1
|
Hall KM, Williams LG, Smith RD, Kuang EA, Ernst RK, Bojanowski CM, Wimley WC, Morici LA, Pursell ZF. Mutational signature analysis predicts bacterial hypermutation and multidrug resistance. Nat Commun 2025; 16:19. [PMID: 39746975 PMCID: PMC11695600 DOI: 10.1038/s41467-024-55206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bacteria of clinical importance, such as Pseudomonas aeruginosa, can become hypermutators upon loss of DNA mismatch repair (MMR) and are clinically correlated with high rates of multidrug resistance (MDR). Here, we demonstrate that hypermutated MMR-deficient P. aeruginosa has a unique mutational signature and rapidly acquires MDR upon repeated exposure to first-line or last-resort antibiotics. MDR acquisition was irrespective of drug class and instead arose through common resistance mechanisms shared between the initial and secondary drugs. Rational combinations of drugs having distinct resistance mechanisms prevented MDR acquisition in hypermutated MMR-deficient P. aeruginosa. Mutational signature analysis of P. aeruginosa across different human disease contexts identified appreciable quantities of MMR-deficient clinical isolates that were already MDR or prone to future MDR acquisition. Mutational signature analysis of patient samples is a promising diagnostic tool that may predict MDR and guide precision-based medical care.
Collapse
Affiliation(s)
- Kalen M Hall
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
- Bioinnovation Program, Tulane University, New Orleans, LA, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Erin A Kuang
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - William C Wimley
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA.
- Tulane Cancer Center, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Łazowski K, Faraz M, Vaisman A, Ashton NW, Jonczyk P, Fijalkowska IJ, Clausen AR, Woodgate R, Makiela-Dzbenska K. Strand specificity of ribonucleotide excision repair in Escherichia coli. Nucleic Acids Res 2023; 51:1766-1782. [PMID: 36762476 PMCID: PMC9976901 DOI: 10.1093/nar/gkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Mahmood Faraz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Piotr Jonczyk
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Karolina Makiela-Dzbenska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
4
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Tesfahun AN, Alexeeva M, Tomkuvienė M, Arshad A, Guragain P, Klungland A, Klimašauskas S, Ruoff P, Bjelland S. Alleviation of C⋅C Mismatches in DNA by the Escherichia coli Fpg Protein. Front Microbiol 2021; 12:608839. [PMID: 34276575 PMCID: PMC8278400 DOI: 10.3389/fmicb.2021.608839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.
Collapse
Affiliation(s)
- Almaz Nigatu Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Aysha Arshad
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Prashanna Guragain
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Life Sciences Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.,Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
6
|
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity. DNA Repair (Amst) 2021; 103:103130. [PMID: 33991871 DOI: 10.1016/j.dnarep.2021.103130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
The bacterial SOS response to DNA damage induces an error-prone repair program that is mutagenic. In Escherichia coli, SOS-induced mutations are caused by the translesion synthesis (TLS) activity of two error-prone polymerases (EPPs), Pol IV and Pol V. The mutational footprint of the EPPs is confounded by both DNA damage and repair, as mutations are targeted to DNA lesions via TLS and corrected by the mismatch repair (MMR) system. To remove these factors and assess untargeted EPP mutations genome-wide, we constructed spontaneous SOS mutator strains deficient in MMR, then analyzed their mutational footprints by mutation accumulation and whole genome sequencing. Our analysis reveals new features of untargeted SOS-mutagenesis, showing how MMR alters its spectrum, sequence specificity, and strand-bias. Our data support a model where the EPPs prefer to act on the lagging strand of the replication fork, producing base pair mismatches that are differentially repaired by MMR depending on the type of mismatch.
Collapse
|
7
|
Walsh E, Henrikus SS, Vaisman A, Makiela-Dzbenska K, Armstrong TJ, Łazowski K, McDonald JP, Goodman MF, van Oijen AM, Jonczyk P, Fijalkowska IJ, Robinson A, Woodgate R. Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V ICE391. DNA Repair (Amst) 2019; 84:102685. [PMID: 31543434 DOI: 10.1016/j.dnarep.2019.102685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/18/2022]
Abstract
pol VICE391 (RumA'2B) is a low-fidelity polymerase that promotes considerably higher levels of spontaneous "SOS-induced" mutagenesis than the related E. coli pol V (UmuD'2C). The molecular basis for the enhanced mutagenesis was previously unknown. Using single molecule fluorescence microscopy to visualize pol V enzymes, we discovered that the elevated levels of mutagenesis are likely due, in part, to prolonged binding of RumB to genomic DNA leading to increased levels of DNA synthesis compared to UmuC. We have generated a steric gate pol VICE391 variant (pol VICE391_Y13A) that readily misincorporates ribonucleotides into the E. coli genome and have used the enzyme to investigate the molecular mechanisms of Ribonucleotide Excision Repair (RER) under conditions of increased ribonucleotide-induced stress. To do so, we compared the extent of spontaneous mutagenesis promoted by pol V and pol VICE391 to that of their respective steric gate variants. Levels of mutagenesis promoted by the steric gate variants that are lower than that of the wild-type enzyme are indicative of active RER that removes misincorporated ribonucleotides, but also misincorporated deoxyribonucleotides from the genome. Using such an approach, we confirmed that RNase HII plays a pivotal role in RER. In the absence of RNase HII, Nucleotide Excision Repair (NER) proteins help remove misincorporated ribonucleotides. However, significant RER occurs in the absence of RNase HII and NER. Most of the RNase HII and NER-independent RER occurs on the lagging strand during genome duplication. We suggest that this is most likely due to efficient RNase HI-dependent RER which recognizes the polyribonucleotide tracts generated by pol VICE391_Y13A. These activities are critical for the maintenance of genomic integrity when RNase HII is overwhelmed, or inactivated, as ΔrnhB or ΔrnhB ΔuvrA strains expressing pol VICE391_Y13A exhibit genome and plasmid instability in the absence of RNase HI.
Collapse
Affiliation(s)
- Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | - Thomas J Armstrong
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Krystian Łazowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910 USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
8
|
Makiela-Dzbenska K, Maslowska KH, Kuban W, Gawel D, Jonczyk P, Schaaper RM, Fijalkowska IJ. Replication fidelity in E. coli: Differential leading and lagging strand effects for dnaE antimutator alleles. DNA Repair (Amst) 2019; 83:102643. [PMID: 31324532 DOI: 10.1016/j.dnarep.2019.102643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022]
Abstract
DNA Pol III holoenzyme (HE) is the major DNA replicase of Escherichia coli. It is a highly accurate enzyme responsible for simultaneously replicating the leading- and lagging DNA strands. Interestingly, the fidelity of replication for the two DNA strands is unequal, with a higher accuracy for lagging-strand replication. We have previously proposed this higher lagging-strand fidelity results from the more dissociative character of the lagging-strand polymerase. In support of this hypothesis, an E. coli mutant carrying a catalytic DNA polymerase subunit (DnaE915) characterized by decreased processivity yielded an antimutator phenotype (higher fidelity). The present work was undertaken to gain deeper insight into the factors that influence the fidelity of chromosomal DNA replication in E. coli. We used three different dnaE alleles (dnaE915, dnaE911, and dnaE941) that had previously been isolated as antimutators. We confirmed that each of the three dnaE alleles produced significant antimutator effects, but in addition showed that these antimutator effects proved largest for the normally less accurate leading strand. Additionally, in the presence of error-prone DNA polymerases, each of the three dnaE antimutator strains turned into mutators. The combined observations are fully supportive of our model in which the dissociative character of the DNA polymerase is an important determinant of in vivo replication fidelity. In this model, increased dissociation from terminal mismatches (i.e., potential mutations) leads to removal of the mismatches (antimutator effect), but in the presence of error-prone (or translesion) DNA polymerases the abandoned terminal mismatches become targets for error-prone extension (mutator effect). We also propose that these dnaE alleles are promising tools for studying polymerase exchanges at the replication fork.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna H Maslowska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kuban
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Gawel
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Jonczyk
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | - Iwona J Fijalkowska
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
9
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
10
|
Kreisel K, Engqvist MKM, Kalm J, Thompson LJ, Boström M, Navarrete C, McDonald JP, Larsson E, Woodgate R, Clausen AR. DNA polymerase η contributes to genome-wide lagging strand synthesis. Nucleic Acids Res 2019; 47:2425-2435. [PMID: 30597049 PMCID: PMC6411934 DOI: 10.1093/nar/gky1291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
DNA polymerase η (pol η) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol η also has other cellular roles. Here, we present evidence that pol η competes with DNA polymerases α and δ for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol η, which contains a PCNA-Interacting Protein motif is required for pol η to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol η and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.
Collapse
Affiliation(s)
- Katrin Kreisel
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Martin K M Engqvist
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Josephine Kalm
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Liam J Thompson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Martin Boström
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Clara Navarrete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anders R Clausen
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
11
|
Stimulation of Replication Template-Switching by DNA-Protein Crosslinks. Genes (Basel) 2018; 10:genes10010014. [PMID: 30591691 PMCID: PMC6357072 DOI: 10.3390/genes10010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Covalent DNA protein crosslinks (DPCs) are common lesions that block replication. We examine here the consequence of DPCs on mutagenesis involving replicational template-switch reactions in Escherichia coli. 5-Azacytidine (5-azaC) is a potent mutagen for template-switching. This effect is dependent on DNA cytosine methylase (Dcm), implicating the Dcm-DNA covalent complex trapped by 5-azaC as the initiator for mutagenesis. The leading strand of replication is more mutable than the lagging strand, which can be explained by blocks to the replicative helicase and/or fork regression. We find that template-switch mutagenesis induced by 5-azaC does not require double strand break repair via RecABCD; the ability to induce the SOS response is anti-mutagenic. Mutants in recB, but not recA, exhibit high constitutive rates of template-switching, and we suggest that RecBCD-mediated DNA degradation prevents template-switching associated with fork regression. A mutation in the DnaB fork helicase also promotes high levels of template-switching. We also find that other DPC-inducers, formaldehyde (a non-specific crosslinker) and ciprofloxacin (a topoisomerase II poison) are also strong mutagens for template-switching with similar genetic properties. Induction of mutations and genetic rearrangements that occur by template-switching may constitute a previously unrecognized component of the genotoxicity and genetic instability promoted by DPCs.
Collapse
|
12
|
Specialised DNA polymerases in Escherichia coli: roles within multiple pathways. Curr Genet 2018; 64:1189-1196. [PMID: 29700578 DOI: 10.1007/s00294-018-0840-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 01/15/2023]
Abstract
In many bacterial species, DNA damage triggers the SOS response; a pathway that regulates the production of DNA repair and damage tolerance proteins, including error-prone DNA polymerases. These specialised polymerases are capable of bypassing lesions in the template DNA, a process known as translesion synthesis (TLS). Specificity for lesion types varies considerably between the different types of TLS polymerases. TLS polymerases are mainly described as working in the context of replisomes that are stalled at lesions or in lesion-containing gaps left behind the replisome. Recently, a series of single-molecule fluorescence microscopy studies have revealed that two TLS polymerases, pol IV and pol V, rarely colocalise with replisomes in Escherichia coli cells, suggesting that most TLS activity happens in a non-replisomal context. In this review, we re-visit the evidence for the involvement of TLS polymerases in other pathways. A series of genetic and biochemical studies indicates that TLS polymerases could participate in nucleotide excision repair, homologous recombination and transcription. In addition, oxidation of the nucleotide pool, which is known to be induced by multiple stressors, including many antibiotics, appears to favour TLS polymerase activity and thus increases mutation rates. Ultimately, participation of TLS polymerases within non-replisomal pathways may represent a major source of mutations in bacterial cells and calls for more extensive investigation.
Collapse
|
13
|
Le TT, Furukohri A, Tatsumi-Akiyama M, Maki H. Collision with duplex DNA renders Escherichia coli DNA polymerase III holoenzyme susceptible to DNA polymerase IV-mediated polymerase switching on the sliding clamp. Sci Rep 2017; 7:12755. [PMID: 29038530 PMCID: PMC5643309 DOI: 10.1038/s41598-017-13080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Organisms possess multiple DNA polymerases (Pols) and use each for a different purpose. One of the five Pols in Escherichia coli, DNA polymerase IV (Pol IV), encoded by the dinB gene, is known to participate in lesion bypass at certain DNA adducts. To understand how cells choose Pols when the replication fork encounters an obstacle on template DNA, the process of polymerase exchange from the primary replicative enzyme DNA polymerase III (Pol III) to Pol IV was studied in vitro. Replicating Pol III forming a tight holoenzyme (Pol III HE) with the sliding clamp was challenged by Pol IV on a primed ssDNA template carrying a short inverted repeat. A rapid and lesion-independent switch from Pol III to Pol IV occurred when Pol III HE encountered a hairpin stem duplex, implying that the loss of Pol III-ssDNA contact induces switching to Pol IV. Supporting this idea, mutant Pol III with an increased affinity for ssDNA was more resistant to Pol IV than wild-type Pol III was. We observed that an exchange between Pol III and Pol IV also occurred when Pol III HE collided with primer/template duplex. Our data suggest that Pol III-ssDNA interaction may modulate the susceptibility of Pol III HE to Pol IV-mediated polymerase exchange.
Collapse
Affiliation(s)
- Thanh Thi Le
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Asako Furukohri
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Masahiro Tatsumi-Akiyama
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Hisaji Maki
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
14
|
Margara LM, Fernández MM, Malchiodi EL, Argaraña CE, Monti MR. MutS regulates access of the error-prone DNA polymerase Pol IV to replication sites: a novel mechanism for maintaining replication fidelity. Nucleic Acids Res 2016; 44:7700-13. [PMID: 27257069 PMCID: PMC5027486 DOI: 10.1093/nar/gkw494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the β clamp processivity factor by competing for binding to the ring. Moreover, the MutS–β clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity.
Collapse
Affiliation(s)
- Lucía M Margara
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Carlos E Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Mariela R Monti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
15
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
16
|
Gabbai CB, Yeeles JTP, Marians KJ. Replisome-mediated translesion synthesis and leading strand template lesion skipping are competing bypass mechanisms. J Biol Chem 2014; 289:32811-23. [PMID: 25301949 DOI: 10.1074/jbc.m114.613257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of different enzymatic pathways have evolved to ensure that DNA replication can proceed past template base damage. These pathways include lesion skipping by the replisome, replication fork regression followed by either correction of the damage and origin-independent replication restart or homologous recombination-mediated restart of replication downstream of the lesion, and bypass of the damage by a translesion synthesis DNA polymerase. We report here that of two translesion synthesis polymerases tested, only DNA polymerase IV, not DNA polymerase II, could engage productively with the Escherichia coli replisome to bypass leading strand template damage, despite the fact that both enzymes are shown to be interacting with the replicase. Inactivation of the 3' → 5' proofreading exonuclease of DNA polymerase II did not enable bypass. Bypass by DNA polymerase IV required its ability to interact with the β clamp and act as a translesion polymerase but did not require its "little finger" domain, a secondary region of interaction with the β clamp. Bypass by DNA polymerase IV came at the expense of the inherent leading strand lesion skipping activity of the replisome, indicating that they are competing reactions.
Collapse
Affiliation(s)
- Carolina B Gabbai
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph T P Yeeles
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
17
|
Fuchs RP, Fujii S. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb Perspect Biol 2013; 5:a012682. [PMID: 24296168 DOI: 10.1101/cshperspect.a012682] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of unrepaired lesions in DNA represents a challenge for replication. Most, but not all, DNA lesions block the replicative DNA polymerases. The conceptually simplest procedure to bypass lesions during DNA replication is translesion synthesis (TLS), whereby the replicative polymerase is transiently replaced by a specialized DNA polymerase that synthesizes a short patch of DNA across the site of damage. This process is inherently error prone and is the main source of point mutations. The diversity of existing DNA lesions and the biochemical properties of Escherichia coli DNA polymerases will be presented. Our main goal is to deliver an integrated view of TLS pathways involving the multiple switches between replicative and specialized DNA polymerases and their interaction with key accessory factors. Finally, a brief glance at how other bacteria deal with TLS and mutagenesis is presented.
Collapse
Affiliation(s)
- Robert P Fuchs
- Cancer Research Center of Marseille, CNRS, UMR7258; Genome Instability and Carcinogenesis (equipe labellisée Ligue Contre le Cancer) Inserm, U1068; Paoli-Calmettes Institute, Aix-Marseille Université, F-13009 Marseille, France
| | | |
Collapse
|
18
|
Gawel D, Fijalkowska IJ, Jonczyk P, Schaaper RM. Effect of dNTP pool alterations on fidelity of leading and lagging strand DNA replication in E. coli. Mutat Res 2013; 759:22-8. [PMID: 24269257 DOI: 10.1016/j.mrfmmm.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/02/2013] [Accepted: 11/09/2013] [Indexed: 11/17/2022]
Abstract
The fidelity with which organisms replicate their chromosomal DNA is of considerable interest. Detailed studies in the bacterium Escherichia coli have indicated that the fidelity of leading- and lagging-strand DNA replication is not the same, based on experiments in which the orientation of certain mutational targets on the chromosome was inverted relative to the movement of the replication fork: different mutation rates for several base-pair substitutions were observed depending on this orientation. While these experiments are indicative of differential replication fidelity in the two strands, a conclusion whether leading or lagging strand is the more accurate depends on knowledge of the primary mispairing error responsible for the base substitutions in question. A broad analysis of in vitro base-pairing preferences of DNA polymerases led us to propose that lagging-strand is the more accurate strand. In the present work, we present more direct in vivo evidence in support of this proposal. We determine the orientation dependence of mutant frequencies in ndk and dcd strains, which carry defined dNTP pool alterations. As these pool alterations lead to predictable effects on the array of possible mispairing errors, they mark the strands in which the observed errors occur. The combined results support the proposed higher accuracy of lagging-strand replication in E. coli.
Collapse
Affiliation(s)
- Damian Gawel
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States.
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Roel M Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| |
Collapse
|
19
|
Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 2012; 36:1105-21. [PMID: 22404288 DOI: 10.1111/j.1574-6976.2012.00338.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 12/21/2022] Open
Abstract
High accuracy (fidelity) of DNA replication is important for cells to preserve the genetic identity and to prevent the accumulation of deleterious mutations. The error rate during DNA replication is as low as 10(-9) to 10(-11) errors per base pair. How this low level is achieved is an issue of major interest. This review is concerned with the mechanisms underlying the fidelity of the chromosomal replication in the model system Escherichia coli by DNA polymerase III holoenzyme, with further emphasis on participation of the other, accessory DNA polymerases, of which E. coli contains four (Pols I, II, IV, and V). Detailed genetic analysis of mutation rates revealed that (1) Pol II has an important role as a back-up proofreader for Pol III, (2) Pols IV and V do not normally contribute significantly to replication fidelity, but can readily do so under conditions of elevated expression, (3) participation of Pols IV and V, in contrast to that of Pol II, is specific to the lagging strand, and (4) Pol I also makes a lagging-strand-specific fidelity contribution, limited, however, to the faithful filling of the Okazaki fragment gaps. The fidelity role of the Pol III τ subunit is also reviewed.
Collapse
Affiliation(s)
- Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
20
|
Ahluwalia D, Bienstock RJ, Schaaper RM. Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates. DNA Repair (Amst) 2012; 11:480-7. [PMID: 22417940 DOI: 10.1016/j.dnarep.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.
Collapse
Affiliation(s)
- Deepti Ahluwalia
- Laboratory of Molecular Genetics, National Institute of Environmental and Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
21
|
Gawel D, Seed PC. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence. Virulence 2011; 2:222-32. [PMID: 21597325 DOI: 10.4161/viru.2.3.16143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.
Collapse
Affiliation(s)
- Damian Gawel
- Department of Pediatrics, Center for Microbial Pathogenesis, Duke University, Durham, NC, USA
| | | |
Collapse
|
22
|
Ubiquitination of PCNA and Its Essential Role in Eukaryotic Translesion Synthesis. Cell Biochem Biophys 2011; 60:47-60. [DOI: 10.1007/s12013-011-9187-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Proofreading deficiency of Pol I increases the levels of spontaneous rpoB mutations in E. coli. Mutat Res 2011; 712:28-32. [PMID: 21459099 DOI: 10.1016/j.mrfmmm.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 11/23/2022]
Abstract
The fidelity role of DNA polymerase I in chromosomal DNA replication in E. coli was investigated using the rpoB forward target. These experiments indicated that in a strain carrying a proofreading-exonuclease-defective form of Pol I (polAexo mutant) the frequency of rpoB mutations increased by about 2-fold, consistent with a model that the fidelity of DNA polymerase I is important in controlling the overall fidelity of chromosomal DNA replication. DNA sequencing of rpoB mutants revealed that the Pol I exonuclease deficiency lead to an increase in a variety of base-substitution mutations. A polAexo mutator effect was also observed in strains defective in DNA mismatch repair and carrying the dnaE915 antimutator allele. Overall, the data are consistent with a proposed role of Pol I in the faithful completion of Okazaki fragment gaps at the replication fork.
Collapse
|
24
|
The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2010; 193:660-9. [PMID: 21131491 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|
25
|
dnaX36 Mutator of Escherichia coli: effects of the {tau} subunit of the DNA polymerase III holoenzyme on chromosomal DNA replication fidelity. J Bacteriol 2010; 193:296-300. [PMID: 21036999 DOI: 10.1128/jb.01191-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli dnaX36 mutant displays a mutator effect, reflecting a fidelity function of the dnaX-encoded τ subunit of the DNA polymerase III (Pol III) holoenzyme. We have shown that this fidelity function (i) applies to both leading- and lagging-strand synthesis, (ii) is independent of Pol IV, and (iii) is limited by Pol II.
Collapse
|
26
|
Hastings PJ, Hersh MN, Thornton PC, Fonville NC, Slack A, Frisch RL, Ray MP, Harris RS, Leal SM, Rosenberg SM. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One 2010; 5:e10862. [PMID: 20523737 PMCID: PMC2877720 DOI: 10.1371/journal.pone.0010862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- R Jayaraman
- R. H. 35, Palaami Enclave, New Natham Road, Madurai 625 014, India.
| |
Collapse
|
28
|
Moyano AJ, Smania AM. Simple sequence repeats and mucoid conversion: biased mucA mutagenesis in mismatch repair-deficient Pseudomonas aeruginosa. PLoS One 2009; 4:e8203. [PMID: 19997602 PMCID: PMC2781719 DOI: 10.1371/journal.pone.0008203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022] Open
Abstract
In Pseudomonas aeruginosa, conversion to the mucoid phenotype marks the onset of an irreversible state of the infection in Cystic Fibrosis (CF) patients. The main pathway for mucoid conversion is mutagenesis of the mucA gene, frequently due to −1 bp deletions in a simple sequence repeat (SSR) of 5 Gs (G5-SSR426). We have recently observed that this mucA mutation is particularly accentuated in Mismatch Repair System (MRS)-deficient cells grown in vitro. Interestingly, previous reports have shown a high prevalence of hypermutable MRS-deficient strains occurring naturally in CF chronic lung infections. Here, we used mucA as a forward mutation model to systematically evaluate the role of G5-SSR426 in conversion to mucoidy in a MRS-deficient background, with this being the first analysis combining SSR-dependent localized hypermutability and the acquisition of a particular virulence/persistence trait in P. aeruginosa. In this study, mucA alleles were engineered with different contents of G:C SSRs, and tested for their effect on the mucoid conversion frequency and mucA mutational spectra in a mutS-deficient strain of P. aeruginosa. Importantly, deletion of G5-SSR426 severely reduced the emergence frequency of mucoid variants, with no preferential site of mutagenesis within mucA. Moreover, although mutagenesis in mucA was not totally removed, this was no longer the main pathway for mucoid conversion, suggesting that G5-SSR426 biased mutations towards mucA. Mutagenesis in mucA was restored by the addition of a new SSR (C6-SSR431), and even synergistically increased when G5-SSR426 and C6-SSR431 were present simultaneously, with the mucA mutations being restricted to −1 bp deletions within any of both G:C SSRs. These results confirm a critical role for G5-SSR426 enhancing the mutagenic process of mucA in MRS-deficient cells, and shed light on another mechanism, the SSR- localized hypermutability, contributing to mucoid conversion in P. aeruginosa.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
29
|
A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase. Proc Natl Acad Sci U S A 2009; 106:21137-42. [PMID: 19948952 DOI: 10.1073/pnas.0907257106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The only Y-family DNA polymerase conserved among all domains of life, DinB and its mammalian ortholog pol kappa, catalyzes proficient bypass of damaged DNA in translesion synthesis (TLS). Y-family DNA polymerases, including DinB, have been implicated in diverse biological phenomena ranging from adaptive mutagenesis in bacteria to several human cancers. Complete TLS requires dNTP insertion opposite a replication blocking lesion and subsequent extension with several dNTP additions. Here we report remarkably proficient TLS extension by DinB from Escherichia coli. We also describe a TLS DNA polymerase variant generated by mutation of an evolutionarily conserved tyrosine (Y79). This mutant DinB protein is capable of catalyzing dNTP insertion opposite a replication-blocking lesion, but cannot complete TLS, stalling three nucleotides after an N(2)-dG adduct. Strikingly, expression of this variant transforms a bacteriostatic DNA damaging agent into a bactericidal drug, resulting in profound toxicity even in a dinB(+) background. We find that this phenomenon is not exclusively due to a futile cycle of abortive TLS followed by exonucleolytic reversal. Rather, gene products with roles in cell death and metal homeostasis modulate the toxicity of DinB(Y79L) expression. Together, these results indicate that DinB is specialized to perform remarkably proficient insertion and extension on damaged DNA, and also expose unexpected connections between TLS and cell fate.
Collapse
|
30
|
Makiela-Dzbenska K, Jaszczur M, Banach-Orlowska M, Jonczyk P, Schaaper RM, Fijalkowska IJ. Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009; 74:1114-27. [PMID: 19843230 DOI: 10.1111/j.1365-2958.2009.06921.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.
Collapse
Affiliation(s)
- Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Wagner J, Etienne H, Fuchs RP, Cordonnier A, Burnouf D. Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase. Mol Microbiol 2009; 74:1143-51. [PMID: 19843218 DOI: 10.1111/j.1365-2958.2009.06920.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The prototypic Y family DNA polymerase IV (PolIV) of Escherichia coli is involved in multiple replication-associated processes including spontaneous mutagenesis, translesion synthesis (TLS), cell fitness, survival under stressful conditions and checkpoint like functions. It interacts physically and functionally with the replisome's beta processivity clamp through the canonical PolIV C-terminal peptide (CTP). A second interaction that involves a portion of the little finger (LF) domain of PolIV has been structurally described. Here we show that the LF-beta interaction stabilizes the clamp-polymerase complex in vitro and is necessary for the access of PolIV to ongoing replication forks in vivo. However, in contrast to the CTP-beta, the LF-beta interaction is dispensable for the role of the polymerase in TLS. This discloses two independent modes of action for PolIV and, in turn, uncovers a novel way by which the cell may regulate the potentially deleterious effect of such low fidelity polymerases during replication.
Collapse
Affiliation(s)
- Jérôme Wagner
- CNRS FRE3211, ESBS, Université de Strasbourg, BP 10413, 67412 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Coordinating DNA polymerase traffic during high and low fidelity synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1167-79. [PMID: 19540941 DOI: 10.1016/j.bbapap.2009.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 02/08/2023]
Abstract
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.
Collapse
|
33
|
Curti E, McDonald JP, Mead S, Woodgate R. DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli. Mol Microbiol 2008; 71:315-31. [PMID: 19019142 PMCID: PMC2680738 DOI: 10.1111/j.1365-2958.2008.06526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Collapse
Affiliation(s)
- Elena Curti
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.
Collapse
Affiliation(s)
- Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
35
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
36
|
Jacob KD, Eckert KA. Escherichia coli DNA polymerase IV contributes to spontaneous mutagenesis at coding sequences but not microsatellite alleles. Mutat Res 2007; 619:93-103. [PMID: 17397877 PMCID: PMC2703455 DOI: 10.1016/j.mrfmmm.2007.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 11/21/2022]
Abstract
Slipped strand mispairing during DNA synthesis is one proposed mechanism for microsatellite or short tandem repeat (STR) mutation. However, the DNA polymerase(s) responsible for STR mutagenesis have not been determined. In this study, we investigated the effect of the Escherichia colidinB gene product (Pol IV) on mononucleotide and dinucleotide repeat stability, using an HSV-tk gene episomal reporter system for microsatellite mutations. For the control vector (HSV-tk gene only) we observed a statistically significant 3.5-fold lower median mutation frequency in dinB(-) than dinB(+) cells (p<0.001, Wilcoxon Mann Whitney Test). For vectors containing an in-frame mononucleotide allele ([G/C](10)) or either of two dinucleotide alleles ([GT/CA](10) and [TC/AG](11)) we observed no statistically significant difference in the overall HSV-tk mutation frequency observed between dinB(+) and dinB(-) strains. To determine if a mutational bias exists for mutations made by Pol IV, mutational spectra were generated for each STR vector and strain. No statistically significant differences between strains were observed for either the proportion of mutational events at the STR or STR specificity among the three vectors. However, the specificity of mutational events at the STR alleles in each strain varied in a statistically significant manner as a consequence of microsatellite sequence. Our results indicate that while Pol IV contributes to spontaneous mutations within the HSV-tk coding sequence, Pol IV does not play a significant role in spontaneous mutagenesis at [G/C](10), [GT/CA](10), or [TC/AG](11) microsatellite alleles. Our data demonstrate that in a wild type genetic background, the major factor influencing microsatellite mutagenesis is the allelic sequence composition.
Collapse
Affiliation(s)
| | - Kristin A. Eckert
- Corresponding Author Information: 500 University Drive, H059 – Gittlen Cancer Research Foundation, Hershey, PA 17033, Phone: (717) 531-4056, Fax: (717) 531-5634, E-mail:
| |
Collapse
|
37
|
Hardin A, Villalta CF, Doan M, Jabri M, Chockalingham V, White SJ, Fowler RG. A molecular characterization of spontaneous frameshift mutagenesis within the trpA gene of Escherichia coli. DNA Repair (Amst) 2007; 6:177-89. [PMID: 17084112 PMCID: PMC1804121 DOI: 10.1016/j.dnarep.2006.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/05/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
Spontaneous frameshift mutations are an important source of genetic variation in all species and cause a large number of genetic disorders in humans. To enhance our understanding of the molecular mechanisms of frameshift mutagenesis, 583 spontaneous Trp+ revertants of two trpA frameshift alleles in Escherichia coli were isolated and DNA sequenced. In order to measure the contribution of methyl-directed mismatch repair to frameshift production, mutational spectra were constructed for both mismatch repair-proficient and repair-defective strains. The molecular origins of practically all of the frameshifts analyzed could be explained by one of six simple models based upon misalignment of the template or nascent DNA strands with or without misincorporation of primer nucleotides during DNA replication. Most frameshifts occurred within mononucleotide runs as has been shown often in previous studies but the location of the 76 frameshift sites was usually outside of runs. Mismatch repair generally was most effective in preventing the occurrence of frameshifts within runs but there was much variation from site to site. Most frameshift sites outside of runs appear to be refractory to mismatch repair although the small number of occurrences at most of these sites make firm conclusions impossible. There was a dense pattern of reversion sites within the trpA DNA region where reversion events could occur, suggesting that, in general, most DNA sequences are capable of undergoing spontaneous mutational events during replication that can lead to small deletions and insertions. Many of these errors are likely to occur at low frequencies and be tolerated as events too costly to prevent or repair. These studies also revealed an unpredicted flexibility in the primary amino acid sequence of the trpA product, the alpha subunit of tryptophan synthase.
Collapse
Affiliation(s)
- Aaron Hardin
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | - Michael Doan
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Mouna Jabri
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | | | - Steven J. White
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Robert G. Fowler
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
38
|
Jarosz DF, Beuning PJ, Cohen SE, Walker GC. Y-family DNA polymerases in Escherichia coli. Trends Microbiol 2007; 15:70-7. [PMID: 17207624 DOI: 10.1016/j.tim.2006.12.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The observation that mutations in the Escherichia coli genes umuC+ and umuD+ abolish mutagenesis induced by UV light strongly supported the counterintuitive notion that such mutagenesis is an active rather than passive process. Genetic and biochemical studies have revealed that umuC+ and its homolog dinB+ encode novel DNA polymerases with the ability to catalyze synthesis past DNA lesions that otherwise stall replication--a process termed translesion synthesis (TLS). Similar polymerases have been identified in nearly all organisms, constituting a new enzyme superfamily. Although typically viewed as unfaithful copiers of DNA, recent studies suggest that certain TLS polymerases can perform proficient and moderately accurate bypass of particular types of DNA damage. Moreover, various cellular factors can modulate their activity and mutagenic potential.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
39
|
Chikova AK, Schaaper RM. Mutator and antimutator effects of the bacteriophage P1 hot gene product. J Bacteriol 2006; 188:5831-8. [PMID: 16885451 PMCID: PMC1540081 DOI: 10.1128/jb.00630-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hot (homolog of theta) protein of bacteriophage P1 can substitute for the Escherichia coli DNA polymerase III theta subunit, as evidenced by its stabilizing effect on certain dnaQ mutants that carry an unstable polymerase III epsilon proofreading subunit (antimutator effect). Here, we show that Hot can also cause an increase in the mutability of various E. coli strains (mutator effect). The hot mutator effect differs from the one caused by the lack of theta. Experiments using chimeric theta/Hot proteins containing various domains of Hot and theta along with a series of point mutants show that both N- and C-terminal parts of each protein are important for stabilizing the epsilon subunit. In contrast, the N-terminal part of Hot appears uniquely responsible for its mutator activity.
Collapse
Affiliation(s)
- Anna K Chikova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
40
|
Kuban W, Banach-Orlowska M, Schaaper RM, Jonczyk P, Fijalkowska IJ. Role of DNA polymerase IV in Escherichia coli SOS mutator activity. J Bacteriol 2006; 188:7977-80. [PMID: 16980447 PMCID: PMC1636302 DOI: 10.1128/jb.01088-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).
Collapse
Affiliation(s)
- Wojciech Kuban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02 106 Warsaw, Poland
| | | | | | | | | |
Collapse
|