investigations of SPO1, including studies of the functions of the 61 previously defined genes and studies of the virion structure. Sixty-nine percent of the encoded proteins show no similarity to any previously known protein. We identify 107 probable transcription promoters; most are members of the promoter classes identified in earlier studies, but we also see a new class that has the same sequence as the host sigma K promoters. We find three genes encoding potential new transcription factors, one of which is a distant homologue of the host sigma factor K. We also identify 75 probable transcription terminator structures. Promoters and terminators are generally located between genes and together with earlier data give what appears to be a rather complete picture of how phage transcription is regulated. There are complete genome sequences available for five additional phages of Gram-positive hosts that are similar to SPO1 in genome size and in composition and organization of genes. Comparative analysis of SPO1 in the context of these other phages yields insights about SPO1 and the other phages that would not be apparent from the analysis of any one phage alone. These include assigning identities as well as probable functions for several specific genes and inferring evolutionary events in the phages' histories. The comparative analysis also allows us to put SPO1 into a phylogenetic context. We see a pattern similar to what has been noted in phage T4 and its relatives, in which there is minimal successful horizontal exchange of genes among a "core" set of genes that includes most of the virion structural genes and some genes of DNA metabolism, but there is extensive horizontal transfer of genes over the remainder of the genome. There is a correlation between genes in rapid evolutionary flux through these genomes and genes that are small.
Collapse
Affiliation(s)
- Charles R Stewart
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The genus Leptospira belongs to the order Spirochaetales and is composed of both saprophytic and pathogenic members, such as Leptospira biflexa and L. interrogans, respectively. A major factor contributing to our ignorance of spirochetal biology has been the lack of methods available for genetic analysis of these organisms. In recent years, an E. coli-L. biflexa shuttle vector has been constructed and a system for targeted mutagenesis and random transposon mutagenesis of the saprophyte L. biflexa has been developed. These studies enable the use of L. biflexa as a model bacterium among spirochetes.
Collapse
Affiliation(s)
- Hélène Louvel
- Unité de Biologie des Spirochètes Institut Pasteur, Paris, France
| | | |
Collapse
|
21
|
Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai. Infect Immun 2008; 76:2411-9. [PMID: 18362131 DOI: 10.1128/iai.01730-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.
Collapse
|
22
|
Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, Creno S, Kuczek ES, Bommezzadri S, Davis JC, McGrath A, Johnson MJ, Boursaux-Eude C, Seemann T, Rouy Z, Coppel RL, Rood JI, Lajus A, Davies JK, Médigue C, Adler B. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 2008; 3:e1607. [PMID: 18270594 PMCID: PMC2229662 DOI: 10.1371/journal.pone.0001607] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022] Open
Abstract
Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water.
Collapse
Affiliation(s)
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Richard L. Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center (NADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Ames, Iowa, United States of America
| | - Nora Zidane
- Plate-forme Génomique, Institut Pasteur, Paris, France
| | - Peter J. Wilson
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland, Australia
| | - Sophie Creno
- Plate-forme Génomique, Institut Pasteur, Paris, France
| | - Elizabeth S. Kuczek
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland, Australia
| | | | - John C. Davis
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland, Australia
| | - Annette McGrath
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J. Johnson
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland, Australia
| | | | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Zoé Rouy
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Laboratoire de Génomique Comparative, Institut de Génomique, Genoscope, Evry, France
| | - Ross L. Coppel
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Julian I. Rood
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Aurélie Lajus
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Laboratoire de Génomique Comparative, Institut de Génomique, Genoscope, Evry, France
| | - John K. Davies
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Claudine Médigue
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Laboratoire de Génomique Comparative, Institut de Génomique, Genoscope, Evry, France
- Centre National de la Recherche Scientifique (CNRS) UMR8030, Génomique Métabolique, Evry, France
| | - Ben Adler
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Conjugative transfer between Escherichia coli and Leptospira spp. as a new genetic tool. Appl Environ Microbiol 2007; 74:319-22. [PMID: 17993560 DOI: 10.1128/aem.02172-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of leptospiral pathogenesis, which remains poorly understood, depends on reliable genetic tools for functional analysis of genes in pathogenic strains. In this study, we report the first demonstration of conjugation between Escherichia coli and Leptospira spp. by using RP4 derivative conjugative plasmids. The DNA transfer described here was due to authentic conjugation, as shown by the requirement for cell-to-cell contact and the resistance of DNA transfers to the addition of DNase I. Transposition via conjugation of a plasmid delivering Himar1 yielded frequencies ranging from 1 x 10(-6) to 8.5 x 10(-8) transconjugants/recipient cell in the saprophyte L. biflexa and the pathogen L. interrogans, respectively. Analysis of mutants indicated that transposition occurs randomly, and at single sites in the genome of these strains, allowing the utilization of this system to generate libraries of transposon mutants.
Collapse
|
24
|
Goh S, Ong PF, Song KP, Riley TV, Chang BJ. The complete genome sequence of Clostridium difficile phage phiC2 and comparisons to phiCD119 and inducible prophages of CD630. MICROBIOLOGY-SGM 2007; 153:676-685. [PMID: 17322187 DOI: 10.1099/mic.0.2006/002436-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complete genomic sequence of a previously characterized temperate phage of Clostridium difficile, C2, is reported. The genome is 56 538 bp and organized into 84 putative ORFs in six functional modules. The head and tail structural proteins showed similarities to that of C. difficile phage CD119 and Streptococcus pneumoniae phage EJ-1, respectively. Homologues of structural and replication proteins were found in prophages 1 and 2 of the sequenced C. difficile CD630 genome. A putative holin appears unique to the C. difficile phages and was functional when expressed in Escherichia coli. Nucleotide sequence comparisons of C2 to CD119 and the CD630 prophage sequences showed relatedness between C2 and the prophages, but less so to CD119. C2 integrated into a gene encoding a putative transcriptional regulator of the gntR family. C2, CD119 and CD630 prophage 1 genomes had a Cdu1-attP-integrase arrangement, suggesting that the pathogenicity locus (PaLoc) of C. difficile, flanked by cdu1, has phage origins. The attP sequences of C2, CD119 and CD630 prophages were dissimilar. C2-related sequences were found in 84 % of 37 clinical C. difficile isolates and typed reference strains.
Collapse
Affiliation(s)
- Shan Goh
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Peh Fern Ong
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Keang Peng Song
- National University of Singapore, Yong Loo Lin School of Medicine, Department of Microbiology, 5 Science Drive 2, #05-03, 117597, Singapore
| | - Thomas V Riley
- Division of Microbiology and Infectious Diseases, The Western Australian Centre for Pathology and Medical Research, Nedlands, WA 6009, Australia
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| | - Barbara J Chang
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
25
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
26
|
Bourhy P, Salaün L, Lajus A, Médigue C, Boursaux-Eude C, Picardeau M. A genomic island of the pathogen Leptospira interrogans serovar Lai can excise from its chromosome. Infect Immun 2006; 75:677-83. [PMID: 17118975 PMCID: PMC1828511 DOI: 10.1128/iai.01067-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An examination of the two Leptospira interrogans genomes sequenced so far reveals few genetic differences, including an extra DNA region, 54 kb in length, in L. interrogans serovar Lai. This locus contains 103 predicted coding sequences that are absent from the genome of L. interrogans serovar Copenhageni, of which only 20% had significant BLASTP hits in GenBank. By analyzing the L. interrogans serovar Lai genome by pulsed-field gel electrophoresis, we also found that this 54-kb DNA fragment exists as a circular plasmid. This was confirmed by amplification of a DNA fragment corresponding to that of the predicted fragment if this region excised from the chromosome and its left and right ends joined together. In addition, cloning of the putative rep gene of this DNA region was responsible for autonomous replication in Leptospira spp., therefore generating a new Escherichia coli-Leptospira sp. shuttle vector. Taken together, our results show that this genomic island can excise from the chromosome and form a replicative plasmid. Analysis of the distribution of this genomic island revealed that highly related sequences exist in other L. interrogans virulent strains. This genomic island, containing a high proportion of novel genes, may have an important role in spreading genes, including virulence factors, among bacterial populations.
Collapse
Affiliation(s)
- Pascale Bourhy
- Laboratoire des Spirochètes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
27
|
Louvel H, Bommezzadri S, Zidane N, Boursaux-Eude C, Creno S, Magnier A, Rouy Z, Médigue C, Saint Girons I, Bouchier C, Picardeau M. Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 2006; 188:7893-904. [PMID: 16980464 PMCID: PMC1636298 DOI: 10.1128/jb.00711-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spirochetes of the Leptospira genus contain saprophytic and pathogenic members, the latter being responsible for leptospirosis. Despite the recent sequencing of the genome of the pathogen L. interrogans, the slow growth of these bacteria, their virulence in humans, and a lack of genetic tools make it difficult to work with these pathogens. In contrast, the development of numerous genetic tools for the saprophyte L. biflexa enables its use as a model bacterium. Leptospira spp. require iron for growth. In this work, we show that Leptospira spp. can acquire iron from different sources, including siderophores. A comparative genome analysis of iron uptake systems and their regulation in the saprophyte L. biflexa and the pathogen L. interrogans is presented in this study. Our data indicated that, for instance, L. biflexa and L. interrogans contain 8 and 12 genes, respectively, whose products share homology with proteins that have been shown to be TonB-dependent receptors. We show that some genes involved in iron uptake were differentially expressed in response to iron. In addition, we were able to disrupt several putative genes involved in iron acquisition systems or iron regulation in L. biflexa. Comparative genomics, in combination with gene inactivation, gives us significant functional information on iron homeostasis in Leptospira spp.
Collapse
Affiliation(s)
- H Louvel
- Laboratoire des Spirochètes, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mazouni K, Pehau-Arnaudet G, England P, Bourhy P, Saint Girons I, Picardeau M. The scc spirochetal coiled-coil protein forms helix-like filaments and binds to nucleic acids generating nucleoprotein structures. J Bacteriol 2006; 188:469-76. [PMID: 16385037 PMCID: PMC1347299 DOI: 10.1128/jb.188.2.469-476.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of the genome of Leptospira spp., a group of bacteria of the phylum of spirochetes with several unique evolutionary and morphological features, has allowed the identification of a gene encoding a coiled-coil protein, called Scc, which is completely unrelated to any other eukaryotic or prokaryotic protein. Since coiled-coil proteins are often key elements of the cytoskeleton, we analyzed the protein Scc, which is a 24-kDa protein composed of a N-terminal coiled-coil domain, a proline-rich intermediate domain, and an acidic tail. The gene scc is located in an operon which also contains the genes encoding the initiation factor IF3 and the two ribosomal proteins L20 and L35. In this study, we showed that the presence of the coiled-coil domain was responsible for the polymerization of Scc in helix-like structures, in an ATP-independent manner, in both Escherichia coli living cells and in vitro. Analysis of the Scc polymers by electron microscopy showed filaments with a width of 6 to 10 nm, similar to that of eukaryotic intermediate filaments. Scc was also found to bind both RNA and double-stranded DNA without detectable sequence specificity. By electron microscopy, we showed that Scc polymer assembly was affected by the presence of nucleic acids, giving rise to rod-shaped structures with a width ranging from 45 to 155 nm. Finally, Leptospira biflexa cells depleted in Scc form small colonies, but the morphology of their helicoidal cell body was not affected. These results provide the first insight into a unique DNA binding filament-forming coiled-coil protein that could play an important role in the subcellular architecture of the spirochetal microorganism.
Collapse
Affiliation(s)
- Khalil Mazouni
- Laboratoire des Spirochètes, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|