1
|
Rosen MR, Leuthaeuser JB, Parish CA, Fetrow JS. Isofunctional Clustering and Conformational Analysis of the Arsenate Reductase Superfamily Reveals Nine Distinct Clusters. Biochemistry 2020; 59:4262-4284. [PMID: 33135415 DOI: 10.1021/acs.biochem.0c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenate reductase (ArsC) is a superfamily of enzymes that reduce arsenate. Due to active site similarities, some ArsC can function as low-molecular weight protein tyrosine phosphatases (LMW-PTPs). Broad superfamily classifications align with redox partners (Trx- or Grx-linked). To understand this superfamily's mechanistic diversity, the ArsC superfamily is classified on the basis of active site features utilizing the tools TuLIP (two-level iterative clustering process) and autoMISST (automated multilevel iterative sequence searching technique). This approach identified nine functionally relevant (perhaps isofunctional) protein groups. Five groups exhibit distinct ArsC mechanisms. Three are Grx-linked: group 4AA (classical ArsC), group 3AAA (YffB-like), and group 5BAA. Two are Trx-linked: groups 6AAAAA and 7AAAAAAAA. One is an Spx-like transcriptional regulatory group, group 5AAA. Three are potential LMW-PTP groups: groups 7BAAAA, and 7AAAABAA, which have not been previously identified, and the well-studied LMW-PTP family group 8AAA. Molecular dynamics simulations were utilized to explore functional site details. In several families, we confirm and add detail to literature-based mechanistic information. Mechanistic roles are hypothesized for conserved active site residues in several families. In three families, simulations of the unliganded structure sample specific conformational ensembles, which are proposed to represent either a more ligand-binding-competent conformation or a pathway toward a more binding-competent state; these active sites may be designed to traverse high-energy barriers to the lower-energy conformations necessary to more readily bind ligands. This more detailed biochemical understanding of ArsC and ArsC-like PTP mechanisms opens possibilities for further understanding of arsenate bioremediation and the LMW-PTP mechanism.
Collapse
Affiliation(s)
- Mikaela R Rosen
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Janelle B Leuthaeuser
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| | - Jacquelyn S Fetrow
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23713, United States
| |
Collapse
|
2
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
|
3
|
Javitt G, Grossman‐Haham I, Alon A, Resnick E, Mutsafi Y, Ilani T, Fass D. cis-Proline mutants of quiescin sulfhydryl oxidase 1 with altered redox properties undermine extracellular matrix integrity and cell adhesion in fibroblast cultures. Protein Sci 2019; 28:228-238. [PMID: 30367560 PMCID: PMC6295897 DOI: 10.1002/pro.3537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/13/2022]
Abstract
The thioredoxin superfamily has expanded and diverged extensively throughout evolution such that distant members no longer show appreciable sequence homology. Nevertheless, redox-active thioredoxin-fold proteins functioning in diverse physiological contexts often share canonical amino acids near the active-site (di-)cysteine motif. Quiescin sulfhydryl oxidase 1 (QSOX1), a catalyst of disulfide bond formation secreted by fibroblasts, is a multi-domain thioredoxin superfamily enzyme with certain similarities to the protein disulfide isomerase (PDI) enzymes. Among other potential functions, QSOX1 supports extracellular matrix assembly in fibroblast cultures. We introduced mutations at a cis-proline in QSOX1 that is conserved across the thioredoxin superfamily and was previously observed to modulate redox interactions of the bacterial enzyme DsbA. The resulting QSOX1 variants showed a striking detrimental effect when added exogenously to fibroblasts: they severely disrupted the extracellular matrix and cell adhesion, even in the presence of naturally secreted, wild-type QSOX1. The specificity of this phenomenon for particular QSOX1 mutants inspired an investigation of the effects of mutation on catalytic and redox properties. For a series of QSOX1 mutants, the detrimental effect correlated with the redox potential of the first redox-active site, and an X-ray crystal structure of one of the mutants revealed the reorganization of the cis-proline loop caused by the mutations. Due to the conservation of the mutated residues across the PDI family and beyond, insights obtained in this study may be broadly applicable to a variety of physiologically important redox-active enzymes. IMPACT STATEMENT: We show that mutation of a conserved cis-proline amino acid, analogous to a mutation used to trap substrates of a bacterial disulfide catalyst, has a dramatic effect on the physiological function of the mammalian disulfide catalyst QSOX1. As the active-site region of QSOX1 is shared with the large family of protein disulfide isomerases in humans, the effects of such mutations on redox properties, enzymatic activity, and biological targeting may be relevant across the family.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Iris Grossman‐Haham
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Assaf Alon
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Efrat Resnick
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Yael Mutsafi
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Tal Ilani
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Deborah Fass
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
4
|
Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci 2018; 28:30-40. [PMID: 30341785 DOI: 10.1002/pro.3530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol-disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active-site motif embedded in their thioredoxin-like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol-disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram-negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.
Collapse
Affiliation(s)
- Takushi Fujimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
5
|
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS One 2018; 13:e0195358. [PMID: 29677198 PMCID: PMC5909903 DOI: 10.1371/journal.pone.0195358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.
Collapse
|
6
|
Bacterial thiol oxidoreductases - from basic research to new antibacterial strategies. Appl Microbiol Biotechnol 2017; 101:3977-3989. [PMID: 28409380 PMCID: PMC5403849 DOI: 10.1007/s00253-017-8291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
The recent, rapid increase in bacterial antimicrobial resistance has become a major public health concern. One approach to generate new classes of antibacterials is targeting virulence rather than the viability of bacteria. Proteins of the Dsb system, which play a key role in the virulence of many pathogenic microorganisms, represent potential new drug targets. The first part of the article presents current knowledge of how the Dsb system impacts function of various protein secretion systems that influence the virulence of many pathogenic bacteria. Next, the review describes methods used to study the structure, biochemistry, and microbiology of the Dsb proteins and shows how these experiments broaden our knowledge about their function. The lessons gained from basic research have led to a specific search for inhibitors blocking the Dsb networks.
Collapse
|
7
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
8
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 2015; 6:570. [PMID: 26106374 PMCID: PMC4460558 DOI: 10.3389/fmicb.2015.00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.
Collapse
|
9
|
Grabowska AD, Wywiał E, Dunin-Horkawicz S, Łasica AM, Wösten MMSM, Nagy-Staroń A, Godlewska R, Bocian-Ostrzycka K, Pieńkowska K, Łaniewski P, Bujnicki JM, van Putten JPM, Jagusztyn-Krynicka EK. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One 2014; 9:e106247. [PMID: 25181355 PMCID: PMC4152235 DOI: 10.1371/journal.pone.0106247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023] Open
Abstract
Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether the data presented here constitute the considerable insight to the Epsilonproteobacterial Dsb systems, which have been poorly understood so far.
Collapse
Affiliation(s)
- Anna D Grabowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Ewa Wywiał
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna M Łasica
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Pieńkowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Paweł Łaniewski
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; World Health Organization Collaborating Centre for Reference and Research on Campylobacter/ World Organisation for Animal Health Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Jameson-Lee M, Garduño RA, Hoffman PS. DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol Microbiol 2011; 80:835-52. [PMID: 21375592 DOI: 10.1111/j.1365-2958.2011.07615.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Gram-negative bacteria, thiol oxidoreductases catalyse the formation of disulphide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB-forming proteins, one annotated as dsbA1 and the other annotated as a 27 kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulphide-bond complexes with substrate proteins. Expression of DsbA2 P198T mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact haemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS.
Collapse
Affiliation(s)
- Max Jameson-Lee
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
12
|
Mao L, Stathopulos PB, Ikura M, Inouye M. Secretion of human superoxide dismutase in Escherichia coli using the condensed single-protein-production system. Protein Sci 2011; 19:2330-5. [PMID: 20936670 DOI: 10.1002/pro.512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A secretion vector, pColdV for the Single-Protein-Production (SPP) system was constructed using the E. coli OmpA signal peptide. Using this vector, human superoxide dismutase (hSOD) was co-expressed with MazF, an ACA-specific mRNA interferase, allowing E. coli cells to produce only hSOD, which was secreted into the periplasmic space with a yield of ∼20% of total cellular proteins. The signal peptide was properly cleaved. Using cells overproducing DsbA protein, two S-S bridges were also properly formed to yield enzymatically active SOD. A well resolved heteronuclear single quantum coherence (HSQC) spectrum of hSOD isotope-labeled in the condensed SPP (cSPP) system was obtained by simply isolating the periplasmic fraction. These results indicate that human secretory proteins can be expressed well in the cSPP system using pColdV.
Collapse
Affiliation(s)
- Lili Mao
- Center for Advanced Biotechnology and Medicine (CABM), UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | | | | |
Collapse
|
13
|
Gell DA, Feng L, Zhou S, Jeffrey PD, Bendak K, Gow A, Weiss MJ, Shi Y, Mackay JP. A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin. J Biol Chem 2009; 284:29462-9. [PMID: 19706593 PMCID: PMC2785579 DOI: 10.1074/jbc.m109.027045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/16/2009] [Indexed: 11/06/2022] Open
Abstract
alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.
Collapse
Affiliation(s)
- David A Gell
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P, Glockshuber R, O'Neill SL, Heras B, Martin JL. Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxid Redox Signal 2009; 11:1485-500. [PMID: 19265485 DOI: 10.1089/ars.2008.2420] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The alpha-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (alpha-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia alpha-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia alpha-DsbA1 possesses a second disulfide that is highly conserved in alpha-proteobacterial DsbAs but not in other DsbAs. The alpha-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of alpha-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.
Collapse
Affiliation(s)
- Mareike Kurz
- Institute for Molecular Bioscience, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singh AK, Bhattacharyya-Pakrasi M, Pakrasi HB. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J Biol Chem 2008; 283:15762-70. [PMID: 18413314 PMCID: PMC3259654 DOI: 10.1074/jbc.m800982200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/24/2008] [Indexed: 11/06/2022] Open
Abstract
The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth.
Collapse
|
16
|
Jain S, Goldberg MB. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 2007; 189:5393-8. [PMID: 17513479 PMCID: PMC1951886 DOI: 10.1128/jb.00228-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters constitute the largest group of secreted proteins in gram-negative bacteria. Autotransporter secretion involves the insertion of a carboxy-terminal beta barrel into and the translocation of an amino-terminal domain across the outer membrane. Here, we demonstrate that secretion of autotransporters from several organisms requires the outer membrane assembly factor YaeT.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Ouyang N, Gao YG, Hu HY, Xia ZX. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal β-sheet and the fingerprint region. Proteins 2006; 65:1021-31. [PMID: 17019698 DOI: 10.1002/prot.21184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CcmG, also designated DsbE, functions as a periplasmic protein thiol:disulfide oxidoreductase and is required for cytochrome c maturation. Here we report the crystal structures of Escherichia coli CcmG and its two mutants, P144A and the N-terminal fifty seven-residue deletion mutant, and two additional deletion mutants were studied by circular dichroism. Structural comparison of E. coli CcmG with its deletion mutants reveals that the N-terminal beta-sheet is essential for maintaining the folding topology and consequently maintaining the active-site structure of CcmG. Pro144 and Glu145 are key residues of the fingerprint region of CcmG. Pro144 is in cis-configuration, and it makes van der Waals interactions with the active-site disulfide Cys80-Cys83 and forms a C--H...O hydrogen bond with Thr82, helping stabilize the active-site structure. Glu145 forms a salt-bridge and hydrogen-bond network with other residues of the fingerprint region and with Arg158, further stabilizing the active-site structure. The cis-configuration of Pro144 makes the backbone nitrogen and oxygen of Ala143 exposed to solvent, favorable for interacting with binding partners. The key role of cis-Pro144 is verified by the P144A mutant, which contains trans-Ala144 and displays redox property changes. Structural comparison of E. coli CcmG with the recently reported structure of CcmG in complex with the N-terminal domain of DsbD reveals that Tyr141 undergoes conformational changes upon binding DsbD. A cis-proline located at the N-terminus of the first beta-strand of the betabetaalpha motif of the thioredoxin-like domain is a conserved structural feature of the thioredoxin superfamily.
Collapse
Affiliation(s)
- Nan Ouyang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|