1
|
Kuge M, Keppler M, Friedrich F, Saleem‐Batcha R, Winter J, Prucker I, Germer P, Gerhardt S, Einsle O, Jung M, Jessen HJ, Andexer JN. Structural Insights into Broad-Range Polyphosphate Kinase 2-II Enzymes Applicable for Pyrimidine Nucleoside Diphosphate Synthesis. Chembiochem 2025; 26:e202400970. [PMID: 39846220 PMCID: PMC11875558 DOI: 10.1002/cbic.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP-consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis. Both enzymes exhibited a broad substrate scope, selectively converting over 85 % of pyrimidine nucleoside monophosphates (NMPs) to nucleoside diphosphates (NDPs), while nucleoside triphosphate (NTP) formation was observed only with purine NMPs. Preparative enzymatic synthesis of cytidine diphosphate (CDP) was applied to achieve an yield of 49 %. Finally, structural analysis of five crystal structures of BcPPK2 and LfPPK2 provided insights into their active sites and substrate interactions. This study highlights PPK2-II enzymes as promising biocatalysts for the efficient and selective synthesis of pyrimidine NDPs.
Collapse
Affiliation(s)
- Marco Kuge
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Michael Keppler
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Florian Friedrich
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Raspudin Saleem‐Batcha
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Juliana Winter
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Isabel Prucker
- Institute of Organic ChemistryUniversity of FreiburgAlberstr. 2179104FreiburgGermany
| | - Philipp Germer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Stefan Gerhardt
- Institute of BiochemistryUniversity of FreiburgAlbertstr. 2179104Freiburg
| | - Oliver Einsle
- Institute of BiochemistryUniversity of FreiburgAlbertstr. 2179104Freiburg
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of FreiburgAlberstr. 2179104FreiburgGermany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| |
Collapse
|
2
|
Höfmann S, Schmerling C, Stracke C, Niemeyer F, Schaller T, Snoep JL, Bräsen C, Siebers B. The archaeal family 3 polyphosphate kinase reveals a function of polyphosphate as energy buffer under low energy charge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610084. [PMID: 39257778 PMCID: PMC11383997 DOI: 10.1101/2024.08.28.610084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Inorganic polyphosphate, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, occurs in all three domains of life and plays a diverse and prominent role in metabolism and cellular regulation. While the polyphosphate metabolism and its physiological significance have been well studied in bacteria and eukaryotes including human, there are only few studies in archaea available so far. In Crenarchaeota including members of Sulfolobaceae , the presence of polyphosphate and degradation via exopolyphosphatase has been reported and there is some evidence for a functional role in metal ion chelation, biofilm formation, adhesion and motility, however, the nature of the crenarchaeal polyphosphate kinase is still unknown. Here we used the crenarchaeal model organism Sulfolobus acidocaldarius to study the enzymes involved in polyphosphate synthesis. The two genes annotated as thymidylate kinase ( saci_2019 and saci_2020 ), localized downstream of the exopolyphosphatase, were identified as the missing polyphosphate kinase in S. acidocaldarius ( Sa PPK3). Thymidylate kinase activity was confirmed for Saci_0893. Notably Saci_2020 showed no polyphosphate kinase activity on its own but served as regulatory subunit (rPPK3) and was able to enhance polyphosphate kinase activity of the catalytically active subunit Saci_2019 (cPPK3). Heteromeric polyphosphate kinase activity is reversible and shows a clear preference for polyP-dependent nucleotide kinase activity, i.e. polyP-dependent formation of ATP from ADP (12.4 U/mg) and to a lower extent of GDP to GTP whereas AMP does not serve as substrate. PPK activity in the direction of ATP-dependent polyP synthesis is rather low (0.25 U/mg); GTP was not used as phosphoryl donor. A combined experimental modelling approach using quantitative 31 P NMR allowed to follow the reversible enzyme reaction for both ATP and polyP synthesis. PolyP synthesis was only observed when the ATP/ADP ratio was kept high, using an ATP recycling system. In absence of such a recycling system, all incubations with polyP and PPK would reach an equilibrium state with an ATP/ADP ratio between 3 and 4, independent of the initial conditions. Structural and sequence comparisons as well as phylogenetic analysis reveal that the S. acidocaldarius PPK is a member of a new PPK family, named PPK3, within the thymidylate kinase family of the P-loop kinase superfamily, clearly separated from PPK2. Our studies show that polyP, in addition to its function as phosphate storage, has a special importance for the energy homeostasis of S. acidocaldarius and due to its reversibility serves as energy buffer under low energy charge enabling a quick response to changes in cellular demand.
Collapse
|
3
|
Benčić P, Keppler M, Kuge M, Qiu D, Schütte LM, Häner M, Strack K, Jessen HJ, Andexer JN, Loenarz C. Non-canonical nucleosides: Biomimetic triphosphorylation, incorporation into mRNA and effects on translation and structure. FEBS J 2023; 290:4899-4920. [PMID: 37329249 DOI: 10.1111/febs.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.
Collapse
Affiliation(s)
- Patricia Benčić
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Marco Kuge
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Lena M Schütte
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Katharina Strack
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | | | - Christoph Loenarz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| |
Collapse
|
4
|
Gautam LK, Sharma P, Capalash N. Structural insight into substrate binding of Acinetobacter baumannii polyphosphate-AMP phosphotransferase (PPK2), a novel drug target. Biochem Biophys Res Commun 2022; 626:107-113. [PMID: 35987095 DOI: 10.1016/j.bbrc.2022.07.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen known for high morbidity and mortality. It causes life-threatening infections, such as ventilator-associated pneumonia (VAP), bacteremia, meningitis, wound and urinary tract infections (UTI). Increase in carbapenem resistance exhibited by A. baumannii has accentuated the need for novel targets for effective treatment. Despite the pronounced relevance of PPK2 as a pathogenicity determinant in several pathogens, it has not been explored as a drug target in A. baumannii. The present study was piloted to investigate the substrate binding by A. baumannii PPK2 (AbPPK2), a two-domain Class II polyphosphate kinase 2. A homology model of AbPPK2 was developed and validated for molecular docking of ATP and ADP in the predicted binding pocket. Further analysis of AbPPK2 revealed a set of common residues in the catalytic cleft interacting with ATP and ADP which would be useful for the screening of inhibitors against A. baumannii.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India.
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India.
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Cui C, Kong M, Wang Y, Zhou C, Ming H. Characterization of polyphosphate kinases for the synthesis of GSH with ATP regeneration from AMP. Enzyme Microb Technol 2021; 149:109853. [PMID: 34311890 DOI: 10.1016/j.enzmictec.2021.109853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Polyphosphate kinase (PPK) is important for industrial processes involving ATP regeneration. While a variety of methods have been reported for regenerating ATP from ADP, few have explored enzyme catalyzed ATP regeneration from cheaper and stable AMP. In this work, PPKs from different sources were expressed and their catalytic activity were tested at different reaction temperatures, reaction pH and with different polyphosphate (polyPn) types. The ATP regeneration system for glutathione (GSH) synthesis was established using a single PPK capable of phosphorylating AMP to synthesize ATP from AMP and short chain polyPn. GSH yield was obtained using adenosine mono-, di- and triphosphates, which confirmed the flexibility of our constructed ATP regeneration system coupled with GSH synthesis via bifunctional GSH synthase. Finally, optimization of the GSH synthesis yielded conversion value above 80 %. Overall, these results illustrate that PPK is suitable for a broader range of substrates than previously expected, and has great untapped potential for applications involving ATP regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Wang
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
6
|
Catalytic activity profile of polyP:AMP phosphotransferase from Myxococcus xanthus. J Biosci Bioeng 2020; 131:147-152. [PMID: 33132038 DOI: 10.1016/j.jbiosc.2020.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022]
Abstract
Myxococcus xanthus generates polyphosphates (polyPs) during starvation and forms fruiting bodies through the activity of polyphosphate kinase (Ppk). M. xanthus polyP:AMP phosphotransferase (Pap), a class II Ppk2, catalyzes the transfer of the terminal phosphate from polyP to AMP to yield ADP, but its enzymatic properties have not been investigated in detail. In this study, we found that Pap was activated by Mn2+ or Mg2+ and required higher concentrations of these ions in reactions with longer polyPs to demonstrate maximum activity. The Km of Pap for polyP700-1000 was significantly lower than that for shorter polyPs, but the highest catalytic constant (kcat) was observed for polyP60-70. When Pap was incubated with polyP60-70 and AMP for 3 h, it first generated ADP and then gradually produced ATP, suggesting that M. xanthus Pap also has polyP:ADP phosphotransferase activity similar to that of class III Ppk2 enzymes. During starvation, the specific activity of Pap in M. xanthus was increased by 2.3-2.4-fold at days 1 and 2 of incubation. In addition, recombinant Pap in combination with M. xanthus recombinant enzymes Ppk1 or adenylate kinase (AdkA) could generate ATP from AMP and polyP60-70. These results suggest a functional role of Pap during M. xanthus starvation, when it might act in cooperation with Ppk1 and/or AdkA to produce ATP from AMP, ADP, and polyP.
Collapse
|
7
|
Gautam LK, Sharma P, Capalash N. Attenuation of Acinetobacter baumannii virulence by inhibition of polyphosphate kinase 1 with repurposed drugs. Microbiol Res 2020; 242:126627. [PMID: 33131985 DOI: 10.1016/j.micres.2020.126627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Acinetobacter baumannii is clinically one of the most significant pathogens, especially in intensive care settings, because of its multidrug-resistance (MDR). Repurposing of high-affinity drugs is a faster and more plausible approach for combating the emergence of MDR and to tackle bacterial infections. This study was aimed to evaluate the approved drugs potentially inhibiting A. baumannii PPK1 (AbPPK1) mediated synthesis of polyphosphates (polyP). Based on virtual screening, molecular dynamic simulation, and CD spectroscopy for thermal stability, two stable ligands, etoposide and genistein, were found with promising contours for further investigation. Following in vitro inhibition of AbPPK1, the efficacy of selected drugs was further tested against virulence traits of A. baumannii. These drugs significantly reduced the biofilm formation, surface motility in A. baumannii and led to decreased survival under desiccation. In addition to inhibition of PPK1, both drugs increased the expression of polyP degrading enzyme, exopolyphosphatase (PPX), that might be responsible for the decrease in the total cellular polyP. Since polyP modulates the virulence factors in bacteria, destabilization of the polyP pool by these drugs seems particularly striking for their therapeutic applications against A. baumannii.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Yan Y, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Production of rosmarinic acid with ATP and CoA double regenerating system. Enzyme Microb Technol 2019; 131:109392. [PMID: 31615678 DOI: 10.1016/j.enzmictec.2019.109392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 12/24/2022]
Abstract
Rosmarinic acid (RA), as a hydroxycinnamic acid ester of caffeic acid (CA) and 3,4-dihydroxyphenyllactic acid (3,4-DHPL), is a phenylpropanoid-derived plant natural product and has diverse biological activities. This work acts as a modular platform for microbial production using a two-cofactor (ATP and CoA) regeneration system to product RA based on a cell-free biosynthetic approach. Optimal activity of the reaction system was pH 8 and 30 °C. Total turnover number for ATP and CoA was 820.60 ± 28.60 and 444.50 ± 9.65, respectively. Based on the first hour data, the RA productivity reached 320.04 mg L-1 h-1 (0.889 mM L-1 h-1).
Collapse
Affiliation(s)
- Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pu Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Strohmeier GA, Eiteljörg IC, Schwarz A, Winkler M. Enzymatic One-Step Reduction of Carboxylates to Aldehydes with Cell-Free Regeneration of ATP and NADPH. Chemistry 2019; 25:6119-6123. [PMID: 30866114 PMCID: PMC6563805 DOI: 10.1002/chem.201901147] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/12/2022]
Abstract
The direct generation of aldehydes from carboxylic acids is often a challenging synthetic task but undoubtedly attractive in view of abundant supply of such feedstocks from nature. Though long known, biocatalytic carboxylate reductions are at an early stage of development, presumably because of their co-factor requirement. To establish an alternative to whole-cell-based carboxylate reductions which are limited by side reactions, we developed an in vitro multi-enzyme system that allows for quantitative reductions of various carboxylic acids with full recycling of all cofactors and prevention of undesired over-reductions. Regeneration of adenosine 5'-triphosphate is achieved through the simultaneous action of polyphosphate kinases from Meiothermus ruber and Sinorhizobium meliloti and β-nicotinamide adenine dinucleotide 2'-phosphate is reduced by a glucose dehydrogenase. Under these conditions and in the presence of the carboxylate reductases from Neurospora crassa or Nocardia iowensis, various aromatic, heterocyclic and aliphatic carboxylic acids were quantitatively reduced to the respective aldehydes.
Collapse
Affiliation(s)
- Gernot A Strohmeier
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Inge C Eiteljörg
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Anna Schwarz
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Margit Winkler
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
10
|
Gautam LK, Sharma P, Capalash N. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential. Curr Drug Targets 2019; 20:292-301. [DOI: 10.2174/1389450119666180801120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| |
Collapse
|
11
|
Nocek BP, Khusnutdinova AN, Ruszkowski M, Flick R, Burda M, Batyrova K, Brown G, Mucha A, Joachimiak A, Berlicki Ł, Yakunin AF. Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boguslaw P. Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, Illinois 60439, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Malgorzata Burda
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Khorcheska Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
12
|
Kamatani S, Takegawa K, Kimura Y. Catalytic Activity Profile of Polyphosphate Kinase 1 from Myxococcus xanthus. Curr Microbiol 2017; 75:379-385. [PMID: 29127456 DOI: 10.1007/s00284-017-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Polyphosphate kinase 1 (Ppk1) catalyzes reverse transfer of the terminal phosphate from ATP to form polyphosphate (polyP) and from polyP to form ATP, and is responsible for the synthesis of most of cellular polyPs. When Ppk1 from Myxococcus xanthus was incubated with 0.2 mM polyP60-70 and 1 mM ATP or ADP, the rate of ATP synthesis was approximately 1.5-fold higher than that of polyP synthesis. If in the same reaction the proportion of ADP in the ATP/ADP mixture exceeded one-third, the equilibrium shifted to ATP synthesis, suggesting that M. xanthus Ppk1 preferentially catalyzed ATP formation. At the same time, GTP and GDP were not recognized as substrates by Ppk1. In the absence of polyP, Ppk1 generated ATP and AMP from ADP, and ADP from ATP and AMP, suggesting that the enzyme catalyzed the transfer of a phosphate group between ADP molecules yielding ATP and AMP, thus exhibiting adenylate kinase activity.
Collapse
Affiliation(s)
- Shiori Kamatani
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan.
| |
Collapse
|
13
|
Wohlgemuth R, Liese A, Streit W. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol 2017; 35:452-465. [DOI: 10.1016/j.tibtech.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
14
|
Kulmer ST, Gutmann A, Lemmerer M, Nidetzky B. Biocatalytic Cascade of Polyphosphate Kinase and Sucrose Synthase for Synthesis of Nucleotide-Activated Derivatives of Glucose. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra T. Kulmer
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
15
|
Andexer JN, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 2015; 16:380-6. [PMID: 25619338 DOI: 10.1002/cbic.201402550] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.
Collapse
Affiliation(s)
- Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg (Germany).
| | | |
Collapse
|
16
|
Weissbrodt DG, Maillard J, Brovelli A, Chabrelie A, May J, Holliger C. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays. Biotechnol Bioeng 2014; 111:2421-35. [PMID: 24975745 DOI: 10.1002/bit.25320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC.
Collapse
Affiliation(s)
- David G Weissbrodt
- Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Appl Environ Microbiol 2014; 80:2602-8. [PMID: 24532069 DOI: 10.1128/aem.03971-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of tens to hundreds of phosphate (Pi) residues linked by "high-energy" phosphoanhydride bonds as in ATP. PolyP kinases, responsible for the synthesis and utilization of polyP, are divided into two families (PPK1 and PPK2) due to differences in amino acid sequence and kinetic properties. PPK2 catalyzes preferentially polyP-driven nucleotide phosphorylation (utilization of polyP), which is important for the survival of microbial cells under conditions of stress or pathogenesis. Phylogenetic analysis suggested that the PPK2 family could be divided into three subfamilies (classes I, II, and III). Class I and II PPK2s catalyze nucleoside diphosphate and nucleoside monophosphate phosphorylation, respectively. Here, we demonstrated that class III PPK2 catalyzes both nucleoside monophosphate and nucleoside diphosphate phosphorylation, thereby enabling us to synthesize ATP from AMP by a single enzyme. Moreover, class III PPK2 showed broad substrate specificity over purine and pyrimidine bases. This is the first demonstration that class III PPK2 possesses both class I and II activities.
Collapse
|
18
|
Whitehead MP, Hooley P, W Brown MR. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation. BMC Res Notes 2013; 6:221. [PMID: 23738841 PMCID: PMC3680246 DOI: 10.1186/1756-0500-6-221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. RESULTS On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species), Polysphondylium pallidum and Thecamonas trahens. A second bacterial PPK (PPK2) is found in just two eukaryotes (O. tauri and the sea anemone Nematostella vectensis). There is some evidence for PPK1 and PPK2 encoding sequences in other eukaryotes but some of these may be artefacts of bacterial contamination of gene libraries. CONCLUSIONS Evidence for the possible origins of these eukaryote PPK1s and PPK2s and potential prokaryote donors via horizontal gene transfer is presented. The selective advantage of acquiring and maintaining a prokaryote PPK in a eukaryote is proposed to enhance stress tolerance in a changing environment related to the capture and metabolism of inorganic phosphate compounds. Bacterial PPKs may also have enhanced the abilities of marine phytoplankton to sequester phosphate, hence accelerating global carbon fixation.
Collapse
|
19
|
Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 2013; 12:50. [PMID: 23687963 PMCID: PMC3673903 DOI: 10.1186/1475-2859-12-50] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Accumulation of inorganic polyphosphate (polyP), a persistent trait throughout the whole Tree of Life, is claimed to play a fundamental role in enduring environmental insults in a large variety of microorganisms. The share of polyP in the tolerance of the soil bacterium Pseudomonas putida KT2440 to a suite of physicochemical stresses has been studied on the background of its capacity as a host of oxidative biotransformations. Results Cells lacking polyphosphate kinase (Ppk), which expectedly presented a low intracellular polyP level, were more sensitive to a number of harsh external conditions such as ultraviolet irradiation, addition of β-lactam antibiotics and heavy metals (Cd2+ and Cu2+). Other phenotypes related to a high-energy phosphate load (e.g., swimming) were substantially weakened as well. Furthermore, the ppk mutant was consistently less tolerant to solvents and its survival in stationary phase was significantly affected. In contrast, the major metabolic routes were not significantly influenced by the loss of Ppk as diagnosed from respiration patterns of the mutant in phenotypic microarrays. However, the catalytic vigour of the mutant decreased to about 50% of that in the wild-type strain as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. The catalytic phenotype of the mutant was restored by over-expressing ppk in trans. Some of these deficits could be explained by the effect of the ppk mutation on the expression profile of the rpoS gene, the stationary phase sigma factor, which was revealed by the analysis of a PrpoS → rpoS‘-’lacZ translational fusion. Still, every stress-related effect of lacking Ppk in P. putida was relatively moderate as compared to some of the conspicuous phenotypes reported for other bacteria. Conclusions While polyP can be involved in a myriad of cellular functions, the polymer seems to play a relatively secondary role in the genetic and biochemical networks that ultimately enable P. putida to endure environmental stresses. Instead, the main value of polyP could be ensuring a reservoire of energy during prolonged starvation. This is perhaps one of the reasons for polyP persistence in live systems despite its apparent lack of essentiality.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
Inorganic polyphosphate (Poly P) is a polymer of tens to hundreds of phosphate residues linked by "high-energy" phosphoanhydride bonds as in ATP. Found in abundance in all cells in nature, it is unique in its likely role in the origin and survival of species. Here, we present extensive evidence that the remarkable properties of Poly P as a polyanion have made it suited for a crucial role in the emergence of cells on earth. Beyond that, Poly P has proved in a variety of ways to be essential for growth of cells, their responses to stresses and stringencies, and the virulence of pathogens. In this review, we pay particular attention to the enzyme, polyphosphate kinase 1 (Poly P kinase 1 or PPK1), responsible for Poly P synthesis and highly conserved in many bacterial species, including 20 or more of the major pathogens. Mutants lacking PPK1 are defective in motility, quorum sensing, biofilm formation, and virulence. Structural studies are cited that reveal the conserved ATP-binding site of PPK1 at atomic resolution and reveal that the site can be blocked with minute concentrations of designed inhibitors. Another widely conserved enzyme is PPK2, which has distinctive kinetic properties and is also implicated in the virulence of some pathogens. Thus, these enzymes, absent in yeast and animals, are novel attractive targets for treatment of many microbial diseases. Still another enzyme featured in this review is one discovered in Dictyostelium discoideum that becomes an actin-like fiber concurrent with the synthesis, step by step, of a Poly P chain made from ATP. The Poly P-actin fiber complex, localized in the cell, lengthens and recedes in response to metabolic signals. Homologs of DdPPK2 are found in pathogenic protozoa and in the alga Chlamydomonas. Beyond the immediate relevance of Poly P as a target for anti-infective drugs, a large variety of cellular operations that rely on Poly P will be considered.
Collapse
Affiliation(s)
- Narayana N Rao
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
21
|
Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci U S A 2008; 105:17730-5. [PMID: 19001261 DOI: 10.1073/pnas.0807563105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.
Collapse
|
22
|
Venkitasubramanian P, Daniels L, Das S, Lamm AS, Rosazza JP. Aldehyde oxidoreductase as a biocatalyst: Reductions of vanillic acid. Enzyme Microb Technol 2008; 42:130-7. [DOI: 10.1016/j.enzmictec.2007.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/23/2007] [Accepted: 08/27/2007] [Indexed: 11/29/2022]
|
23
|
Itoh H, Kawazoe Y, Shiba T. Enhancement of protein synthesis by an inorganic polyphosphate in an E. coli cell-free system. J Microbiol Methods 2006; 64:241-9. [PMID: 15979174 DOI: 10.1016/j.mimet.2005.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/06/2005] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
In an E. coli cell-free protein synthesis system, the addition of an inorganic polyphosphate [poly(P)] with polyphosphate:AMP phosphotransferase (PAP), which regenerates AMP to ADP, increased the amount of protein synthesis. The maximum yield of the translation product (green fluorescent protein) in the E. coli cell-free system provided by Roche Diagnostics (RTS-100) was 1.16 mg/ml under the optimum reaction condition, which corresponded to a 5.7-fold of that obtained under the standard reaction condition described in the manufacturer's protocol. Interestingly, poly(P) alone enhanced protein synthesis to some extent. When we added poly(P) to the reaction mixture, ATP was consumed at a faster rate, leading to a rapid accumulation of AMP. By adding both poly(P) and PAP to the reaction mixture, an efficient ATP regeneration reaction derived from AMP occurred and the ATP level was recovered. Since the protein synthesis enhancement by poly(P) was also observed when mRNA was added as the template in the reaction, poly(P) accelerated the translation reaction by directly affecting the translation machinery. This also occurred when we used the Pure-system Classic Mini kit (Post Genome Institute) that contained the minimum requirements (pure enzymes and chemicals) for translation and transcription. We also observed that poly(P) extended the half-life of the mRNA template.
Collapse
Affiliation(s)
- Hiromichi Itoh
- Regenetiss Co., Ltd., 1-9-4, Asahigaoka, Hino, Tokyo 191-0065, Japan
| | | | | |
Collapse
|
24
|
Young DM, Parke D, Ornston LN. OPPORTUNITIES FOR GENETIC INVESTIGATION AFFORDED BYACINETOBACTER BAYLYI, A NUTRITIONALLY VERSATILE BACTERIAL SPECIES THAT IS HIGHLY COMPETENT FOR NATURAL TRANSFORMATION. Annu Rev Microbiol 2005; 59:519-51. [PMID: 16153178 DOI: 10.1146/annurev.micro.59.051905.105823] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic and physiological properties of Acinetobacter baylyi strain ADP1 make it an inviting subject for investigation of the properties underlying its nutritional versatility. The organism possesses a relatively small genome in which genes for most catabolic functions are clustered in several genetic islands that, unlike pathogenicity islands, give little evidence of horizontal transfer. Coupling mutagenic polymerase chain reaction to natural transformation provides insight into how structure influences function in transporters, transcriptional regulators, and enzymes. With appropriate selection, mutants in which such molecules have acquired novel function may be obtained. The extraordinary competence of A. baylyi for natural transformation and the ease with which it expresses heterologous genes make it a promising platform for construction of novel metabolic systems. Steps toward this goal should take into account the complexity of existing pathways in which transmembrane trafficking plays a significant role.
Collapse
Affiliation(s)
- David M Young
- 1Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
25
|
Zhang H, Rao NN, Shiba T, Kornberg A. Inorganic polyphosphate in the social life of Myxococcus xanthus: motility, development, and predation. Proc Natl Acad Sci U S A 2005; 102:13416-20. [PMID: 16174737 PMCID: PMC1224657 DOI: 10.1073/pnas.0506520102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic polyphosphate (poly P), a polymer of tens or hundreds of phosphate residues linked by high-energy, ATP-like bonds, is found in all organisms and performs a wide variety of functions. Myxococcus xanthus, a social bacterium that feeds on other bacteria and forms fruiting bodies and spores, depends on poly P for motility, development, and nutritional predation. Two poly P metabolizing enzymes were studied in M. xanthus: poly P kinase 1, which synthesizes poly P reversibly from ATP, and poly P:AMP phosphotransferase, which uses poly P as a donor to also reversibly convert AMP to ADP. The null mutant of ppk1 is defective in social motility, overproduces pilin protein on the cell surface, is delayed in fruiting body formation, produces fewer spores, is delayed in germination, and forms far smaller plaques on a lawn of Klebsiella aerogenes. The pap mutant is also impaired in social motility, but shows only slightly reduced abilities in development and predation.
Collapse
Affiliation(s)
- Haiyu Zhang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|