1
|
Zeng Z, Lin S, Li Q, Wang W, Wang Y, Xiao T, Guo Y. Molecular Basis of Wrinkled Variants Isolated From Pseudoalteromonas lipolytica Biofilms. Front Microbiol 2022; 13:797197. [PMID: 35295294 PMCID: PMC8919034 DOI: 10.3389/fmicb.2022.797197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yuexue Guo,
| |
Collapse
|
2
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
3
|
Çam S, Brinkmeyer R. Differential expression of vvhA and CPS operon allele 1 genes in Vibrio vulnificus under biofilm and planktonic conditions. Antonie van Leeuwenhoek 2020; 113:1437-1446. [PMID: 32696279 DOI: 10.1007/s10482-020-01452-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Examination of genes encoding for the virulence factors, hemolysin/cytolysin (vvhA) and capsular polysaccharide (CPS allele 1), during biofilm formation revealed that their expression was influenced by the maturity of the biofilm as well as by temperature. At 24 °C, expression of vvhA during biofilm formation was low between 4 and 12 h but increased 10-fold by 24 h to (5.1 × 104 ± 6.3 × 103mRNA copies/ml) as the biofilm matured. Compared to planktonic cells, expression of vvhA during biofilm formation at 24 °C was initially up-regulated at 4 h (1.07 ± 0.00-fold) but then was down-regulated almost four-fold during the intermediate and mature stages of biofilm formation. In contrast, vvhA expression at 37 °C was up-regulated almost four-fold in the early stages (4 and 6 h) of biofilm formation and remained two-fold up-regulated by 24 h even as the biofilm was deteriorating. CPS allele 1 expression at 24 °C during biofilm formation was up-regulated (1.50 ± 0.18-fold) during the initial attachment phase of the cells but was strongly down-regulated during the intermediate phases at 8 and 10 h (74.42 ± 42.16-fold and 453.76 ± 193.32-fold, respectively), indicating that capsular polysaccharide (CPS) is not important to intermediate biofilm architecture. Interestingly, as the biofilm matured by 24 h, expression of CPS allele 1 was again up-regulated (1.88 ± 1.07), showing that CPS plays a role in mature biofilm. At 37 °C, CPS allele 1 expression was significantly up-regulated (up to 105) during biofilm formation, indicating that the biofilm form of V. vulnificus may be preferred over the planktonic form in the human host.
Collapse
Affiliation(s)
- Sedat Çam
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA.
- Department of Biology, Harran University, 63100, Şanlıurfa, Turkey.
| | - Robin Brinkmeyer
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA
| |
Collapse
|
4
|
Çam S, Brinkmeyer R. The effects of temperature, pH, and iron on biofilm formation by clinical versus environmental strains of Vibrio vulnificus. Folia Microbiol (Praha) 2019; 65:557-566. [DOI: 10.1007/s12223-019-00761-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023]
|
5
|
Abstract
Flagellar filaments of the pathogenic Vibrio species, including V. vulnificus, V. parahaemolyticus, and V. cholerae, are composed of multiple flagellin subunits. In their genomes, however, there are higher numbers of the ORFs encoding flagellin-like proteins than the numbers of flagellin subunits required for filament assembly. Since these flagellin-homologous proteins (FHPs) are well expressed and excreted to environments via a flagellin transport channel, their extracellular role in the pathogenic Vibrio has been enigmatic. Their biological significance, which is not related with flagellar functions, has been revealed to be in maturation of biofilm structures. Among various components of the extracellular polymeric matrix produced in the V. vulnificus biofilms, the exopolysaccharides (EPS) are dominant constituents and crucial in maturation of biofilms. The enhancing role of the V. vulnificus FHPs in biofilm formation requires the presence of EPS, as indicated by highly specific interactions among two FHPs and three EPS. The pathogenic bacterium Vibrio vulnificus exhibits the ability to form biofilm, for which initiation is dependent upon swimming motility by virtue of a polar flagellum. The filament of its flagellum is composed of multiple flagellin subunits, FlaA, -B, -C, and -D. In V. vulnificus genomes, however, open reading frames (ORFs) annotated by FlaE and -F are also present. Although neither FlaE nor FlaF is involved in filament formation and cellular motility, they are well expressed and secreted to the extracellular milieu through the secretion apparatus for flagellar assembly. In the extrapolymeric matrix of V. vulnificus biofilm, significant levels of FlaEF were detected. Mutants defective in both flaE and flaF formed significantly decreased biofilms compared to the wild-type biofilm. Thus, the potential role of FlaEF during the biofilm-forming process was investigated by exogenous addition of recombinant FlaEF (rFlaEF) to the biofilm assays. The added rFlaE and rFlaF were predominantly incorporated into the biofilm matrix formed by the wild type. However, biofilms formed by a mutant defective in exopolysaccharide (EPS) biosynthesis were not affected by added FlaEF. These results raised a possibility that FlaEF specifically interact with EPS within the biofilm matrix. In vitro pulldown assays using His-tagged rFlaEF or rFlaC revealed the specific binding of EPS to rFlaEF but not to rFlaC. Taken together, our results demonstrate that V. vulnificus FlaEF, flagellin-homologous proteins (FHPs), are crucial for biofilm formation by directly interacting with the essential determinant for biofilm maturation, EPS. Further analyses performed with other pathogenic Vibrio species demonstrated both the presence of FHPs and their important role in biofilm formation.
Collapse
|
6
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
7
|
Lambert B, Dassanayake M, Oh DH, Garrett SB, Lee SY, Pettis GS. A novel phase variant of the cholera pathogen shows stress-adaptive cryptic transcriptomic signatures. BMC Genomics 2016; 17:914. [PMID: 27842489 PMCID: PMC5109742 DOI: 10.1186/s12864-016-3233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/01/2016] [Indexed: 02/01/2023] Open
Abstract
Background In a process known as phase variation, the marine bacterium and cholera pathogen Vibrio cholerae alternately expresses smooth or rugose colonial phenotypes, the latter being associated with advanced biofilm architecture and greater resistance to ecological stress. To define phase variation at the transcriptomic level in pandemic V. cholerae O1 El Tor strain N16961, we compared the RNA-seq-derived transcriptomes among the smooth parent N16961, its rugose derivative (N16961R) and a smooth form obtained directly from the rugose at high frequencies consistent with phase variation (N16961SD). Results Differentially regulated genes which clustered into co-expression groups were identified for specific cellular functions, including acetate metabolism, gluconeogenesis, and anaerobic respiration, suggesting an important link between these processes and biofilm formation in this species. Principal component analysis separated the transcriptome of N16961SD from the other phase variants. Although N16961SD was defective in biofilm formation, transcription of its biofilm-related vps and rbm gene clusters was nevertheless elevated as judged by both RNA-seq and RT-qPCR analyses. This transcriptome signature was shared with N16961R, as were others involving two-component signal transduction, chemotaxis, and c-di-GMP synthesis functions. Conclusions Precise turnarounds in gene expression did not accompany reversible phase transitions (i.e., smooth to rugose to smooth) in the cholera pathogen. Transcriptomic signatures consisting of up-regulated genes involved in biofilm formation, environmental sensing and persistence, chemotaxis, and signal transduction, which were shared by N16961R and N16961SD variants, may implicate a stress adaptation in the pathogen that facilitates transition of the N16961SD smooth form back to rugosity should environmental conditions dictate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bliss Lambert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shana B Garrett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sang-Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
8
|
Abstract
Vibrio vulnificus, carrying a 50% fatality rate, is the most deadly of the foodborne pathogens. It occurs in estuarine and coastal waters and it is found in especially high numbers in oysters and other molluscan shellfish. The biology of V. vulnificus, including its ecology, pathogenesis, and molecular genetics, has been described in numerous reviews. This article provides a brief summary of some of the key aspects of this important human pathogen, including information on biotypes and genotypes, virulence factors, risk factor requirements and the role of iron in disease, association with oysters, geographic distribution, importance of salinity and water temperature, increasing incidence associated with global warming. This article includes some of our findings as presented at the "Vibrios in the Environment 2010" conference held in Biloxi, MS.
Collapse
|
9
|
Santhyia AV, Mulloorpeedikayil RG, Kollanoor RJ, Jeyaseelan PMJ. Molecular variations in Vibrio alginolyticus and V. harveyi in shrimp-farming systems upon stress. Braz J Microbiol 2015; 46:1001-8. [PMID: 26691457 PMCID: PMC4704611 DOI: 10.1590/s1517-838246420140410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/28/2014] [Indexed: 11/22/2022] Open
Abstract
A study was performed to investigate the genomic variations in the shrimp farm
isolates of Vibrio alginolyticus and V. harveyi
when the isolates were subjected to environmental stress. Samples of shrimps, water
and sediment were collected from Southern Indian coastal shrimp farms. Vibrio
isolates were biochemically identified and confirmed using 16S rDNA and
gyrB gene specific PCR. The bacterial strains were genotyped by
PCR fingerprinting using GTG(5) and IS (Insertion Sequence) primers. Seven strains
each of V. alginolyticus and V. harveyi were
subjected to 10 passages through trypticase soya broth (TSB), which contained
different NaCl concentrations (3, 6 and 8%) and trypticase soya agar (TSA).
V. alginolyticus was also passaged through TSB with a 12% NaCl
concentration. PCR fingerprinting, which was performed on the strains that were
passaged through different salt concentrations, confirmed that V.
alginolyticus and V. harveyi could affect the genomic
variations, depending on the environmental conditions of the culture. The study
highlights the complex genotypic variations that occur in Vibrio
strains of tropical aquatic environment because of varied environmental conditions,
which result in genetic divergence and/or probable convergence. Such genetic
divergence and/or convergence can lead to the organismal adaptive variation, which
results in their ability to cause a productive infection in aquatic organisms or
generation of new strains.
Collapse
Affiliation(s)
- Anix Vivek Santhyia
- Department of Fish Pathology and Health Management, Tamilnadu Fisheries University, Tuticorin, India
| | | | - Riji John Kollanoor
- Department of Fish Pathology and Health Management, Tamilnadu Fisheries University, Tuticorin, India
| | - Prince M J Jeyaseelan
- Department of Fish Pathology and Health Management, Tamilnadu Fisheries University, Tuticorin, India
| |
Collapse
|
10
|
Kaluskar ZM, Garrison-Schilling KL, McCarter KS, Lambert B, Simar SR, Pettis GS. Manganese is an additional cation that enhances colonial phase variation of Vibrio vulnificus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:789-794. [PMID: 26147440 DOI: 10.1111/1758-2229.12318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Vibrio vulnificus, an inhabitant of marine and estuarine environments around the world, is the leading cause of reported seafood-related deaths in the United States. Disease is caused by opaque colony-forming strains that produce capsular polysaccharide, loss of which results in an unencapsulated translucent phenotype with diminished virulence potential. Rugose is a third phenotypic variant of V. vulnificus, and produces a separate exopolysaccharide that results in a dry, wrinkled appearance and the ability to form profuse biofilms. Phase variation among these three phenotypes is influenced by several environmental factors, including the presence of calcium in the medium (Garrison-Schilling et al.). In this study, we have identified a second cation, manganese, which substantially increases the propensity of opaque V. vulnificus strains to switch to translucent or rugose phenotypes. In comparative studies, manganese and calcium promoted switching to the same phenotype for some strains but to different phenotypes for others, results of which indicate that the two cations do not always promote the same changes in underlying gene expression. The data here provide further evidence that exposure of V. vulnificus to select cations results in phenotypic changes that impact both virulence capacity and ecology of the organism.
Collapse
Affiliation(s)
- Zelam M Kaluskar
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | | | - Kevin S McCarter
- Department of Experimental Statistics, Louisiana State University, 171 Martin D. Woodin Hall, Baton Rouge, LA, 70803, USA
| | - Bliss Lambert
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Shelby R Simar
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
11
|
Effects of elevated intracellular cyclic di-GMP levels on biofilm formation and transcription profiles of Vibrio vulnificus. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0100-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti. PLoS One 2014; 9:e112853. [PMID: 25390633 PMCID: PMC4229229 DOI: 10.1371/journal.pone.0112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.
Collapse
|
13
|
Garrison-Schilling KL, Kaluskar ZM, Lambert B, Pettis GS. Genetic analysis and prevalence studies of the brp exopolysaccharide locus of Vibrio vulnificus. PLoS One 2014; 9:e100890. [PMID: 25013926 PMCID: PMC4094392 DOI: 10.1371/journal.pone.0100890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus.
Collapse
Affiliation(s)
| | - Zelam M. Kaluskar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Bliss Lambert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gregg S. Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
16
|
Froelich B, Oliver JD. The interactions of Vibrio vulnificus and the oyster Crassostrea virginica. MICROBIAL ECOLOGY 2013; 65:807-816. [PMID: 23280497 DOI: 10.1007/s00248-012-0162-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
The human bacterial pathogen, Vibrio vulnificus, is found in brackish waters and is concentrated by filter-feeding molluscan shellfish, especially oysters, which inhabit those waters. Ingestion of raw or undercooked oysters containing virulent strains of V. vulnificus can result in rapid septicemia and death in 50 % of victims. This review summarizes the current knowledge of the environmental interactions between these two organisms, including the effects of salinity and temperature on colonization, uptake, and depuration rates of various phenotypes and genotypes of the bacterium, and host-microbe immunological interactions.
Collapse
Affiliation(s)
- Brett Froelich
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | | |
Collapse
|
17
|
Nandakumar V, Chittaranjan S, Kurian VM, Doble M. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polym J 2012. [DOI: 10.1038/pj.2012.130] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Juanico DE. Phenotypic plasticity stimulated by cooperation fosters pattern diversity of bacterial colonies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011920. [PMID: 23005465 DOI: 10.1103/physreve.86.011920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/19/2012] [Indexed: 06/01/2023]
Abstract
Colonies of flagellated bacteria on agar plates are known to take on diverse morphologies. A diffusion-reaction model is proposed for bacterial-colony pattern formation on a surface due to time scale separation between the slow mass migration of bacteria from the point of inoculation, and the fast, but localized, dynamics of bacterial phenotypic plasticity stimulated by public-goods cooperation and phenotypic switching. By considering two switchable phenotypes in the population, the model generates pattern diversity typifying those reported by experimental studies.
Collapse
Affiliation(s)
- Dranreb Earl Juanico
- Department of Mathematics, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108, Philippines
| |
Collapse
|
19
|
Guo Y, Rowe-Magnus DA. Overlapping and unique contributions of two conserved polysaccharide loci in governing distinct survival phenotypes in Vibrio vulnificus. Environ Microbiol 2011; 13:2888-990. [PMID: 21895917 DOI: 10.1111/j.1462-2920.2011.02564.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an aetiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionacea. Its continued environmental persistence and transmission are bolstered by its ability to colonize shellfish and form biofilms on various marine biotic surfaces. We previously identified a polysaccharide locus, brp, which contributes to the survival phenotypes of biofilm formation, rugose colony formation and stress resistance. Here, we describe a second polysaccharide locus, rbd (regulation of biofilm development), which also enhanced biofilm formation when expressed. Despite this functional overlap, the development of stress resistance and rugosity could be uniquely attributed to brp expression, whereas rbd expression augmented aggregate formation. Simultaneous expression of both loci led to the formation of a dramatic pellicle and maximum biofilm formation. Unlike the brp locus, transcription of the rbd locus was regulated not by c-di-GMP, but by a response regulator (RbdG) that was encoded within the locus. We propose that the ability to regulate the expression of polysaccharides with overlapping and unique characteristics in response to different environmental cues enables V. vulnificus to 'fine tune' its biofilm lifestyle to the prevailing environmental conditions and maximally benefit from the characteristics associated with each polysaccharide.
Collapse
Affiliation(s)
- Yunzhi Guo
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
20
|
Asplund ME, Rehnstam-Holm AS, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 2011; 13:2738-51. [PMID: 21895909 DOI: 10.1111/j.1462-2920.2011.02545.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio abundance generally displays seasonal patterns. In temperate coastal areas, temperature and salinity influence Vibrio growth, whereas in tropical areas this pattern is not obvious. The present study assessed the dynamics of Vibrio in the Arabian Sea, 1-2 km off Mangalore on the south-west coast of India, during temporally separated periods. The two sampling periods were signified by oligotrophic conditions, and stable temperatures and salinity. Vibrio abundance was estimated by culture-independent techniques in relation to phytoplankton community composition and environmental variables. The results showed that the Vibrio density during December 2007 was 10- to 100-fold higher compared with the February-March 2008 period. High Vibrio abundance in December coincided with a diatom-dominated phytoplankton assemblage. A partial least squares (PLS) regression model indicated that diatom biomass was the primary predictor variable. Low nutrient levels suggested high water column turnover rate, which bacteria compensated for by using organic molecules leaking from phytoplankton. The abundance of potential Vibrio predators was low during both sampling periods; therefore it is suggested that resource supply from primary producers is more important than top-down control by predators.
Collapse
Affiliation(s)
- Maria E Asplund
- Department of Marine Ecology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)(2) is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus.
Collapse
|
22
|
Garrison-Schilling KL, Grau BL, McCarter KS, Olivier BJ, Comeaux NE, Pettis GS. Calcium promotes exopolysaccharide phase variation and biofilm formation of the resulting phase variants in the human pathogen Vibrio vulnificus. Environ Microbiol 2010; 13:643-54. [DOI: 10.1111/j.1462-2920.2010.02369.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Cañigral I, Moreno Y, Alonso JL, González A, Ferrús MA. Detection of Vibrio vulnificus in seafood, seawater and wastewater samples from a Mediterranean coastal area. Microbiol Res 2010; 165:657-64. [PMID: 20106642 DOI: 10.1016/j.micres.2009.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/23/2009] [Accepted: 11/28/2009] [Indexed: 11/18/2022]
Abstract
Vibrio vulnificus is an opportunistic human pathogen that may cause gastroenteritis, severe necrotizing soft-tissue infections and primary septicaemia, with a high lethality rate. Illness is associated to ingestion of seafood or to the exposure of contaminated water. The aim of this work was to determine the occurrence of V. vulnificus in water and seafood samples from a coastal area near the Mediterranean (Valencia, Spain). A TaqMan probe-based real-time PCR assay was optimised and applied to 22 sea water, 42 raw sewage and 40 seafood samples. Results were compared with those obtained for culture isolation. The detection level of the PCR assay was 10 CFU g⁻¹ in inoculated samples. Seven seawater, four shellfish and six wastewater samples were positive by real time PCR. V. vulnificus was isolated from two oyster, three sea water and two wastewater samples. All the strains were obtained after 20 h enrichment, except for wastewater strains, which were isolated directly from the sample. To our knowledge, this is the first report on the isolation of V. vulnificus from sewage in Spain. Our results about the presence of V. vulnificus in food and environmental samples are strong enough to consider that the organism may represent a human health hazard in our geographical area.
Collapse
Affiliation(s)
- Irene Cañigral
- Department of Biotechnology, Polytechnic University of Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
24
|
Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect Immun 2010; 78:1390-402. [PMID: 20065022 DOI: 10.1128/iai.01188-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. Its continued environmental persistence and transmission are bolstered by its ability to colonize shellfish, form biofilms on various marine biotic surfaces, and generate a morphologically and physiologically distinct rugose (R) variant that yields profuse biofilms. Here, we identify a c-di-GMP-regulated locus (brp, for biofilm and rugose polysaccharide) and two transcription factors (BrpR and BrpT) that regulate these physiological responses. Disruption of glycosyltransferases within the locus or either regulator abated the inducing effect of c-di-GMP on biofilm formation, rugosity, and stress resistance. The same lesions, or depletion of intracellular c-di-GMP levels, abrogated these phenotypes in the R variant. The parental and brp mutant strains formed only scant monolayers on glass surfaces and oyster shells, and although the R variant formed expansive biofilms, these were of limited depth. Dramatic vertical expansion of the biofilm structure was observed in the parental strain and R variant, but not the brp mutants, when intracellular c-di-GMP levels were elevated. Hence, the brp-encoded polysaccharide is important for surface colonization and stress resistance in V. vulnificus, and its expression may control how the bacteria switch from a planktonic lifestyle to colonizing shellfish to invading human tissue.
Collapse
|
25
|
Kim HS, Park SJ, Lee KH. Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus. Mol Microbiol 2009; 74:436-53. [PMID: 19737353 DOI: 10.1111/j.1365-2958.2009.06875.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio vulnificus has been shown to require a global transcription factor, NtrC for mature biofilm development via controlling the biosyntheses of lipopolysaccharide and exopolysaccharide (EPS). Biofilm formation and EPS production were dramatically increased in a medium including a tricarboxylic acid cycle-intermediate as a carbon source. These phenotypes required functional NtrC and were abolished by the addition of ammonium chloride. During the initial stage of biofilm formation, both expression of the ntrC gene and the cellular content of NtrC protein increased. Thus, the regulatory roles of NtrC in EPS biosynthesis were studied with three gene clusters for EPS biosyntheses. Transcriptions of the three clusters were positively controlled by NtrC and showed maximal expression at the early stage of biofilm development. Mutants deficient in one of the genes (VV1_2661, VV2_1579 and VV1_2305) in each cluster showed decreased production of EPS, attenuated ability to form biofilm and lowered cytoadherence to human epithelial cells. However, mutations in VV2_1579 and VV1_2305 resulted in lower cytotoxicity to human cells and mortality to mice than the mutation in VV1_2661. These results demonstrate that NtrC-regulated EPS are crucial in biofilm formation of V. vulnificus, and some EPS components play important roles in interacting with hosts.
Collapse
Affiliation(s)
- Han-Suk Kim
- Department of Environmental Science and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do 449-791, South Korea
| | | | | |
Collapse
|
26
|
Srivastava M, Tucker MS, Gulig PA, Wright AC. Phase variation, capsular polysaccharide, pilus and flagella contribute to uptake ofVibrio vulnificusby the Eastern oyster (Crassostrea virginica). Environ Microbiol 2009; 11:1934-44. [DOI: 10.1111/j.1462-2920.2009.01916.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Roles of RseB, sigmaE, and DegP in virulence and phase variation of colony morphotype of Vibrio vulnificus. Infect Immun 2009; 77:3768-81. [PMID: 19564391 DOI: 10.1128/iai.00205-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an estuarine bacterium capable of causing serious and often fatal wound infections and primary septicemia. We used alkaline phosphatase insertion mutagenesis to identify genes necessary for the virulence of this pathogen. One mutant had an in-frame fusion of 'phoA to the gene encoding RseB, a periplasmic negative regulator of the alternative sigma factor sigma(E). sigma(E) controls an extensive regulon involved in responding to cell envelope stresses. Colonies of the rseB mutant were less opaque than wild-type colonies and underwent phase variation between translucent and opaque morphologies. rseB mutants were attenuated for virulence in subcutaneously inoculated iron-dextran-treated mice. To obtain insight into the role of rseB and the extracytoplasmic stress response in V. vulnificus, mutants with defined mutations in rseB and two important members of the extracytoplasmic stress regulon, rpoE and degP, were constructed for analysis of virulence, colony morphology, and stress-associated phenotypes. Deletion of rseB caused reversible phase variation in the colony morphotype that was associated with extracellular polysaccharides. Translucent and transparent morphotype strains were attenuated for virulence. rpoE and degP deletion mutants were sensitive to membrane-perturbing agents and heat but were not significantly attenuated for V. vulnificus virulence in mice. These results reveal complex relationships between regulation of the extracytoplasmic stress response, exopolysaccharides, and the virulence of V. vulnificus.
Collapse
|
28
|
|
29
|
Vibrio biofilms: so much the same yet so different. Trends Microbiol 2009; 17:109-18. [PMID: 19231189 DOI: 10.1016/j.tim.2008.12.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/11/2008] [Accepted: 12/05/2008] [Indexed: 12/20/2022]
Abstract
Vibrios are natural inhabitants of aquatic environments and form symbiotic or pathogenic relationships with eukaryotic hosts. Recent studies reveal that the ability of vibrios to form biofilms (i.e. matrix-enclosed, surface-associated communities) depends upon specific structural genes (flagella, pili and exopolysaccharide biosynthesis) and regulatory processes (two-component regulators, quorum sensing and c-di-GMP signaling). Here, we compare and contrast mechanisms and regulation of biofilm formation by Vibrio species, with a focus on Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio fischeri. Although many aspects are the same, others differ dramatically. Crucial questions that remain to be answered regarding the molecular underpinnings of Vibrio biofilm formation are also discussed.
Collapse
|
30
|
Abstract
PCR screening of the shellfish-borne pathogen Vibrio vulnificus revealed csrA-negative strains, and these strains formed increased biofilm compared to csrA-positive strains. Complementation in trans with csrA resulted in reduced biofilm formation, similar to that by csrA(+) strains. Our results provide evidence that csrA inhibits biofilm formation in V. vulnificus.
Collapse
|
31
|
Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl Environ Microbiol 2008; 74:4199-209. [PMID: 18487410 DOI: 10.1128/aem.00176-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.
Collapse
|
32
|
Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene cluster. Infect Immun 2008; 76:1485-97. [PMID: 18212074 DOI: 10.1128/iai.01289-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence factor in Vibrio vulnificus, and encapsulated strains have an opaque, smooth (OpS) colony morphology, while nonencapsulated strains have a translucent, smooth (TrS) colony morphology. Previously, we showed that OpS and TrS parental strains can yield a third colony type, rugose (R), and that the resulting strains, with the OpR and TrR phenotypes, respectively, form copious biofilms. Here we show that while OpR and TrR strains both produce three-dimensional biofilm structures that are indicative of rugose extracellular polysaccharide (rEPS) production, OpR strains also retain expression of CPS and are virulent in an iron-supplemented mouse model, while TrR strains lack CPS and are avirulent. Chlorine resistance assays further distinguished OpR and TrR isolates as exposure to 3 microg/ml NaOCl eradicated both OpS and OpR strains, while both TrS and TrR strains survived, but at rates which were significantly different from one another. Taken together, these results further emphasize the importance of CPS for virulence of V. vulnificus and establish a correlation between CPS expression and chlorine sensitivity in this organism. Using reverse transcriptase PCR, we also identified a nine-gene cluster associated with both CPS and rEPS expression in V. vulnificus, designated the wcr (capsular and rugose polysaccharide) locus, with expression occurring primarily in R variants. The latter results set the stage for characterization of functional determinants which individually or collectively contribute to expression of multiple EPS forms in this pathogen.
Collapse
|
33
|
Yarwood JM, Paquette KM, Tikh IB, Volper EM, Greenberg EP. Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol 2007; 189:7961-7. [PMID: 17675387 PMCID: PMC2168666 DOI: 10.1128/jb.00789-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several serious diseases are caused by biofilm-associated Staphylococcus aureus. Colonial variants occur in biofilms of other bacterial species, and S. aureus variants are frequently isolated from biofilm-associated infections. Thus, we studied the generation of variants with altered expression of virulence factors in S. aureus biofilms. We observed that the number of variants found in biofilms, as measured by hemolytic activity, varied for different strains. Further study of hemolytic activity and signaling by the accessory gene regulator (Agr) quorum-sensing system in one S. aureus strain revealed three primary biofilm subpopulations: nonhemolytic (Agr deficient), hemolytic (Agr positive), and hyperhemolytic (also Agr positive). The nonhemolytic variant became the numerically dominant subpopulation in the biofilm. The nonhemolytic variant phenotype was stable and heritable, indicating a genetic perturbation, whereas the hyperhemolytic phenotype was unstable, suggesting a phase variation. Transcription profiling revealed that expression of the agr locus and many extracellular virulence factors was repressed in the nonhemolytic variant. Expression of the agr-activating gene, sarU, was also repressed in the nonhemolytic variant, suggesting one potential regulatory pathway responsible for the Agr-deficient phenotype. We suggest that the development of these variants in biofilms may have important clinical implications.
Collapse
Affiliation(s)
- Jeremy M Yarwood
- 3M Corporate Research Laboratories, 3M Center, Bldg. 201-3E-03, St. Paul, MN 55144, USA.
| | | | | | | | | |
Collapse
|
34
|
Curtis SK, Kothary MH, Blodgett RJ, Raybourne RB, Ziobro GC, Tall BD. Rugosity in Grimontia hollisae. Appl Environ Microbiol 2006; 73:1215-24. [PMID: 17189437 PMCID: PMC1828682 DOI: 10.1128/aem.02553-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grimontia hollisae, formerly Vibrio hollisae, produces both smooth and rugose colonial variants. The rugose colony phenotype is characterized by wrinkled colonies producing copious amounts of exopolysaccharide. Cells from a rugose colony grown at 30 degrees C form rugose colonies, while the same cells grown at 37 degrees C form smooth colonies, which are characterized by a nonwrinkled, uncrannied appearance. Stress response studies revealed that after exposure to bleach for 30 min, rugose survivors outnumbered smooth survivors. Light scatter information obtained by flow cytometry indicated that rugose cells clumped into clusters of three or more cells (average, five cells) and formed two major clusters, while smooth cells formed only one cluster of single cells or doublets. Fluorescent lectin-binding flow cytometry studies revealed that the percentages of rugose cells that bound either wheat germ agglutinin (WGA) or Galanthus nivalis lectin (GNL) were greater than the percentages of smooth cells that bound the same lectins (WGA, 35% versus 3.5%; GNL, 67% versus 0.21%). These results indicate that the rugose exopolysaccharide consists partially of N-acetylglucosamine and mannose. Rugose colonies produced significantly more biofilm material than did smooth colonies, and rugose colonies grown at 30 degrees C produced more biofilm material than rugose colonies grown at 37 degrees C. Ultrastructurally, rugose colonies show regional cellular differentiation, with apical and lateral colonial regions containing cells embedded in a matrix stained by Alcian Blue. The cells touching the agar surface are packed tightly together in a palisade-like manner. The central region of the colony contains irregularly arranged, fluid-filled spaces and loosely packed chains or arrays of coccoid and vibrioid cells. Smooth colonies, in contrast, are flattened, composed of vibrioid cells, and lack distinct regional cellular differences. Results from suckling mouse studies showed that both orally fed rugose and smooth variants elicited significant, but similar, amounts of fluid accumulated in the stomach and intestines. These observations comprise the first report of expression and characterization of rugosity by G. hollisae and raise the possibility that expression of rugose exopolysaccharide in this organism is regulated at least in part by growth temperature.
Collapse
Affiliation(s)
- S K Curtis
- U.S. Food and Drug Administration, College Park, MD 20740, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rosche TM, Smith B, Oliver JD. Evidence for an intermediate colony morphology of Vibrio vulnificus. Appl Environ Microbiol 2006; 72:4356-9. [PMID: 16751551 PMCID: PMC1489594 DOI: 10.1128/aem.02937-05] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus causes both food-borne disease and wound infections. Most V. vulnificus strains express capsular polysaccharide (CPS), which is required for the virulence of this organism. Under standard growth conditions, CPS expression is lost at a relatively high frequency (10(-3) to 10(-4)), resulting in a switch from an opaque (Op, CPS+) colony morphology to a translucent (Tr, CPS-) colony morphology. The wzb gene, which encodes a phosphatase required for CPS expression, has been proposed to be involved in this switch through a site-specific deletion of the entire gene. In an examination of five strains, we found that the frequency of wzb deletion in Tr colonies varies by strain and therefore does not account for all the Tr colonies that are seen. In addition, we have identified a third, intermediate (Int) colony morphotype, in which the colonies appear less opaque but are not fully translucent. PCR studies have demonstrated that Int colonies still contain the wzb gene, while reverse transcriptase PCR studies have shown that although Int strains retain expression of wzb, in some cases the transcription of wzb is reduced. Int strains switch to a true Tr (wzb negative) morphotype at a very high frequency (nearly 100%) under certain conditions. Finally, Int colonies, which in some cases can easily be mistaken for Tr colonies, have been observed to occasionally revert to Op, while Tr colonies containing a wzb deletion presumably are unable to revert to the encapsulated form.
Collapse
Affiliation(s)
- Thomas M Rosche
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
36
|
Hilton T, Rosche T, Froelich B, Smith B, Oliver J. Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 2006; 72:6986-93. [PMID: 16936057 PMCID: PMC1636181 DOI: 10.1128/aem.00544-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Commonly found in raw oysters, Vibrio vulnificus poses a serious health threat to immunocompromised individuals and those with serum iron overload, with a fatality rate of approximately 50%. An essential virulence factor is its capsular polysaccharide (CPS), which is responsible for a significant increase in virulence compared to nonencapsulated strains. However, this bacterium is known to vary the amount of CPS expressed on the cell surface, converting from an opaque (Op) colony phenotype to a translucent (Tr) colony phenotype. In this study, the consistency of CPS conversion was determined for four strains of V. vulnificus. Environmental conditions including variations in aeration, temperature, incubation time, oxidative stress, and media (heart infusion or modified maintenance medium agar) were investigated to determine their influence on CPS conversion. All conditions, with the exception of variations in media and oxidative stress, significantly affected the conversion of the population, with high ranges of CPS expression found even within cells from a single colony. The global quorum-sensing regulators RpoS and AI-2 were also examined. While RpoS was found to significantly mediate phenotypic conversion, quorum sensing was not. Finally, 12 strains that comprise the recently found clinical (C) and environmental (E) genotypes of V. vulnificus were examined to determine their rates of population conversion. C-genotype strains, which are most often associated with infection, had a significantly lower rate of population conversion from Op to Tr phenotypes than did E-genotype strains (ca. 38% versus ca. 14%, respectively). Biofilm capabilities of these strains, however, were not correlated with increased population conversion.
Collapse
Affiliation(s)
- Tamara Hilton
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Tom Rosche
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Brett Froelich
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Benjamin Smith
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - James Oliver
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
- Corresponding author. Mailing address: University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. Phone: (704) 687-8516. Fax: (704) 687-3457. E-mail:
| |
Collapse
|
37
|
Fong JCN, Karplus K, Schoolnik GK, Yildiz FH. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 2006; 188:1049-59. [PMID: 16428409 PMCID: PMC1347326 DOI: 10.1128/jb.188.3.1049-1059.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phase variation between smooth and rugose colony variants of Vibrio cholerae is predicted to be important for the pathogen's survival in its natural aquatic ecosystems. The rugose variant forms corrugated colonies, exhibits increased levels of resistance to osmotic, acid, and oxidative stresses, and has an enhanced capacity to form biofilms. Many of these phenotypes are mediated in part by increased production of an exopolysaccharide termed VPS. In this study, we compared total protein profiles of the smooth and rugose variants using two-dimensional gel electrophoresis and identified one protein that is present at a higher level in the rugose variant. A mutation in the gene encoding this protein, which does not have any known homologs in the protein databases, causes cells to form biofilms that are more fragile and sensitive to sodium dodecyl sulfate than wild-type biofilms. The results indicate that the gene, termed rbmA (rugosity and biofilm structure modulator A), is required for rugose colony formation and biofilm structure integrity in V. cholerae. Transcription of rbmA is positively regulated by the response regulator VpsR but not VpsT.
Collapse
Affiliation(s)
- Jiunn C N Fong
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|