1
|
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev 2024; 40:381-408. [PMID: 36856460 DOI: 10.1080/02648725.2023.2183617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Chronic periodontitis is a common oral disorder caused by pathogenic bacteria. Despite the wide use of antibiotics as the conventional adjunctive treatment, the challenges of increased antibiotic resistance and limited therapeutic effect receive considerable attention and the developments of alternative treatments gain increasing consideration. Growing evidence showed that Lactobacillus reuteri (LR) may represent a promising alternative adjunct for chronic periodontitis. It can attenuate inflammation and reduce tissue disruption. LR-assisted treatment has been shown to be effective and relatively safe in multiple clinical trials, and accumulating evidence suggests its significant biological roles. In the current review, we focus on capturing the underlying mechanisms of LR involved in chronic periodontitis, thereby representing a scientific foundation for LR-assisted therapy. Furthermore, we point out the challenges and future directions for further clinical trials to improve the clinical applicability for LR.
Collapse
Affiliation(s)
- Keyi Zhou
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jiaman Xie
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Yuan Su
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
2
|
Yokogawa T, Nagano K, Fujita M, Miyakawa H, Iijima M. Characterization of a Treponema denticola ATCC 35405 mutant strain with mutation accumulation, including a lack of phage-derived genes. PLoS One 2022; 17:e0270198. [PMID: 35749516 PMCID: PMC9231711 DOI: 10.1371/journal.pone.0270198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Trepoenema denticola, a spirochetal bacterium, is associated with periodontal diseases. The type strain of the bacterium, ATCC 35405, is commonly used in a basic research. Here, we report that our stock strain derived from ATCC 35405 had a mutation on the chromosome and expressed differential characteristics from the original strain. Genome sequencing analysis revealed the lack of a phage-derived region, and over 200 mutations in the mutant strain. The mutant grew to a higher density in broth culture as compared with the origin. In addition, the mutant formed a colony on the surface of the agar medium, whereas the origin could not. On contrary, the mutant showed decreased motility and adhesion to gingival epithelial cells. There were no differences in the bacterial cell length and a chymotrypsin-like protease activity between the two strains. RNA and genome sequencing analysis could not identify the genes that introduced the phenotypic differences between the strains. This mutant is potentially useful for examining the genetic background responsible for the physiological and pathogenic characteristics of T. denticola.
Collapse
Affiliation(s)
- Tadaharu Yokogawa
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
- * E-mail:
| | - Mari Fujita
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroshi Miyakawa
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
3
|
Murakami Y, Nagano K, Hasegawa Y. Separation of Glycosylated OmpA-Like Proteins from Porphyromonas gingivalis and Tannerella forsythia. Methods Mol Biol 2021; 2210:143-155. [PMID: 32815135 DOI: 10.1007/978-1-0716-0939-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OmpA-like proteins located in the outer bacterial membrane are potential virulence factors from the major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia. Our previous studies have shown that OmpA-like proteins are glycosylated by O-linked N-acetylglucosamine (O-GlcNAc) and are strongly reactive to wheat germ agglutinin (WGA) lectin, which shows sugar specificity to GlcNAc. Utilizing this property, we have developed a separation method for OmpA-like proteins by affinity chromatography using WGA lectin-agarose. The purity of enriched native OmpA-like proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) staining. More importantly, the purified OmpA-like proteins formed a unique trimeric structure keeping their bioactivity intact. In this chapter, we describe a detailed procedure to separate OmpA-like proteins, which may be used to further progress the biological studies of OmpA-like proteins.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Dental Basic Education (Biology), Asahi University School of Dentistry, Mizuho, Gifu, Japan.
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
4
|
Construction of a Gene-Deletion Mutant in Tannerella forsythia. Methods Mol Biol 2020. [PMID: 32815124 DOI: 10.1007/978-1-0716-0939-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tannerella forsythia, a gram-negative anaerobic bacterium, is one of the most important pathogens in periodontal disease. However, it has been difficult to construct a gene-deletion mutant in this organism, which may serve as a useful tool in microbiological research. We reported a highly efficient method to construct a gene-deletion mutant of T. forsythia in 2007, and it was accomplished by preparing competent cells from a colony grown on an agar medium instead of a broth culture. Here, we describe the same method with some improvements.
Collapse
|
5
|
Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C, Enghild JJ, Bereta GP, Pothula K, Kleinekathoefer U, Baslé A, Ranson NA, Potempa J, van den Berg B. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol 2020; 5:1016-1025. [PMID: 32393857 PMCID: PMC7610489 DOI: 10.1038/s41564-020-0716-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a 'pedal bin' mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis.
Collapse
Affiliation(s)
- Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Shaun Rawson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- The Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO) and the Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karunakar Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
OmpA-Like Proteins of Porphyromonas gingivalis Mediate Resistance to the Antimicrobial Peptide LL-37. J Pathog 2018; 2018:2068435. [PMID: 30687554 PMCID: PMC6327258 DOI: 10.1155/2018/2068435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 11/29/2022] Open
Abstract
Subgingival bacteria are continually exposed to gingival crevicular fluids that are derived from serum, which contain various bactericidal agents. The periodontopathic bacterium Porphyromonas gingivalis has been demonstrated to possess a variety of abilities to resist bactericidal agents, due to which it is able to propagate in the subgingival environment. We previously demonstrated that the major surface glycoproteins of P. gingivalis—Pgm6 and Pgm7, also called outer membrane protein A-like proteins (OmpALPs)—mediate resistance to the bactericidal activity of human serum, but their precise role remains unknown. In this study, we investigated the sensitivity of the wild-type and Pgm6/Pgm7-deficient P. gingivalis strains toward major antimicrobial peptides in the oral cavity, human β-defensins (hBDs) 1-3, and human cathelicidin LL-37. hBDs showed a considerably weak bactericidal activity against both bacterial strains. LL-37 also showed a weak activity against the wild-type strain; however, it showed a significant activity against the Pgm6/Pgm7-deficient strain. In the Pgm6/Pgm7-deficient strain, LL-37 remarkably accumulated on the bacterial cell surface, which may result in the destruction of the outer membrane. Additionally, the bactericidal activity of hBDs against the Pgm6/Pgm7-deficient strain was found to be synergistically promoted in the presence of LL-37. Our results suggest that OmpALPs specifically protect P. gingivalis from the bactericidal activity of LL-37; thus, P. gingivalis may adeptly survive in LL-37-producing subgingival environments.
Collapse
|
7
|
OmpA-like proteins of Porphyromonas gingivalis contribute to serum resistance and prevent Toll-like receptor 4-mediated host cell activation. PLoS One 2018; 13:e0202791. [PMID: 30153274 PMCID: PMC6112661 DOI: 10.1371/journal.pone.0202791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/09/2018] [Indexed: 12/03/2022] Open
Abstract
Porphyromonas gingivalis possesses various abilities to evade and disrupt host immune responses, by which it acts as an important periodontal pathogen. P. gingivalis produces outer membrane protein A (OmpA)-like proteins (OmpALPs), Pgm6 and Pgm7, as major O-linked glycoproteins, but their pathological roles in P. gingivalis infection are largely unknown. Here, we report that OmpALP-deficient strains of P. gingivalis show an enhanced stimulatory activity in coculture with host cells. Such an altered ability of the OmpALP-deficient strains was found to be due to their impaired survival in coculture and the release of LPS from dead bacterial cells to stimulate Toll-like receptor 4 (TLR4). Further analyses revealed that the OmpALP-deficient strains were inviable in serum-containing media although they grew normally in the bacterial medium. The wild-type strain was able to grow in 90% normal human serum, while the OmpALP-deficient strains did not survive even at 5%. The OmpALP-deficient strains did not survive in heat-inactivated serum, but they gained the ability to survive and grow in proteinase K-treated serum. Of note, the sensitivity of the OmpALP-deficient strains to the bactericidal activity of human β-defensin 3 was increased as compared with the WT. Thus, this study suggests that OmpALPs Pgm6 and Pgm7 are important for serum resistance of P. gingivalis. These proteins prevent bacterial cell destruction by serum and innate immune recognition by TLR4; this way, P. gingivalis may adeptly colonize serum-containing gingival crevicular fluids and subgingival environments.
Collapse
|
8
|
Lee SF, Davey L. Disulfide Bonds: A Key Modification in Bacterial Extracytoplasmic Proteins. J Dent Res 2017; 96:1465-1473. [PMID: 28797211 DOI: 10.1177/0022034517725059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disulfide bonds are a common posttranslational modification that contributes to the folding and stability of extracytoplasmic proteins. Almost all organisms, from eukaryotes to prokaryotes, have evolved enzymes to make and break these bonds. Accurate and efficient disulfide bond formation can be vital for protein function; therefore, the enzymes that catalyze disulfide bond formation are involved in multiple biological processes. Recent advances clearly show that oral bacteria also have the ability to from disulfide bonds, and this ability has an effect on a range of dental plaque-related phenotypes. In the gram-positive Streptococcus gordonii, the ability to form disulfide bonds affected autolysis, extracellular DNA release, biofilm formation, genetic competence, and bacteriocin production. In Actinomyces oris, disulfide bond formation is needed for pilus assembly, coaggregation, and biofilm formation. In other gram-positive bacteria, such as Enterococcus faecalis, disulfide bonds are formed in secreted bacteriocins and required for activity. In these oral bacteria, the enzymes that catalyze the disulfide bonds are quite diverse and share little sequence homology, but all contain a CXXC catalytic active site motif and a conserved C-terminal cis-proline, signature features of a thiol-disulfide oxidoreductase. Emerging evidence also indicates that gram-negative oral bacteria, such as Porphyromonas gingivalis and Tannerella forsythia, use disulfide bonds to stabilize their outer membrane porin proteins. Bioinformatic screens reveal that these gram-negative bacteria carry genes coding for thiol-disulfide oxidoreductases in their genomes. In conclusion, disulfide bond formation in oral bacteria is an emerging field, and the ability to form disulfide bonds plays an important role in dental plaque formation and fitness for the bacteria.
Collapse
Affiliation(s)
- S F Lee
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,3 Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,4 Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - L Davey
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Current address: Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. Comparative analysis of motility and other properties of Treponema denticola strains. Microb Pathog 2016; 102:82-88. [PMID: 27914958 DOI: 10.1016/j.micpath.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 11/29/2016] [Indexed: 01/27/2023]
Abstract
The periodontitis-associated pathogen Treponema denticola is a spirochetal bacterium that swims by rotating its cell body like a corkscrew using periplasmic flagella. We compared physiologic and pathogenic properties, including motility, in four strains of T. denticola. Phase-contrast microscopy showed differential motility between the strains; ATCC 35404 showed the highest motility, followed by ATCC 33521, and the remaining two strains (ATCC 35405 and ATCC 33520) showed the lowest motility. Transmission electron microscopy showed that the low motility strains exhibited extracellular flagellar protrusions resulting from elongated flagella. Treponemal flagellar filaments are composed of three flagellins of FlaB1, FlaB2 and FlaB3. FlaB1 expression was comparable between the strains, whereas FlaB2 expression was lowest in ATCC 35404. FlaB3 expression varied among strains, with ATCC 35405, ATCC 33520, ATCC 33521, and ATCC 35404 showing the highest to lowest expression levels, respectively. Additionally, the low motility strains showed faster electrophoretic mobility of FlaB3, suggesting that posttranslational modifications of these proteins may have varied, because the amino acid sequences of FlaB3 were identical between the strains. These results suggest that inappropriate expression of FlaB2 and FlaB3 caused the unusual elongation of flagella that resulted in decreased motility. Furthermore, the low motility strains grew to higher bacterial density, and showed greater chymotrypsin-like protease activity, and more bacterial cells associated with gingival epithelial cells in comparison with the high motility strains. There may be a relationship between motility and these properties, but the genetic factors underlying this association remain unclear.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
10
|
Naylor KL, Widziolek M, Hunt S, Conolly M, Hicks M, Stafford P, Potempa J, Murdoch C, Douglas CWI, Stafford GP. Role of OmpA2 surface regions of Porphyromonas gingivalis in host-pathogen interactions with oral epithelial cells. Microbiologyopen 2016; 6. [PMID: 27595778 PMCID: PMC5300881 DOI: 10.1002/mbo3.401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/27/2023] Open
Abstract
Outer membrane protein A (OmpA) is a key outer membrane protein found in Gram‐negative bacteria that contributes to several crucial processes in bacterial virulence. In Porphyromonas gingivalis, OmpA is predicted as a heterotrimer of OmpA1 and OmpA2 subunits encoded by adjacent genes. Here we describe the role of OmpA and its individual subunits in the interaction of P. gingivalis with oral cells. Using knockout mutagenesis, we show that OmpA2 plays a significant role in biofilm formation and interaction with human epithelial cells. We used protein structure prediction software to identify extracellular loops of OmpA2, and determined these are involved in interactions with epithelial cells as evidenced by inhibition of adherence and invasion of P. gingivalis by synthetic extracellular loop peptides and the ability of the peptides to mediate interaction of latex beads with human cells. In particular, we observe that OmpA2‐loop 4 plays an important role in the interaction with host cells. These data demonstrate for the first time the important role of P. gingivalis OmpA2 extracellular loops in interaction with epithelial cells, which may help design novel peptide‐based antimicrobial therapies for periodontal disease.
Collapse
Affiliation(s)
- Kathryn L Naylor
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Magdalena Widziolek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Mary Conolly
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Hicks
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Research Centre, Sheffield Hallam University, City Campus, Sheffield, United Kingdom
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - C W Ian Douglas
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. Int J Mol Sci 2016; 17:ijms17040599. [PMID: 27110766 PMCID: PMC4849052 DOI: 10.3390/ijms17040599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Diffusion channels are involved in the selective uptake of nutrients and form the largest outer membrane protein (OMP) family in Gram-negative bacteria. Differences in pore size and amino acid composition contribute to the specificity. Structure-based multiple sequence alignments shed light on the structure-function relations for all eight subclasses. Entropy-variability analysis results are correlated to known structural and functional aspects, such as structural integrity, multimericity, specificity and biological niche adaptation. The high mutation rate in their surface-exposed loops is likely an important mechanism for host immune system evasion. Multiple sequence alignments for each subclass revealed conserved residue positions that are involved in substrate recognition and specificity. An analysis of monomeric protein channels revealed particular sequence patterns of amino acids that were observed in other classes at multimeric interfaces. This adds to the emerging evidence that all members of the family exist in a multimeric state. Our findings are important for understanding the role of members of this family in a wide range of bacterial processes, including bacterial food uptake, survival and adaptation mechanisms.
Collapse
|
12
|
Tchoupa AK, Lichtenegger S, Reidl J, Hauck CR. Outer membrane protein P1 is the CEACAM-binding adhesin of Haemophilus influenzae. Mol Microbiol 2015; 98:440-55. [PMID: 26179342 DOI: 10.1111/mmi.13134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/01/2022]
Abstract
Haemophilus influenzae is a Gram-negative pathogen colonizing the upper respiratory tract mucosa. H. influenzae is one of several human-restricted bacteria, which bind to carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) on the epithelium leading to bacterial uptake by the eukaryotic cells. Adhesion to CEACAMs is thought to be mediated by the H. influenzae outer membrane protein (OMP) P5. However, CEACAMs still bound to H. influenzae lacking OMP P5 expression, and soluble CEACAM receptor ectodomains failed to bind to OMP P5, when heterologously expressed in Escherichia coli. Screening of a panel of H. influenzae OMP mutants revealed that lack of OMP P1 completely abrogated CEACAM binding and supressed CEACAM-mediated engulfment of H. influenzae by epithelial cells. Moreover, ectopic expression of OMP P1 in E. coli was sufficient to induce CEACAM binding and to promote attachment to and internalization into CEACAM-expressing cells. Interestingly, OMP P1 selectively recognizes human CEACAMs, but not homologs from other mammals and this binding preference is preserved upon expression in E. coli. Together, our data identify OMP P1 as the bona fide CEACAM-binding invasin of H. influenzae. This is the first report providing evidence for an involvement of the major OMP P1 of H. influenzae in pathogenesis.
Collapse
Affiliation(s)
| | | | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Christof R Hauck
- Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. A Major Fimbrilin Variant of Mfa1 Fimbriae in Porphyromonas gingivalis. J Dent Res 2015; 94:1143-8. [PMID: 26001707 DOI: 10.1177/0022034515588275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis is known to express 2 distinct types of fimbriae: FimA and Mfa1 fimbriae. However, we previously reported that fimbria-like structures were found in a P. gingivalis strain in which neither FimA nor Mfa1 fimbriae were detected. In this study, we identified a major protein in the bacterial lysates of the strain, which has been reported as the 53-kDa major outer membrane protein of P. gingivalis (53K protein) and subsequently reported as a major fimbrilin of a novel-type fimbria. Sequencing of the chromosomal DNA of the strain showed that the 53k gene (encoding the 53K protein) was located at a locus corresponding to the mfa1 gene (encoding the Mfa1 protein, which is a major fimbrilin of Mfa1 fimbriae) of the ATCC 33277 type strain. However, the 53K and Mfa1 proteins showed a low amino acid sequence homology and different antigenicity. The 53K protein was detected in 34 of 84 (41%) P. gingivalis strains, while the Mfa1 protein was detected in 44% of the strains. No strain expressed both 53K and Mfa1 proteins. Additionally, fimbriae were normally expressed in mutants in which the 53k and mfa1 genes were interchanged. These results indicate that the 53K protein is another major fimbrilin of Mfa1 fimbriae in P. gingivalis.
Collapse
Affiliation(s)
- K Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - F Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Abiko Y, Nagano K, Yoshida Y, Yoshimura F. Characterization of Treponema denticola mutants defective in the major antigenic proteins, Msp and TmpC. PLoS One 2014; 9:e113565. [PMID: 25401769 PMCID: PMC4234677 DOI: 10.1371/journal.pone.0113565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/27/2014] [Indexed: 12/28/2022] Open
Abstract
Treponema denticola, a gram-negative and anaerobic spirochete, is associated with advancing severity of chronic periodontitis. In this study, we confirmed that two major antigenic proteinswere Msp and TmpC, and examined their physiological and pathological roles using gene-deletion mutants. Msp formed a large complex that localized to the outer membrane, while TmpC existed as a monomer and largely localized to the inner membrane. However, TmpC was also detected in the outer membrane fraction, but its cell-surface exposure was not detected. Msp defects increased cell-surface hydrophobicity and secretion of TNF-α from macrophage-like cells, whereas TmpC defects decreased autoagglutination and chymotrypsin-like protease activities. Both mutants adhered to gingival epithelial cells similarly to the wild-type and showed slightly decreased motility. In addition, in Msp-defective mutants, the TDE1072 protein, which is a major membrane protein, was abolished; therefore, phenotypic changes in the mutant can be, at least in part, attributed to the loss of the TDE1072 protein. Thus, the major antigenic proteins, Msp and TmpC, have significant and diverse impacts on the characteristics of T. denticola, especially cell surface properties.
Collapse
Affiliation(s)
- Yuki Abiko
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University Nagoya, Aichi, Japan
| |
Collapse
|
15
|
Glew MD, Veith PD, Chen D, Seers CA, Chen YY, Reynolds EC. Blue native-PAGE analysis of membrane protein complexes in Porphyromonas gingivalis. J Proteomics 2014; 110:72-92. [DOI: 10.1016/j.jprot.2014.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/01/2014] [Accepted: 07/20/2014] [Indexed: 11/30/2022]
|
16
|
Characterization of wheat germ agglutinin lectin-reactive glycosylated OmpA-like proteins derived from Porphyromonas gingivalis. Infect Immun 2014; 82:4563-71. [PMID: 25135681 DOI: 10.1128/iai.02069-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycosylation is one of the common posttranslational modifications in eukaryotes. Recently, glycosylated proteins have also been identified in prokaryotes. A few glycosylated proteins, including gingipains, have been identified in Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis. However, no other glycosylated proteins have been found. The present study identified glycoproteins in P. gingivalis cell lysates by lectin blotting. Whole-cell lysates reacted with concanavalin A (ConA), Lens culinaris agglutinin (LCA), Phaseolus vulgaris erythroagglutinin (PHA-E4), and wheat germ agglutinin (WGA), suggesting the presence of mannose-, N-acetylgalactosamine-, or N-acetylglucosamine (GlcNAc)-modified proteins. Next, glycoproteins were isolated by ConA-, LCA-, PHA-E4-, or WGA-conjugated lectin affinity chromatography although specific proteins were enriched only by the WGA column. Mass spectrometry analysis showed that an OmpA-like, heterotrimeric complex formed by Pgm6 and Pgm7 (Pgm6/7) was the major glycoprotein isolated from P. gingivalis. Deglycosylation experiments and Western blotting with a specific antibody indicated that Pgm6/7 was modified with O-GlcNAc. When whole-cell lysates from P. gingivalis mutant strains with deletions of Pgm6 and Pgm7 were applied to a WGA column, homotrimeric Pgm7, but not Pgm6, was isolated. Heterotrimeric Pgm6/7 had the strongest affinity for fibronectin of all the extracellular proteins tested, whereas homotrimeric Pgm7 showed reduced binding activity. These findings suggest that the heterotrimeric structure is important for the biological activity of glycosylated WGA-binding OmpA-like proteins in P. gingivalis.
Collapse
|
17
|
Abiko Y, Nagano K, Yoshida Y, Yoshimura F. Major membrane protein TDE2508 regulates adhesive potency in Treponema denticola. PLoS One 2014; 9:e89051. [PMID: 24586498 PMCID: PMC3931704 DOI: 10.1371/journal.pone.0089051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022] Open
Abstract
The cultivation and genetic manipulation of Treponema denticola, a Gram-negative oral spirochaeta associated with periodontal diseases, is still challenging. In this study, we formulated a simple medium based on a commercially available one, and established a transformation method with high efficiency. We then analyzed proteins in a membrane fraction in T. denticola and identified 16 major membrane-associated proteins, and characterized one of them, TDE2508, whose biological function was not yet known. Although this protein, which exhibited a complex conformation, was presumably localized in the outer membrane, we did not find conclusive evidence that it was exposed on the cell surface. Intriguingly, a TDE2508-deficient mutant exhibited significantly increased biofilm formation and adherent activity on human gingival epithelial cells. However, the protein deficiency did not alter autoaggregation, coaggregation with Porphyromonas gingivalis, hemagglutination, cell surface hydrophobicity, motility, or expression of Msp which was reported to be an adherent molecule in this bacteria. In conclusion, the major membrane protein TDE2508 regulates biofilm formation and the adhesive potency of T. denticola, although the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Yuki Abiko
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
18
|
Berry JD, Rajaure M, Young R. Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Mol Microbiol 2013; 88:35-47. [PMID: 23387988 DOI: 10.1111/mmi.12167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 11/30/2022]
Abstract
The λ Rz and Rz1 proteins are the subunits of the spanin complex, required for the disruption of the outer membrane during host lysis. Rz, the inner membrane or i-spanin, has a largely alpha-helical periplasmic domain, whereas Rz1, the outer membrane or o-spanin, has a 25% proline content with no predicted secondary structure. We report that both Rz and Rz1 accumulate as homodimers covalently linked by intermolecular disulfide bonds involving all three Cys residues, two in Rz and one in Rz1. Moreover, of these three intermolecular disulfides, spanin function requires the presence of at least one of the two linkages nearest the Rz-Rz1 C-terminal interaction domains; i.e. either the Rz1-Rz1 disulfide or the distal Rz-Rz disulfide link. In a dsbC host, but not in dsbA or dsbA dsbC hosts, formation of the covalent homodimers of Rz is severely reduced and outer membrane disruption is significantly delayed, suggesting that the spanin pathway normally proceeds through DsbA-mediated formation of an intramolecular disulfide in Rz. In contrast, efficient formation of the Rz1-Rz1 disulfide requires DsbA. Finally, Dsb-independent formation of the covalent homodimer of either subunit requires the presence of the other, presumably as a template for close apposition of the thiols.
Collapse
Affiliation(s)
- Joel D Berry
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
19
|
Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One 2012; 7:e43722. [PMID: 22970139 PMCID: PMC3436787 DOI: 10.1371/journal.pone.0043722] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.
Collapse
|
20
|
Kishi M, Hasegawa Y, Nagano K, Nakamura H, Murakami Y, Yoshimura F. Identification and characterization of novel glycoproteins involved in growth and biofilm formation by Porphyromonas gingivalis. Mol Oral Microbiol 2012; 27:458-70. [PMID: 23134611 DOI: 10.1111/j.2041-1014.2012.00659.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis has been implicated as a major pathogen associated with chronic periodontitis. To extend our knowledge of post-translational protein glycosylation in P. gingivalis, a proteomic analysis involving two-dimensional polyacrylamide gel electrophoresis combined with carbohydrate staining and mass spectrometry was performed. Four novel glycoproteins, PGN0743, PGN0876, PGN1513 and PGN0729, in P. gingivalis ATCC 33277 were identified. These four identified glycoproteins possess a range of biochemical activities and cellular localization. PGN0743 contains a sequence motif identifying it as a FKBP-type cis-trans isomerase, which has activity usually associated with chaperone functions. PGN0876 and PGN1513 contain tetratricopeptide repeat domains that mediate protein-protein interactions. PGN0729 encodes the outer membrane protein 41 precursor, which was previously identified as Pgm6, and is homologous to the OmpA protein in Escherichia coli. Several different types of glycoprotein were identified, suggesting that P. gingivalis possesses a general mechanism for protein glycosylation. PGN0743-deficient and PGN0876-deficient mutants were constructed to examine the role(s) of the two identified glycoproteins. Both mutants showed a decreased growth rate under nutrient-limited conditions and reduced biofilm formation activity. These results suggest that the novel glycoproteins PGN0743 and PGN0876 play an important role in the growth and colonization of P. gingivalis.
Collapse
Affiliation(s)
- M Kishi
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
21
|
E-selectin mediates Porphyromonas gingivalis adherence to human endothelial cells. Infect Immun 2012; 80:2570-6. [PMID: 22508864 DOI: 10.1128/iai.06098-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a major periodontal pathogen, may contribute to atherogenesis and other inflammatory cardiovascular diseases. However, little is known about interactions between P. gingivalis and endothelial cells. E-selectin is a membrane protein on endothelial cells that initiates recruitment of leukocytes to inflamed tissue, and it may also play a role in pathogen attachment. In the present study, we examined the role of E-selectin in P. gingivalis adherence to endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor alpha (TNF-α) to induce E-selectin expression. Adherence of P. gingivalis to HUVECs was measured by fluorescence microscopy. TNF-α increased adherence of wild-type P. gingivalis to HUVECs. Antibodies to E-selectin and sialyl Lewis X suppressed P. gingivalis adherence to stimulated HUVECs. P. gingivalis mutants lacking OmpA-like proteins Pgm6 and -7 had reduced adherence to stimulated HUVECs, but fimbria-deficient mutants were not affected. E-selectin-mediated P. gingivalis adherence activated endothelial exocytosis. These results suggest that the interaction between host E-selectin and pathogen Pgm6/7 mediates P. gingivalis adherence to endothelial cells and may trigger vascular inflammation.
Collapse
|
22
|
Abe T, Murakami Y, Nagano K, Hasegawa Y, Moriguchi K, Ohno N, Shimozato K, Yoshimura F. OmpA-like protein influences cell shape and adhesive activity of Tannerella forsythia. Mol Oral Microbiol 2011; 26:374-87. [PMID: 22053965 DOI: 10.1111/j.2041-1014.2011.00625.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tannerella forsythia, a gram-negative fusiform rod, is implicated in several types of oral anaerobic infections. Most gram-negative bacteria have OmpA-like proteins that are homologous to the OmpA protein in Escherichia coli. We identified an OmpA-like protein in T. forsythia encoded by the tf1331 gene as one of the major proteins by mass spectrometric analysis. Two-dimensional, diagonal electrophoresis showed that the OmpA-like protein formed a dimeric or trimeric structure via intermolecular disulfide bonds. A biotin labeling experiment revealed that a portion of the protein was exposed on the cell surface, even though T. forsythia possesses an S-layer at the outermost cell surface. Using a tf1331-deletion mutant, we showed that the OmpA-like protein affected cell morphology. The length of the mutant cell was reduced almost by half. Cell swelling was observed in more than 40% of the mutant cells. Moreover, the mutant exhibited decreased adhesion to fibronectin, retarded autoaggregation, and reduced cell surface hydrophobicity. These results suggest that the OmpA-like protein in T. forsythia plays an important role in cellular integrity and adhesive function.
Collapse
Affiliation(s)
- T Abe
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Manchur MA, Kikumoto M, Kanao T, Takada J, Kamimura K. Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Extremophiles 2011; 15:403-10. [PMID: 21472537 PMCID: PMC3084935 DOI: 10.1007/s00792-011-0371-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity.
Collapse
Affiliation(s)
- Mohammed Abul Manchur
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama, 700-8530, Japan
| | | | | | | | | |
Collapse
|
24
|
Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, Feldman MF. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 2010; 286:1269-76. [PMID: 21056982 DOI: 10.1074/jbc.m110.185744] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Saiki K, Konishi K. Identification of a novel Porphyromonas gingivalis outer membrane protein, PG534, required for the production of active gingipains. FEMS Microbiol Lett 2010; 310:168-74. [DOI: 10.1111/j.1574-6968.2010.02059.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Nagano K, Hasegawa Y, Murakami Y, Nishiyama S, Yoshimura F. FimB regulates FimA fimbriation in Porphyromonas gingivalis. J Dent Res 2010; 89:903-8. [PMID: 20530728 DOI: 10.1177/0022034510370089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The periodontitis-associated pathogen Porphyromonas gingivalis colonizes and forms a biofilm in gingival crevices through fimbriae. It is known that the often-used strains ATCC 33277 and 381 produce long FimA fimbriae. We found a possible nonsense mutation within fimB, immediately downstream from fimA, coding a major subunit of FimA fimbriae of the strains. Indeed, P. gingivalis strains, except for ATCC 33277 and 381, universally expressed FimB, the gene product of fimB. Electron micrographs revealed that a FimB-restored strain had short and dense, "toothbrush"-like, FimA fimbriae. FimA overexpression elongated the fimbriae, whereas FimB overexpression shortened them. FimB restoration increased production of FimA and its accessory proteins. Thus, FimB regulates the length and expression of FimA fimbriae. Additionally, FimB restoration significantly reduced the release of FimA fimbriae from the cell surface, suggesting that FimB functions as an anchor of the fimbriae. The restoration enhanced adherent activity as well.
Collapse
Affiliation(s)
- K Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | |
Collapse
|
27
|
Etheridge LA, Crawford TQ, Zhang S, Roelink H. Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development 2010; 137:133-40. [PMID: 20023168 DOI: 10.1242/dev.043547] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dispatched 1 (Disp1) encodes a twelve transmembrane domain protein that is required for long-range sonic hedgehog (Shh) signaling. Inhibition of Disp1 function, both by RNAi or dominant-negative constructs, prevents secretion and results in the accumulation of Shh in source cells. Measuring the Shh response in neuralized embryoid bodies (EBs) derived from embryonic stem (ES) cells, with or without Disp1 function, demonstrates an additional role for Disp1 in cells transporting Shh. Co-cultures with Shh-expressing cells revealed a significant reduction in the range of the contact-dependent Shh response in Disp1(-/-) neuralized EBs. These observations support a dual role for Disp1, not only in the secretion of Shh from the source cells, but also in the subsequent transport of Shh through tissue.
Collapse
Affiliation(s)
- L Alton Etheridge
- Department of Molecular and Cell Biology, University of California at Berkeley, 16 Barker Hall #3204, Berkeley, CA 94720-3204, USA
| | | | | | | |
Collapse
|
28
|
Identification of a gingipain-sensitive surface ligand of Porphyromonas gingivalis that induces Toll-like receptor 2- and 4-independent NF-kappaB activation in CHO cells. Infect Immun 2009; 77:4414-20. [PMID: 19667049 DOI: 10.1128/iai.00140-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a major periodontal pathogen that has the pathogenic proteinases Arg-specific gingipain and Lys-specific gingipain. We previously found that a cell surface component on P. gingivalis is able to induce Toll-like receptor 2 (TLR2)- and TLR4-independent signaling in 7.19 cells and that this component can be degraded by gingipains. In this study, we purified this component from the P. gingivalis gingipain-null mutant KDP136 and obtained two candidate proteins. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis showed that the proteins, with molecular masses of 123 and 43 kDa, were encoded by PGN_0748 and PGN_0728 (pgm6), respectively, in the P. gingivalis ATCC 33277 genome sequence. The PGN_0748-encoded protein, which we refer to as gingipain-sensitive ligand A (GslA), reacted with antiserum that could effectively inhibit the activity of KDP136 to induce NF-kappaB activation in 7.19 cells, but Pgm6 did not. To further determine what protein is responsible for the NF-kappaB activation, we constructed gslA, pgm6, and pgm6 pgm7 deletion mutants from KDP136. When 7.19 cells were exposed to those mutants, the gslA deletion mutant did not induce NF-kappaB activation, whereas the pgm6 and pgm6 pgm7 deletion mutants did. Furthermore, NF-kappaB activation in 7.19 cells induced by KDP136 was partially inhibited by antiserum against a recombinant protein expressed from the 5'-terminal third of gslA. These results indicate that GslA is one of the factors that induce NF-kappaB activation in 7.19 cells. Interestingly, the gslA gene was present in four of seven P. gingivalis strains tested. This restricted distribution might be associated with the virulence potential of each strain.
Collapse
|
29
|
Hasegawa Y, Iwami J, Sato K, Park Y, Nishikawa K, Atsumi T, Moriguchi K, Murakami Y, Lamont RJ, Nakamura H, Ohno N, Yoshimura F. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. MICROBIOLOGY-SGM 2009; 155:3333-3347. [PMID: 19589838 DOI: 10.1099/mic.0.028928-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, a causative agent of periodontitis, has at least two types of thin, single-stranded fimbriae, termed FimA and Mfa1 (according to the names of major subunits), which can be discriminated by filament length and by the size of their major fimbrilin subunits. FimA fimbriae are long filaments that are easily detached from cells, whereas Mfa1 fimbriae are short filaments that are tightly bound to cells. However, a P. gingivalis ATCC 33277-derived mutant deficient in mfa2, a gene downstream of mfa1, produced long filaments (10 times longer than those of the parent), easily detached from the cell surface, similar to FimA fimbriae. Longer Mfa1 fimbriae contributed to stronger autoaggregation of bacterial cells. Complementation of the mutant with the wild-type mfa2 allele in trans restored the parental phenotype. Mfa2 is present in the outer membrane of P. gingivalis, but does not co-purify with the Mfa1 fimbriae. However, co-immunoprecipitation demonstrated that Mfa2 and Mfa1 are associated with each other in whole P. gingivalis cells. Furthermore, immunogold microscopy, including double labelling, confirmed that Mfa2 was located on the cell surface and likely associated with Mfa1 fimbriae. Mfa2 may therefore play a role as an anchor for the Mfa1 fimbriae and also as a regulator of Mfa1 filament length. Two additional downstream genes (pgn0289 and pgn0290) are co-transcribed with mfa1 (pgn0287) and mfa2 (pgn0288), and proteins derived from pgn0289, pgn0290 and pgn0291 appear to be accessory fimbrial components.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Jun Iwami
- Department of Endodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan.,Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Keiko Sato
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yoonsuk Park
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Tatsuo Atsumi
- Department of Medical Technology, Gifu University of Medical Science, Seki, Gifu 501-3892, Japan.,Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Keiichi Moriguchi
- Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Richard J Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Hiroshi Nakamura
- Department of Endodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Norikazu Ohno
- Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
30
|
Wexler HM, Tenorio E, Pumbwe L. Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. MICROBIOLOGY-SGM 2009; 155:2694-2706. [PMID: 19497947 DOI: 10.1099/mic.0.025858-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OmpA1 is the major outer membrane protein of the Gram-negative anaerobic pathogen Bacteroides fragilis. We identified three additional conserved ompA homologues (ompA2-ompA4) and three less homologous ompA-like genes (ompAs 5, 6 and 7) in B. fragilis. We constructed an ompA1 disruption mutant in B. fragilis 638R (WAL6 OmegaompA1) using insertion-mediated mutagenesis. WAL6 OmegaompA1 formed much smaller colonies and had smaller, rounder forms on Gram stain analysis than the parental strain or other unrelated disruption mutants. SDS-PAGE and Western blot analysis (with anti-OmpA1 IgY) of the OMP patterns of WAL6 OmegaompA1 grown in both high- and low-salt media did not reveal any other OmpA proteins even under osmotic stress. An ompA1 deletant (WAL186DeltaompA1) was constructed using a two-step double-crossover technique, and an ompA 'reinsertant', WAL360+ompA1, was constructed by reinserting the ompA gene into WAL186DeltaompA1. WAL186DeltaompA1 was significantly more sensitive to exposure to SDS, high salt and oxygen than the parental (WAL108) or reinsertant (WAL360+ompA1) strain. No significant change was seen in MICs of a variety of antimicrobials for either WAL6 OmegaompA1 or WAL186DeltaompA1 compared to WAL108. RT-PCR revealed that all of the ompA genes are transcribed in the parental strain and in the disruption mutant, but, as expected, ompA1 is not transcribed in WAL186DeltaompA1. Unexpectedly, ompA4 is also not transcribed in WAL186DeltaompA1. A predicted structure indicated that among the four OmpA homologues, the barrel portion is more conserved than the loops, except for specific conserved patches on loop 1 and loop 3. The presence of multiple copies of such similar genes in one organism would suggest a critical role for this protein in B. fragilis.
Collapse
Affiliation(s)
- Hannah M Wexler
- Department of Medicine, UCLA School of Medicine, 405 Hilgard Ave, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Elizabeth Tenorio
- Department of Medicine, UCLA School of Medicine, 405 Hilgard Ave, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Lilian Pumbwe
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
31
|
Ishiguro I, Saiki K, Konishi K. PG27 is a novel membrane protein essential for aPorphyromonas gingivalisprotease secretion system. FEMS Microbiol Lett 2009; 292:261-7. [DOI: 10.1111/j.1574-6968.2009.01489.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Yoshimura F, Murakami Y, Nishikawa K, Hasegawa Y, Kawaminami S. Surface components of Porphyromonas gingivalis. J Periodontal Res 2008; 44:1-12. [PMID: 18973529 DOI: 10.1111/j.1600-0765.2008.01135.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Research on Porphyromonas gingivalis, a periodontopathogen, has provided a tremendous amount of information over the last 20 years, which may exceed in part than that on other closely related members in terms of phylogenetic as well as proteomic criteria, including Bacteroides fragilis and B. thetaiotaomicron as major anaerobic, opportunistic pathogens in the medical field. In this minireview, we focused on recent research findings concerning surface components such as outer membrane proteins and fimbriae, of P. gingivalis. MATERIAL AND METHODS Elucidation of the surface components in P. gingivalis was especially difficult because outer membrane proteins are tightly bound to lipopolysaccharide and they are resistant to dissociation and separation from each other, even during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, unless samples are appropriately heated. In addition, P. gingivalis is asaccharolytic and therefore a potent proteolytic bacterium, another factor causing difficulty in research. The study of the surface components was carefully carried out considering these unique features in P. gingivalis when compared with other gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa. RESULTS Separation of outer membrane proteins, and characterization of OmpA-like proteins and RagAB as major proteins, is described herein. Our recent findings on FimA and Mfa1 fimbriae, two unique appendages in this organism, and on their regulation of expression are also described briefly. CONCLUSION Surface components of P. gingivalis somehow have contact with host tissues and cells because of the outermost cell elements. Therefore, such bacterial components are potentially important in the occurrence of periodontal diseases.
Collapse
Affiliation(s)
- F Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan.
| | | | | | | | | |
Collapse
|
33
|
An OmpA family protein, a target of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius, controls acetic acid fermentation. J Bacteriol 2008; 190:5009-19. [PMID: 18487322 DOI: 10.1128/jb.00378-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including "Gluconacetobacter polyoxogenes." In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane beta-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid.
Collapse
|
34
|
Iwami J, Murakami Y, Nagano K, Nakamura H, Yoshimura F. Further evidence that major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis stabilize bacterial cells. ACTA ACUST UNITED AC 2008; 22:356-60. [PMID: 17803635 DOI: 10.1111/j.1399-302x.2007.00363.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Porphyromonas gingivalis is one of the most important bacteria in the progression of chronic periodontal disease. We hypothesized that the major outer membrane proteins Pgm6/7, which are homologous to the OmpA protein in Escherichia coli, might contribute to the stabilization of the cell surface. In this study, the effects of Pgm6/7 on the cell surface were examined morphologically. METHODS Deletion mutants of Pgm6/7 (Delta694, Delta695 and Delta695-694) were constructed using the polymerase chain reaction-based overlap extension method. Wild-type ATCC 33277 and Pgm6/7 mutants were grown under anaerobic conditions. Whole cells and thin sections of fixed cells were stained and examined by transmission electron microscopy. RESULTS Compared with the wild-type, numerous vesicles released from cells were observed in each deletion mutant. The outer membrane appeared wavy and irregular. Increased numbers of vesicles were confirmed after their preparation from the culture supernatant. Total gingipain activity in vesicles was increased five- to 10-fold in the deletion mutants. CONCLUSION This report provides further evidence that Pgm6/7 proteins in P. gingivalis play an important role in the maintenance of bacterial outer membrane integrity.
Collapse
Affiliation(s)
- J Iwami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
35
|
Nishiyama SI, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F. Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. MICROBIOLOGY-SGM 2007; 153:1916-1925. [PMID: 17526848 DOI: 10.1099/mic.0.2006/005561-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The FimA fimbriae of Porphyromonas gingivalis, the causative agent of periodontitis, have been implicated in various aspects of pathogenicity, such as colonization, adhesion and aggregation. In this study, the four open reading frames (ORF1, ORF2, ORF3 and ORF4) downstream of the fimbrilin gene (fimA) in strain ATCC 33277 were examined. ORF2, ORF3 and ORF4 were demonstrated to encode minor components of the fimbriae and were therefore renamed fimC, fimD and fimE, respectively. Immunoblotting analyses revealed that inactivation of either fimC or fimD by an ermF-ermAM insertion, but not inactivation of ORF1, was accompanied by concomitant loss of the products from the downstream genes, raising the possibility that fimC, fimD and fimE constitute a transcription unit. The fimE mutant produced FimC and FimD, but fimbriae purified from it contained neither protein, suggesting that FimE is required for the assembly of FimC and FimD onto the fimbrilin (FimA) fibre. The fimC, fimD and fimE mutants lost autoaggregation abilities. Fimbriae purified from these three mutants showed attenuated binding activities to glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis and to two extracellular matrix proteins, fibronectin and type I collagen. These results suggest that FimE, as well as FimC and FimD, play critical roles in the adhesive activities of the mature FimA fimbriae in P. gingivalis.
Collapse
Affiliation(s)
- So-Ichiro Nishiyama
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Hideki Nagata
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Shizukuishi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ikuro Kawagishi
- Department of Biological Science, Graduate School of Science and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
36
|
Nagano K, Murakami Y, Nishikawa K, Sakakibara J, Shimozato K, Yoshimura F. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol 2007; 56:1536-1548. [DOI: 10.1099/jmm.0.47289-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major outer-membrane proteins RagA and RagB ofPorphyromonas gingivalisare considered to form a receptor complex functionally linked to TonB. In this study,P.gingivalismutants withragA,ragBor both deleted were constructed from strain W83 as the parent to examine the physiological and pathological functions of RagA and RagB. The double-deletion mutant completely lacked both RagA and RagB, whereas the ΔragAmutant reduced RagB expression considerably and the ΔragBmutant produced degraded RagA. Growth of the three mutants in a nutrient-rich medium and synthetic media containing digested protein as a unique nutrient source was similar to that of the parental strain; however, both the ΔragAand ΔragABmutants exhibited very slow growth in a synthetic medium containing undigested, native protein, and the two mutants tended to lose their viability during experiments, although gingipain (protease) activities were unchanged in the mutants. A mouse model showed that the ΔragBmutant had reduced virulence. Cell-surface labelling with biotin and dextran revealed that both RagA and RagB localized on the outermost cell surface. A cross-linking experiment using wild-typeP. gingivalisshowed that RagA and RagB were closely associated with each other. Furthermore, co-immunoprecipitation confirmed that RagA and RagB formed a protein–protein complex. These results suggest that physically associated RagA and RagB may stabilize themselves on the cell surface and function as active transporters of large degradation products of protein and in part as a virulence factor.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Junpei Sakakibara
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kazuo Shimozato
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
37
|
Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H, Shimozato K, Yoshimura F. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. MICROBIOLOGY-SGM 2007; 153:866-876. [PMID: 17322207 DOI: 10.1099/mic.0.29275-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tannerella forsythensis, one of the important pathogens in periodontal disease, has a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. The S-layer in T. forsythensis is suggested to be associated with haemagglutinating activity, adhesion and invasion of host cells; however, its precise functions have been unknown. ORFs encoding the major S-layer proteins (230 and 270 kDa) of T. forsythensis ATCC 43037, tfsA and tfsB, respectively, following the names in a recent report [Lee, S.-W., Sabet, M., Um, H. S., Yang, L., Kim, H. C. & Zhu, W. (2006). Gene 371, 102-111] were determined. To verify the function of the S-layer proteins, three mutants with tfsA, tfsB, or both deleted were successfully constructed by a PCR-based overlapping method. S-layer proteins were completely lost in the double mutant. The single-deletion mutants appeared to lose one of the 230 and 270 kDa proteins. Thin-section microscopy clearly revealed that the 230 and 270 kDa proteins composed the S-layer. Although the S-layer proteins may be weakly related to haemagglutinating activity, these proteins were highly responsible for adherence to human gingival epithelial cells (Ca9-22) and KB cells. These results suggest that the S-layer proteins in T. forsythensis play an important role in the initiation stage of oral infection including periodontal disease.
Collapse
Affiliation(s)
- Junpei Sakakibara
- Department of Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Naoya Higuchi
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kazuo Shimozato
- Department of Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
38
|
Masuda T, Murakami Y, Noguchi T, Yoshimura F. Effects of various growth conditions in a chemostat on expression of virulence factors in Porphyromonas gingivalis. Appl Environ Microbiol 2006; 72:3458-67. [PMID: 16672491 PMCID: PMC1472382 DOI: 10.1128/aem.72.5.3458-3467.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, one of the gram-negative organisms associated with periodontal disease, possesses potential virulence factors, including fimbriae, proteases, and major outer membrane proteins (OMPs). In this study, P. gingivalis ATCC 33277 was cultured in a chemostat under hemin excess and presumably peptide-limiting conditions to better understand the mechanisms of expression of the virulence factors upon environmental changes. At higher growth rates, the amounts of FimA and the 75-kDa protein, forming long and short fimbriae, respectively, increased significantly, whereas gingipains decreased in amount and activity. In a nutrient-limited medium, lesser amounts of the above two fimbrial proteins were observed, whereas clear differences were not found in the amounts of gingipains. In addition, two-dimensional electrophoresis revealed that proteins in cells were generally fewer in number during nutrient-limited growth. Under aeration, a considerable reduction in gingipain activity was found, whereas several proteins associated with intact cells significantly increased. However, the expression of major OMPs, such as RagA, RagB, and the OmpA-like proteins, was almost constant under all conditions tested. These results suggest that P. gingivalis may actively control expression of several virulence factors to survive in the widely fluctuating oral environment.
Collapse
Affiliation(s)
- Takashi Masuda
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | | | | | | |
Collapse
|
39
|
Imai M, Murakami Y, Nagano K, Nakamura H, Yoshimura F. Major outer membrane proteins from Porphyromonas gingivalis: strain variation, distribution, and clinical significance in periradicular lesions. Eur J Oral Sci 2005; 113:391-9. [PMID: 16202026 DOI: 10.1111/j.1600-0722.2005.00235.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyromonas gingivalis has been implicated in both marginal periodontitis and periapical infection. This study examined the major outer membrane proteins, from P. gingivalis, which related to periradicular lesions. Outer membrane protein profiles of P. gingivalis ATCC 33277 and W83 were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and N-terminal amino acid analysis. Most outer membrane proteins, such as RagA, gingipains, and OmpA-like proteins, were found in both strains in a similar distribution pattern; however, the migration positions of Lys-gingipain and RagB were inverted in SDS-PAGE. Western blot analysis showed that RagA, RagB, and OmpA-like proteins were found in all of the P. gingivalis strains tested. The antiserum of W83 against RagB reacted poorly to some strains, such as ATCC 33277. When strains phylogenetically related to P. gingivalis were examined, RagA and OmpA homologs were immunologically detected in several strains. However, none of the RagB homologs were detected in any strain analyzed, suggesting that RagB is unique to P. gingivalis. To examine immunoreactive antigens in P. gingivalis, sera from patients with periradicular lesions were used. More than half of the sera showed strong reactions to P. gingivalis cell components, especially RagB. Our results indicate that a major outer membrane protein, RagB, is a possible virulence factor in periradicular lesions.
Collapse
Affiliation(s)
- Masashi Imai
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|