1
|
Hinnekens P, Fayad N, Gillis A, Mahillon J. Conjugation across Bacillus cereus and kin: A review. Front Microbiol 2022; 13:1034440. [PMID: 36406448 PMCID: PMC9673590 DOI: 10.3389/fmicb.2022.1034440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- *Correspondence: Jacques Mahillon,
| |
Collapse
|
2
|
Monat C, Quiroga C, Laroche-Johnston F, Cousineau B. The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway. RNA (NEW YORK, N.Y.) 2015; 21:1286-1293. [PMID: 25956521 PMCID: PMC4478347 DOI: 10.1261/rna.046367.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.
Collapse
Affiliation(s)
- Caroline Monat
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Cecilia Quiroga
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Felix Laroche-Johnston
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Benoit Cousineau
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
3
|
Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C. RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genomics 2014; 15:1088. [PMID: 25495145 PMCID: PMC4299374 DOI: 10.1186/1471-2164-15-1088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytoplasma-borne disease flavescence dorée is still a threat to European viticulture, despite mandatory control measures and prophylaxis against the leafhopper vector. Given the economic importance of grapevine, it is essential to find alternative strategies to contain the spread, in order to possibly reduce the current use of harmful insecticides. Further studies of the pathogen, the vector and the mechanisms of phytoplasma-host interactions could improve our understanding of the disease. In this work, RNA-Seq technology followed by three de novo assembly strategies was used to provide the first comprehensive transcriptomics landscape of flavescence dorée phytoplasma (FD) infecting field-grown Vitis vinifera leaves. RESULTS With an average of 8300 FD-mapped reads per library, we assembled 347 sequences, corresponding to 215 annotated genes, and identified 10 previously unannotated genes, 15 polycistronic transcripts and three genes supposedly localized in the gaps of the FD92 draft genome. Furthermore, we improved the annotation of 44 genes with the addition of 5'/3' untranslated regions. Functional classification revealed that the most expressed genes were either related to translation and protein biosynthesis or hypothetical proteins with unknown function. Some of these hypothetical proteins were predicted to be secreted, so they could be bacterial effectors with a potential role in modulating the interaction with the host plant. Interestingly, qRT-PCR validation of the RNA-Seq expression values confirmed that a group II intron represented the FD genomic region with the highest expression during grapevine infection. This mobile element may contribute to the genomic plasticity that is necessary for the phytoplasma to increase its fitness and endorse host-adaptive strategies. CONCLUSIONS The RNA-Seq technology was successfully applied for the first time to analyse the FD global transcriptome profile during grapevine infection. Our results provided new insights into the transcriptional organization and gene structure of FD. This may represent the starting point for the application of high-throughput sequencing technologies to study differential expression in FD and in other phytoplasmas with an unprecedented resolution.
Collapse
Affiliation(s)
- Simona Abbà
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Luciana Galetto
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Patricia Carle
- />INRA, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
- />Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
| | - Sébastien Carrère
- />INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326 France
- />CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326 France
| | - Massimo Delledonne
- />Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, I-37134 Verona, Italy
| | - Xavier Foissac
- />INRA, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
- />Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, CS20032, F-33882 Villenave d’Ornon, Cedex, France
| | - Sabrina Palmano
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Flavio Veratti
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Cristina Marzachì
- />Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| |
Collapse
|
4
|
Chillón I, Molina-Sánchez MD, Fedorova O, García-Rodríguez FM, Martínez-Abarca F, Toro N. In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element. RNA (NEW YORK, N.Y.) 2014; 20:2000-2010. [PMID: 25336586 PMCID: PMC4238363 DOI: 10.1261/rna.047407.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3' exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3' splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3-IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.
Collapse
Affiliation(s)
- Isabel Chillón
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - María Dolores Molina-Sánchez
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Olga Fedorova
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Fernando Manuel García-Rodríguez
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
5
|
Tourasse NJ, Stabell FB, Kolstø AB. Survey of chimeric IStron elements in bacterial genomes: multiple molecular symbioses between group I intron ribozymes and DNA transposons. Nucleic Acids Res 2014; 42:12333-51. [PMID: 25324310 PMCID: PMC4227781 DOI: 10.1093/nar/gku939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IStrons are chimeric genetic elements composed of a group I intron associated with an insertion sequence (IS). The group I intron is a catalytic RNA providing the IStron with self-splicing ability, which renders IStron insertions harmless to the host genome. The IS element is a DNA transposon conferring mobility, and thus allowing the IStron to spread in genomes. IStrons are therefore a striking example of a molecular symbiosis between unrelated genetic elements endowed with different functions. In this study, we have conducted the first comprehensive survey of IStrons in sequenced genomes that provides insights into the distribution, diversity, origin and evolution of IStrons. We show that IStrons have a restricted phylogenetic distribution limited to two bacterial phyla, the Firmicutes and the Fusobacteria. Nevertheless, diverse IStrons representing two major groups targeting different insertion site motifs were identified. This taken with the finding that while the intron components of all IStrons belong to the same structural class, they are fused to different IS families, indicates that multiple intron–IS symbioses have occurred during evolution. In addition, introns and IS elements related to those that were at the origin of IStrons were also identified.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway Institut de Biologie Physico-Chimique, UMR CNRS 7141, Université Pierre et Marie Curie, Paris, France
| | - Fredrik B Stabell
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Nagy V, Pirakitikulr N, Zhou KI, Chillón I, Luo J, Pyle AM. Predicted group II intron lineages E and F comprise catalytically active ribozymes. RNA (NEW YORK, N.Y.) 2013; 19:1266-1278. [PMID: 23882113 PMCID: PMC3753933 DOI: 10.1261/rna.039123.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.
Collapse
Affiliation(s)
- Vivien Nagy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Nathan Pirakitikulr
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Katherine Ismei Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jerome Luo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Doose G, Alexis M, Kirsch R, Findeiß S, Langenberger D, Machné R, Mörl M, Hoffmann S, Stadler PF. Mapping the RNA-Seq trash bin: unusual transcripts in prokaryotic transcriptome sequencing data. RNA Biol 2013; 10:1204-10. [PMID: 23702463 DOI: 10.4161/rna.24972] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Prokaryotic transcripts constitute almost always uninterrupted intervals when mapped back to the genome. Split reads, i.e., RNA-seq reads consisting of parts that only map to discontiguous loci, are thus disregarded in most analysis pipelines. There are, however, some well-known exceptions, in particular, tRNA splicing and circularized small RNAs in Archaea as well as self-splicing introns. Here, we reanalyze a series of published RNA-seq data sets, screening them specifically for non-contiguously mapping reads. We recover most of the known cases together with several novel archaeal ncRNAs associated with circularized products. In Eubacteria, only a handful of interesting candidates were obtained beyond a few previously described group I and group II introns. Most of the atypically mapping reads do not appear to correspond to well-defined, specifically processed products. Whether this diffuse background is, at least in part, an incidental by-product of prokaryotic RNA processing or whether it consists entirely of technical artifacts of reverse transcription or amplification remains unknown.
Collapse
Affiliation(s)
- Gero Doose
- Bioinformatics Group; Department of Computer Science, and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany; Transcriptome Bioinformatics; LIFE - Leipzig Research Center for Civilization Diseases; University of Leipzig; Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tourasse NJ, Stabell FB, Kolstø AB. Diversity, mobility, and structural and functional evolution of group II introns carrying an unusual 3' extension. BMC Res Notes 2011; 4:564. [PMID: 22204608 PMCID: PMC3261151 DOI: 10.1186/1756-0500-4-564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group II introns are widespread genetic elements endowed with a dual functionality. They are catalytic RNAs (ribozymes) that are able of self-splicing and they are also mobile retroelements that can invade genomic DNA. The group II intron RNA secondary structure is typically made up of six domains. However, a number of unusual group II introns carrying a unique extension of 53-56 nucleotides at the 3' end have been identified previously in bacteria of the Bacillus cereus group. METHODS In the present study, we conducted combined sequence comparisons and phylogenetic analyses of introns, host gene, plasmid and chromosome of host strains in order to gain insights into mobility, dispersal, and evolution of the unusual introns and their extension. We also performed in vitro mutational and kinetic experiments to investigate possible functional features related to the extension. RESULTS We report the identification of novel copies of group II introns carrying a 3' extension including the first two copies in bacteria not belonging to the B. cereus group, Bacillus pseudofirmus OF4 and Bacillus sp. 2_A_57_CT2, an uncharacterized species phylogenetically close to B. firmus. Interestingly, the B. pseudofirmus intron has a longer extension of 70 bases. From sequence comparisons and phylogenetic analyses, several possible separate events of mobility involving the atypical introns could be identified, including both retrohoming and retrotransposition events. In addition, identical extensions were found in introns that otherwise exhibit little sequence conservation in the rest of their structures, with the exception of the conserved and catalytically critical domains V and VI, suggesting either separate acquisition of the extra segment by different group II introns or a strong selection pressure acting on the extension. Furthermore, we show by in vitro splicing experiments that the 3' extension affects the splicing properties differently in introns belonging to separate evolutionary branches. CONCLUSIONS Altogether this study provides additional insights into the structural and functional evolution of unusual introns harboring a 3' extension and lends further evidence that these introns are mobile with their extension.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
9
|
Evolutionary history and functional characterization of three large genes involved in sporulation in Bacillus cereus group bacteria. J Bacteriol 2011; 193:5420-30. [PMID: 21821775 DOI: 10.1128/jb.05309-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus group of bacteria is a group of closely related species that are of medical and economic relevance, including B. anthracis, B. cereus, and B. thuringiensis. Bacteria from the Bacillus cereus group encode three large, highly conserved genes of unknown function (named crdA, crdB, and crdC) that are composed of 16 to 35 copies of a repeated domain of 132 amino acids at the protein level. Bioinformatic analysis revealed that there is a phylogenetic bias in the genomic distribution of these genes and that strains harboring all three large genes mainly belong to cluster III of the B. cereus group phylogenetic tree. The evolutionary history of the three large genes implicates gain, loss, duplication, internal deletion, and lateral transfer. Furthermore, we show that the transcription of previously identified antisense open reading frames in crdB is simultaneously regulated with its host gene throughout the life cycle in vitro, with the highest expression being at the onset of sporulation. In B. anthracis, different combinations of double- and triple-knockout mutants of the three large genes displayed slower and less efficient sporulation processes than the parental strain. Altogether, the functional studies suggest an involvement of these three large genes in the sporulation process.
Collapse
|
10
|
Karunakaran E, Biggs CA. Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl Microbiol Biotechnol 2010; 89:1161-75. [PMID: 20936277 DOI: 10.1007/s00253-010-2919-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/11/2010] [Accepted: 09/11/2010] [Indexed: 10/19/2022]
Abstract
Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.
Collapse
Affiliation(s)
- Esther Karunakaran
- ChELSI Institute Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | | |
Collapse
|
11
|
Pyle AM. The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 2010; 45:215-32. [PMID: 20446804 DOI: 10.3109/10409231003796523] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute and Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Tourasse NJ, Stabell FB, Kolstø AB. Structural and functional evolution of group II intron ribozymes: insights from unusual elements carrying a 3' extension. N Biotechnol 2010; 27:204-11. [PMID: 20219707 DOI: 10.1016/j.nbt.2010.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II introns are large RNA elements that interrupt genes. They are self-splicing ribozymes that catalyze their own excision and mobile retroelements that can invade new genomic DNA sites. While group II introns typically consist of six structural domains, a number of elements containing an unusual 3' extension of 53-56 nucleotides have recently been identified. Bioinformatic and functional analyses of these introns have revealed that they belong to two evolutionary subgroups and that the 3' extension has a differential effect on the splicing reactions for introns of the two subgroups, a functional difference that may be related to structural differences between the introns. In addition, there is phylogenetic evidence that some introns are mobile with their extension. The unusual introns have provided dramatic examples of the structural and functional evolution of group II ribozymes that have been able to accommodate an extra segment into their compact structure while maintaining functionality.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
13
|
Stabell FB, Tourasse NJ, Kolstø AB. A conserved 3' extension in unusual group II introns is important for efficient second-step splicing. Nucleic Acids Res 2009; 37:3202-14. [PMID: 19304998 PMCID: PMC2691827 DOI: 10.1093/nar/gkp186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The B.c.I4 group II intron from Bacillus cereus ATCC 10987 harbors an unusual 3′ extension. Here, we report the discovery of four additional group II introns with a similar 3′ extension in Bacillus thuringiensis kurstaki 4D1 that splice at analogous positions 53/56 nt downstream of domain VI in vivo. Phylogenetic analyses revealed that the introns are only 47–61% identical to each other. Strikingly, they do not form a single evolutionary lineage even though they belong to the same Bacterial B class. The extension of these introns is predicted to form a conserved two-stem–loop structure. Mutational analysis in vitro showed that the smaller stem S1 is not critical for self-splicing, whereas the larger stem S2 is important for efficient exon ligation and lariat release in presence of the extension. This study clearly demonstrates that previously reported B.c.I4 is not a single example of a specialized intron, but forms a new functional class with an unusual mode that ensures proper positioning of the 3′ splice site.
Collapse
Affiliation(s)
- Fredrik B Stabell
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
14
|
Van der Auwera G, Mahillon J. Transcriptional analysis of the conjugative plasmid pAW63 from Bacillus thuringiensis. Plasmid 2008; 60:190-9. [PMID: 18761035 DOI: 10.1016/j.plasmid.2008.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The broad-host range plasmid pAW63 is a model for the study of molecular mechanisms associated with conjugation in the Gram-positive Bacillus cereus group. Its main features are a conjugative apparatus that includes Type IV Secretion System-like components and two Group II introns, B.th.I1 and B.th.I2, located within conjugation genes, as well as a putative regulatory control circuit. Furthermore, pAW63 shares a common backbone with pXO2, the second virulence plasmid of Bacillus anthracis, and with pBT9727 from the pathogenic Bacillus thuringiensis subsp. konkukian strain 97-27. In this study, the transcriptome of pAW63 was investigated using a custom DNA microarray, providing insight into the genetic clockwork of this conjugative plasmid. Gene expression profiles suggested that in the absence of mating partners, a partial 'standby mode' was in effect, with little production of many of the structural elements thought to be involved in mating pair formation and DNA transfer, while components of a proposed quorum sensing mechanism were actively expressed. Intron splicing was demonstrated for the B.th.I2 intron.
Collapse
Affiliation(s)
- Géraldine Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
15
|
Simon DM, Clarke NAC, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S. Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA (NEW YORK, N.Y.) 2008; 14:1704-13. [PMID: 18676618 PMCID: PMC2525955 DOI: 10.1261/rna.1056108] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Group II introns are a major class of ribozymes found in bacteria, mitochondria, and plastids. Many introns contain reverse transcriptase open reading frames (ORFs) that confer mobility to the introns and allow them to persist as selfish DNAs. Here, we report an updated compilation of group II introns in Eubacteria and Archaea comprising 234 introns. One new phylogenetic class is identified, as well as several specialized lineages. In addition, we undertake a detailed search for ORF-less group II introns in bacterial genomes in order to find undiscovered introns that either entirely lack an ORF or encode a novel ORF. Unlike organellar group II introns, we find only a handful of ORF-less introns in bacteria, suggesting that if a substantial number exist, they must be divergent from known introns. Together, these results highlight the retroelement character of bacterial group II introns, and suggest that their long-term survival is dependent upon retromobility.
Collapse
Affiliation(s)
- Dawn M Simon
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tourasse NJ, Kolstø AB. Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution. Nucleic Acids Res 2008; 36:4529-48. [PMID: 18587153 PMCID: PMC2504315 DOI: 10.1093/nar/gkn372] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Group I and group II introns are different catalytic self-splicing and mobile RNA elements that contribute to genome dynamics. In this study, we have analyzed their distribution and evolution in 29 sequenced genomes from the Bacillus cereus group of bacteria. Introns were of different structural classes and evolutionary origins, and a large number of nearly identical elements are shared between multiple strains of different sources, suggesting recent lateral transfers and/or that introns are under a strong selection pressure. Altogether, 73 group I introns were identified, inserted in essential genes from the chromosome or newly described prophages, including the first elements found within phages in bacterial plasmids. Notably, bacteriophages are an important source for spreading group I introns between strains. Furthermore, 77 group II introns were found within a diverse set of chromosomal and plasmidic genes. Unusual findings include elements located within conserved DNA metabolism and repair genes and one intron inserted within a novel retroelement. Group II introns are mainly disseminated via plasmids and can subsequently invade the host genome, in particular by coupling mobility with host cell replication. This study reveals a very high diversity and variability of mobile introns in B. cereus group strains.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
17
|
Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol 2007; 7:159. [PMID: 17825109 PMCID: PMC1995217 DOI: 10.1186/1471-2148-7-159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 09/08/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria. RESULTS Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria. CONCLUSION We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242, USA
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Debashish Bhattacharya
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Seán Turner
- National Center for Biotechnology Information, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, MD 20892, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
18
|
Tourasse NJ, Helgason E, Økstad OA, Hegna IK, Kolstø AB. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol 2007; 101:579-93. [PMID: 16907808 DOI: 10.1111/j.1365-2672.2006.03087.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To provide new insights into the population and genomic structure of the Bacillus cereus group of bacteria. METHODS AND RESULTS The genetic relatedness among B. cereus group strains was assessed by multilocus sequence typing (MLST) using an optimized scheme based on seven chromosomal housekeeping genes. A set of 48 strains from different clinical sources was included, and six clonal complexes containing several genetically similar isolates from unrelated patients were identified. Interestingly, several clonal groups contained strains that were isolated from similar human sources. Furthermore, comparative whole genome sequence analysis of 16 strains led to the discovery of novel ubiquitous genome features of the B. cereus group, such as atypical group II introns, IStrons, and hitherto uncharacterized repeated elements. CONCLUSIONS The B. cereus group constitutes a coherent population unified by the presence of ubiquitous and specific genetic elements which do not show any pattern, either in their sequences or genomic locations, which allows to differentiate between the member species of the group. Nevertheless, the population is very dynamic, as particular lineages of clinical origin can evolve to form clonal complexes. At the genome level, the dynamic behaviour is indicated by the presence of numerous mobile and repeated elements. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group of bacteria comprises species that are of medical and economic importance. The MLST data, along with the primers and protocols used, will be available in a public, web-accessible database (http://mlstoslo.uio.no).
Collapse
Affiliation(s)
- N J Tourasse
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
Michel F, Costa M, Doucet AJ, Ferat JL. Specialized lineages of bacterial group II introns. Biochimie 2007; 89:542-53. [PMID: 17391829 DOI: 10.1016/j.biochi.2007.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
The Avi.groEL intron of Azotobacter vinelandii, which interrupts the termination codon of the groEL gene, is shown to belong to a monophyletic subset of bacterial group II introns that share a large insertion at their 5' extremity and a peculiar genetic localization. Some of these introns are inserted within, right next to, or very close to, a stop codon while others are located immediately 3' of, or close to, an initiation codon. After subgroup IIC introns, which target rho-independent transcription terminators, this is the second instance of a genetically specialized lineage of bacterial group II introns. Both the members of subgroup IIC and the relatives of Avi.groEL stand in contrast against the rest of group II retrotransposons in that features other than sequence must be used in target recognition. Among other specialized characters that could unite the two subgroups are: (i) the presence, next to the 5' splice site, of conserved RNA structures incompatible with the active fold of the group II ribozyme; and (ii) the likely involvement of the ribosome in the facilitation of the splicing process.
Collapse
Affiliation(s)
- François Michel
- Centre de Génétique Moléculaire du CNRS, 1, Avenue de la Terrasse, Bâtiment 26, 91190 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
20
|
Abstract
Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | |
Collapse
|
21
|
Stabell FB, Tourasse NJ, Ravnum S, Kolstø AB. Group II intron in Bacillus cereus has an unusual 3' extension and splices 56 nucleotides downstream of the predicted site. Nucleic Acids Res 2007; 35:1612-23. [PMID: 17301069 PMCID: PMC1865049 DOI: 10.1093/nar/gkm031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All group II introns known to date fold into six functional domains. However, we recently identified an intron in Bacillus cereus ATCC 10987, B.c.I4, that splices 56 nt downstream of the expected 3′ splice site in vivo (Tourasse et al. 2005, J. Bacteriol., 187, 5437–5451). In this study, we confirmed by ribonuclease protection assay that the 56-bp segment is part of the intron RNA molecule, and computational prediction suggests that it might form a stable stem-loop structure downstream of domain VI. The splicing of B.c.I4 was further investigated both in vivo and in vitro. Lariat formation proceeded primarily by branching at the ordinary bulged adenosine in domain VI without affecting the fidelity of splicing. In addition, the splicing efficiency of the wild-type intron was better than that of a mutant construct deleted of the 56-bp 3′ extension. These results indicate that the intron has apparently adapted to the extra segment, possibly through conformational adjustments. The extraordinary group II intron B.c.I4 harboring an unprecedented extra 3′ segment constitutes a dramatic example of the flexibility and adaptability of group II introns.
Collapse
Affiliation(s)
| | | | | | - Anne-Brit Kolstø
- *To whom correspondence should be addressed. +47 22 85 69 23+47 22 84 49 44
| |
Collapse
|
22
|
Abstract
Group II introns are large autocatalytic RNAs found in organellar genomes of plants and lower eukaryotes, as well as in some bacterial genomes. Interestingly, these ribozymes share characteristic traits with both spliceosomal introns and non-LTR retrotransposons and may have a common evolutionary ancestor. Furthermore, group II intron features such as structure, folding and catalytic mechanism differ considerably from those of other large ribozymes, making group II introns an attractive model system to gain novel insights into RNA biology and biochemistry. This review explores recent advances in the structural and mechanistic characterization of group II intron architecture and self-splicing.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
23
|
Toor N, Robart AR, Christianson J, Zimmerly S. Self-splicing of a group IIC intron: 5' exon recognition and alternative 5' splicing events implicate the stem-loop motif of a transcriptional terminator. Nucleic Acids Res 2006; 34:6461-71. [PMID: 17130159 PMCID: PMC1702495 DOI: 10.1093/nar/gkl820] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus halodurans. B.h.I1 self-splices in vitro through hydrolysis to produce linear intron, but interestingly, additional unexpected products were formed that were highly dependent on ionic conditions. These products were determined to represent alternative splicing events at the 5' junction and cleavages throughout the RNA transcript. The alternative splicing and cleavage events occurred at cryptic splice sites containing stem-loop and IBS1 motifs, suggesting that the 5' exon is recognized by both elements. These results provide the first example of a group II intron that uses 5' splice sites nonadjacent to the ribozyme structure. Furthermore, the data suggest that IIC introns differ from IIA and IIB introns with respect to 5' exon definition, and that the terminator stem-loop substitutes in part for the missing IBS2-EBS2 (intron and exon binding sites 2) interaction.
Collapse
Affiliation(s)
| | | | | | - Steven Zimmerly
- To whom correspondence should be addressed. Tel: +1 403 220 7933; Fax: +1 403 289 9311;
| |
Collapse
|
24
|
Li-Pook-Than J, Bonen L. Multiple physical forms of excised group II intron RNAs in wheat mitochondria. Nucleic Acids Res 2006; 34:2782-90. [PMID: 16717283 PMCID: PMC1464410 DOI: 10.1093/nar/gkl328] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.
Collapse
Affiliation(s)
| | - Linda Bonen
- To whom correspondence should be addressed. Tel: +1 613 562 5800 ext. 6356; Fax: +1 613 562 5486;
| |
Collapse
|
25
|
Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 2006; 6:20. [PMID: 16512902 PMCID: PMC1459170 DOI: 10.1186/1471-2180-6-20] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Recently, it has been shown that this toxin is produced by a nonribosomal peptide synthetase (NRPS), but its exact genetic organization and biochemical synthesis is unknown. RESULTS The complete sequence of the cereulide synthetase (ces) gene cluster, which encodes the enzymatic machinery required for the biosynthesis of cereulide, was dissected. The 24 kb ces gene cluster comprises 7 CDSs and includes, besides the typical NRPS genes like a phosphopantetheinyl transferase and two CDSs encoding enzyme modules for the activation and incorporation of monomers in the growing peptide chain, a CDS encoding a putative hydrolase in the upstream region and an ABC transporter in the downstream part. The enzyme modules responsible for incorporation of the hydroxyl acids showed an unusual structure while the modules responsible for the activation of the amino acids Ala and Val showed the typical domain organization of NRPS. The ces gene locus is flanked by genetic regions with high homology to virulence plasmids of B. cereus, Bacillus thuringiensis and Bacillus anthracis. PFGE and Southern hybridization showed that the ces genes are restricted to emetic B. cereus and indeed located on a 208 kb megaplasmid, which has high similarities to pXO1-like plasmids. CONCLUSION The ces gene cluster that is located on a pXO1-like virulence plasmid represents, beside the insecticidal and the anthrax toxins, a third type of B. cereus group toxins encoded on megaplasmids. The ces genes are restricted to emetic toxin producers, but pXO1-like plasmids are also present in emetic-like strains. These data might indicate the presence of an ancient plasmid in B. cereus which has acquired different virulence genes over time. Due to the unusual structure of the hydroxyl acid incorporating enzyme modules of Ces, substantial biochemical efforts will be required to dissect the complete biochemical pathway of cereulide synthesis.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Lehrstuhl für Mikrobielle Ökologie, Department für Biowissenschaftliche Grundlagen, WZW, Technische Universität München, Freising, Germany
| | - Martina Fricker
- Lehrstuhl für Mikrobielle Ökologie, Department für Biowissenschaftliche Grundlagen, WZW, Technische Universität München, Freising, Germany
| | - Harald Grallert
- Lehrstuhl für Mikrobielle Ökologie, Department für Biowissenschaftliche Grundlagen, WZW, Technische Universität München, Freising, Germany
| | - Petra Rieck
- Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Department für Biowissenschaftliche Grundlagen, WZW, Technische Universität München, Freising, Germany
| |
Collapse
|
26
|
Costa M, Michel F, Toro N. Potential for alternative intron-exon pairings in group II intron RmInt1 from Sinorhizobium meliloti and its relatives. RNA (NEW YORK, N.Y.) 2006; 12:338-41. [PMID: 16431983 PMCID: PMC1383573 DOI: 10.1261/rna.2240906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ribozyme constructs derived from group II intron RmInt1 of Sinorhizobium meliloti self-splice in vitro when incubated under permissive conditions, but exon ligation is unusually inefficient when the 5' exon is truncated close to the IBS2 intron-binding site. One plausible explanation for this observation is the presence of an alternative intron-exon pairing between an intron segment that overlaps with the EBS2 exon-binding site and a 5' exon site located just distal of IBS2 relative to the splice junction. Strikingly, the existence of this pairing is supported by comparative sequence analysis of introns related to RmInt1.
Collapse
|
27
|
Costa M, Michel F, Molina-Sánchez MD, Martinez-Abarca F, Toro N. An alternative intron-exon pairing scheme implied by unexpected in vitro activities of group II intron RmInt1 from Sinorhizobium meliloti. Biochimie 2006; 88:711-7. [PMID: 16460862 DOI: 10.1016/j.biochi.2005.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 12/27/2005] [Indexed: 11/16/2022]
Abstract
RmInt1 is a mobile group II intron which interrupts ISRm2011-2, another mobile element from the bacterium Sinorhizobium meliloti. Ribozyme constructs derived from intron RmInt1 self-splice in vitro when incubated under permissive conditions, but the excised intron and ligated exons are largely replaced by unconventional products. These include a slightly shorter, 5'-end truncated 3' exon, truncated variants of the linear and lariat forms of the intron-3' exon reaction intermediate, as well as presumably circular molecules derived from the latter. Two factors explain the abundance of these products: (i) nucleotides 5-11 of the 3' exon (IBS1*) provide a better match to the EBS1 5'-exon-binding site than the authentic IBS1 sequence in the 5' exon; (ii) exon ligation is unusually inefficient, and especially so when the 5' exon is truncated close to the second (IBS2) intron-binding site. We propose that reactions at the IBS1* site play a part in the regulation of the intron ISRm2011-2 host in vivo.
Collapse
Affiliation(s)
- María Costa
- Centre de Genétique Moléculaire du CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|