1
|
Sun W, Xu Y, Liang Y, Yu Q, Gao H. A novel bacterial sulfite dehydrogenase that requires three c-type cytochromes for electron transfer. Appl Environ Microbiol 2023; 89:e0110823. [PMID: 37732808 PMCID: PMC10617556 DOI: 10.1128/aem.01108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
c-type Cytochromes (c-Cyts), primarily as electron carriers and oxidoreductases, play a key role in energy transduction processes in virtually all living organisms. Many bacteria, such as Shewanella oneidensis, are particularly rich in c-Cyts, supporting respiratory versatility not seen in eukaryotes. Unfortunately, a large number of c-Cyts are underexplored, and their biological functions remain unknown. In this study, we identify SorCABD of S. oneidensis as a novel sulfite dehydrogenase (SDH), which catalyzes the oxidation of sulfite to sulfate. In addition to catalytic subunit SorA, this enzymatic complex includes three c-Cyt subunits, which all together carry out electron transfer. The electrons extracted from sulfite oxidation are ultimately delivered to oxygen, leading to oxygen reduction, a process relying on terminal oxidase cyt cbb3. Genomic analysis suggests that the homologs of this SDH are present in a small number of bacterial genera, Shewanella and Vibrio in particular. Because these bacteria are generally capable of reducing sulfite under anaerobic conditions, the co-existence of a sulfite oxidation system implies that they may play especially important roles in the transformation of sulfur species in natural environments.Importancec-type Cytochromes (c-Cyts) endow bacteria with high flexibility in their oxidative/respiratory systems, allowing them to extracellularly transform diverse inorganic and organic compounds for survival and growth. However, a large portion of the bacterial c-Cyts remain functionally unknown. Here, we identify three c-Cyts that work together as essential electron transfer partners for the catalytic subunit of a novel SDH in sulfite oxidation in Shewanella oneidensis. This characteristic makes S. oneidensis the first organism known to be capable of oxidizing and reducing sulfite. The findings suggest that Shewanella, along with a small number of other aquatic bacteria, would serve as a particular driving force in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Weining Sun
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyou Xu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
3
|
Tan YJC, Zhao C, Nasreen M, O'Rourke L, Dhouib R, Roberts L, Wan Y, Beatson SA, Kappler U. Control of Bacterial Sulfite Detoxification by Conserved and Species-Specific Regulatory Circuits. Front Microbiol 2019; 10:960. [PMID: 31139157 PMCID: PMC6527743 DOI: 10.3389/fmicb.2019.00960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 11/15/2022] Open
Abstract
Although sulfite, a by-product of the degradation of many sulfur compounds, is highly reactive and can cause damage to DNA, proteins and lipids, comparatively little is known about the regulation of sulfite-oxidizing enzyme (SOEs) expression. Here we have investigated the regulation of SOE-encoding genes in two species of α-Proteobacteria, Sinorhizobium meliloti and Starkeya novella, that degrade organo- and inorganic sulfur compounds, respectively, and contain unrelated types of SOEs that show different expression patterns. Our work revealed that in both cases, the molecular signal that triggers SOE gene expression is sulfite, and strong up-regulation depends on the presence of a sulfite-responsive, cognate Extracytoplasmic function (ECF) sigma factor, making sulfite oxidation a bacterial stress response. An additional RpoE1-like ECF sigma factor was also involved in the regulation, but was activated by different molecular signals, taurine (Sm) and tetrathionate (Sn), respectively, targeted different gene promoters, and also differed in the magnitude of the response generated. We therefore propose that RpoE1 is a secondary, species-specific regulator of SOE gene expression rather than a general, conserved regulatory circuit. Sulfite produced by major dissimilatory processes appeared to be the trigger for SOE gene expression in both species, as we were unable to find evidence for an increase of SOE activity in stationary growth phase. The basic regulation of bacterial sulfite oxidation by cognate ECF sigma factors is likely to be applicable to three groups of alpha and beta-Proteobacteria in which we identified similar SOE operon structures.
Collapse
Affiliation(s)
- Yi Jie Chelsea Tan
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Chengzhi Zhao
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Marufa Nasreen
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Leo O'Rourke
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rabeb Dhouib
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Leah Roberts
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Wan
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott A Beatson
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
4
|
Paramasivam OR, Trivedi S, Sangith N, Sankaran K. Active sulfite oxidase domain of Salmonella enterica pathogenic protein small intestine invasive factor E (SiiE): a potential diagnostic target. Appl Microbiol Biotechnol 2019; 103:5679-5688. [PMID: 31104097 DOI: 10.1007/s00253-019-09894-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Serovars of Salmonella enterica are common food-borne bacterial pathogens. Salmonella typhi, which causes typhoid, is the most dangerous of them. Though detailed molecular pathogenesis studies reveal many virulence factors, inability to identify their biochemical functions hampers the development of diagnostic methods and therapeutic leads. Lack of quicker diagnosis is an impediment in starting early antibiotic treatment to reduce the severe morbidity and mortality in typhoid. In this study, employing bioinformatic prediction, biochemical analysis, and recombinantly cloning the active region, we show that extracellularly secreted virulence-associated protein, small intestinal invasion factor E (SiiE), possesses a sulfite oxidase (SO) domain that catalyzes the conversion of sodium sulfite to sodium sulfate using tungsten as the cofactor. This activity common to Salmonella enterica serovars seems to be specific to them from bioinformatic analysis of available bacterial genomes. Along with the ability of this large non-fimbrial adhesin of 600 kDa binding to sialic acid on the host cells, this activity could aid in subverting the host defense mechanism by destroying sulfites released by the immune cells and colonize the host gastrointestinal epithelium. Being an extracellular enzyme, it could be an ideal candidate for developing diagnostics of S. enterica, particularly S. typhi.
Collapse
Affiliation(s)
| | - Swati Trivedi
- Centre for Biotechnology, Anna University, Chennai, 600020, India
| | - Nikhil Sangith
- Centre for Biotechnology, Anna University, Chennai, 600020, India.
| | | |
Collapse
|
5
|
Hong Y, Wu J, Wilson S, Song B. Vertical Stratification of Sediment Microbial Communities Along Geochemical Gradients of a Subterranean Estuary Located at the Gloucester Beach of Virginia, United States. Front Microbiol 2019; 9:3343. [PMID: 30687299 PMCID: PMC6336712 DOI: 10.3389/fmicb.2018.03343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
Subterranean estuaries (STEs) have been recognized as important ecosystems for the exchange of materials between the land and sea, but the microbial players of biogeochemical processes have not been well examined. In this study, we investigated the bacterial and archaeal communities within 10 cm depth intervals of a permeable sediment core (100 cm in length) collected from a STE located at Gloucester Point (GP-STE), VA, United States. High throughput sequencing of 16S rRNA genes and subsequent bioinformatics analyses were conducted to examine the composition, diversity, and potential functions of the sediment communities. The community composition varied significantly from the surface to a depth of 100 cm with up to 13,000 operational taxonomic units (OTUs) based on 97% sequence identities. More than 95% of the sequences consisted of bacterial OTUs, while the relative abundances of archaea, dominated by Crenarchaea, gradually increased with sediment core depth. Along the redox gradients of GP-STE, differential distribution of ammonia- and methane-oxidizing, denitrifying, and sulfate reducing bacteria was observed as well as methanogenic archaea based on predicted microbial functions. The aerobic-anaerobic transition zone (AATZ) had the highest diversity and abundance of microorganisms, matching with the predicted functional diversity. This indicates the AATZ as a hotspot of biogeochemical processes of STEs. The physical and geochemical gradients in different depths have attributed to vertical stratification of microbial community composition and function in the GP-STE.
Collapse
Affiliation(s)
- Yiguo Hong
- College of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- College of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Stephanie Wilson
- Department of Biological Sciences, College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Bongkeun Song
- Department of Biological Sciences, College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| |
Collapse
|
6
|
Kurose H, Naito Y, Akiba J, Kondo R, Ogasawara S, Kusano H, Sanada S, Abe H, Kakuma T, Ueda K, Igawa T, Yano H. High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer. Med Mol Morphol 2019; 52:164-172. [PMID: 30631948 DOI: 10.1007/s00795-018-00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Sulfite oxidase (SUOX) is a metalloenzyme that plays a role in ATP synthesis via oxidative phosphorylation in mitochondria and has been reported to also be involved in the invasion and differentiation capacities of tumor cells. Here, we performed a clinicopathological investigation of SUOX expression in prostate cancer and discussed the usefulness of SUOX expression as a predictor of biochemical recurrence following surgical treatment in prostate cancer. This study was conducted using Tissue Micro Array specimens obtained from 97 patients who underwent radical prostatectomy at our hospital between 2007 and 2011. SUOX staining was used to evaluate cytoplasmic SUOX expression. In the high-expression group, the early biochemical recurrence was significantly more frequent than in the low-expression group (p = 0.0008). In multivariate analysis, high SUOX expression was found to serve as an independent prognostic factor of biochemical recurrence (hazard ratio = 2.33, 95% confidence interval = 1.32-4.15, p = 0.0037). In addition, Ki-67-labeling indices were significantly higher in the high-expression group than in the low-expression group (p = 0.0058). Therefore, SUOX expression may be a powerful prognostic biomarker for decision-making in postoperative follow-up after total prostatectomy and with regard to the need for relief treatment.
Collapse
Affiliation(s)
- Hirofumi Kurose
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.,Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan. .,Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan.
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Tatsuyuki Kakuma
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
7
|
Saswati, Roy S, Dash SP, Acharyya R, Kaminsky W, Ugone V, Garribba E, Harris C, Lowe JM, Dinda R. Chemistry of oxidomolybdenum(IV) and -(VI) complexes with ONS donor ligands: Synthesis, computational evaluation and oxo-transfer reactions. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J, Yano H. SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol 2017; 51:102-110. [PMID: 29280012 DOI: 10.1007/s00795-017-0177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck region. The aim of this study was to identify the key molecules and to elucidate the molecular mechanisms of OSCC carcinogenesis through a microarray analysis of RNA extracted from normal epithelium, dysplasia, and squamous cell carcinoma components. Out of molecules that showed changes in gene expression in the microarray analysis, we focused on Sulfite oxidase (SUOX), which correlated significantly with carcinogenic process and exhibited a stepwise decrease in expression. The expression of SUOX was evaluated in detail at the protein level using samples from 58 patients with cancer of the tongue, and correlating clinicopathological factors were also comprehensively examined. SUOX expression declined significantly from normal epithelium to dysplasia to squamous cell carcinoma components in line with carcinogenic process. With regard to squamous cell carcinoma, SUOX expression was significantly lower when T classification was high. Our findings indicated that SUOX is negatively associated with the progression and proliferation of tongue cancer, and suggest that SUOX may be a key molecule in tongue tumors.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan.
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan.
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| | - Yushi Abe
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahimachi, Kurume, 830-0011, Japan
| |
Collapse
|
9
|
Kalimuthu P, Hsiao J, Nair RP, Kappler U, Bernhardt PV. Bioelectrocatalysis of Sulfite Dehydrogenase from
Sinorhizobium meliloti
with Its Physiological Cytochrome Electron Partner. ChemElectroChem 2017. [DOI: 10.1002/celc.201700838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Ju‐Chun Hsiao
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | | | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
10
|
Hussein MA, Guan TS, Haque RA, Ahamed MBK, Majid AMA. Synthesis and characterization of thiosemicarbazonato molybdenum(VI) complexes: In vitro DNA binding, cleavage, and antitumor activities. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Kappler U, Enemark JH. Sulfite-oxidizing enzymes. J Biol Inorg Chem 2014; 20:253-64. [DOI: 10.1007/s00775-014-1197-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
|
12
|
Synthesis, crystal structure, deoxyribose nucleic acid interaction and antitumor activity of some thiosemicarbazonatomolybdenum(VI). Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
14
|
Hussein MA, Guan TS, Haque RA, Ahamed MBK, Majid AMA. Structures, DNA binding, DNA cleavage, and antitumor investigations of a series of molybdenum(VI) complexes with some N(4) methyl and ethyl thiosemicarbazone ligands. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.893430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Teoh S. Guan
- School of Chemical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Rosenani A. Haque
- School of Chemical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Mohamed B. Khadeer Ahamed
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Amin M.S. Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
15
|
Santana MM, Gonzalez JM, Clara MI. Inferring pathways leading to organic-sulfur mineralization in the Bacillales. Crit Rev Microbiol 2014; 42:31-45. [PMID: 24506486 DOI: 10.3109/1040841x.2013.877869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microbial organic sulfur mineralization to sulfate in terrestrial systems is poorly understood. The process is often missing in published sulfur cycle models. Studies on microbial sulfur cycling have been mostly centered on transformations of inorganic sulfur, mainly on sulfate-reducing and inorganic sulfur-oxidizing bacteria. Nevertheless, organic sulfur constitutes most sulfur in soils. Recent reports demonstrate that the mobilization of organic-bound-sulfur as sulfate in terrestrial environments occurs preferentially under high temperatures and thermophilic Firmicutes bacteria play a major role in the process, carrying out dissimilative organic-sulfur oxidation. So far, the determinant metabolic reactions of such activity have not been evaluated. Here, in silico analysis was performed on the genomes of sulfate-producing thermophilic genera and mesophilic low-sulfate producers, revealing that highest sulfate production is related to the simultaneous presence of metabolic pathways leading to sulfite synthesis, similar to the ones found in mammalian cells. Those pathways include reverse transsulfuration reactions (tightly associated with methionine cycling), and the presence of aspartate aminotransferases (ATs) with the potential of 3-sulfinoalanine AT and cysteine AT activity, which ultimately leads to sulfite production. Sulfite is oxidized to sulfate by sulfite oxidase, this enzyme is determinant in sulfate synthesis, and it is absent in many mesophiles.
Collapse
|
16
|
Dahl C, Franz B, Hensen D, Kesselheim A, Zigann R. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process. MICROBIOLOGY-SGM 2013; 159:2626-2638. [PMID: 24030319 DOI: 10.1099/mic.0.071019-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5'-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron-sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A. vinosum and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in A. vinosum and provided a model for the interplay between these systems despite their localization in different cellular compartments.
Collapse
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Bettina Franz
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Daniela Hensen
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Anne Kesselheim
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Renate Zigann
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| |
Collapse
|
17
|
Abstract
Despite its reactivity and hence toxicity to living cells, sulfite is readily converted by various microorganisms using distinct assimilatory and dissimilatory metabolic routes. In respiratory pathways, sulfite either serves as a primary electron donor or terminal electron acceptor (yielding sulfate or sulfide, respectively), and its conversion drives electron transport chains that are coupled to chemiosmotic ATP synthesis. Notably, such processes are also seen to play a general role in sulfite detoxification, which is assumed to have an evolutionary ancient origin. The diversity of sulfite conversion is reflected by the fact that the range of microbial sulfite-converting enzymes displays different cofactors such as siroheme, heme c, or molybdopterin. This chapter aims to summarize the current knowledge of microbial sulfite metabolism and focuses on sulfite catabolism. The structure and function of sulfite-converting enzymes and the emerging picture of the modular architecture of the corresponding respiratory/detoxifying electron transport chains is emphasized.
Collapse
Affiliation(s)
- Jörg Simon
- Department of Biology, Microbial Energy Conversion and Biotechnology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
18
|
Determination of sulfite with emphasis on biosensing methods: a review. Anal Bioanal Chem 2013; 405:3049-62. [PMID: 23392406 DOI: 10.1007/s00216-013-6753-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/15/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Sulfite is used as a preservative in a variety of food and pharmaceutical industries to inhibit enzymatic and nonenzymatic browning and in brewing industries as an antibacterial and antioxidizing agent. Convenient and reproducible analytical methods employing sulfite oxidase are an attractive alternative to conventional detection methods. Sulfite biosensors are based on measurement of either O2 or electrons generated from splitting of H2O2 or heat released during oxidation of sulfite by immobilized sulfite oxidase. Sulfite biosensors can be grouped into 12 classes. They work optimally within 2 to 900 s, between pH 6.5 and 9.0, 25 and 40 °C, and in the range from 0 to 50,000 μM, with detection limit between 0.2 and 200 μM. Sulfite biosensors measure sulfite in food, beverages, and water and can be reused 100-300 times over a period of 1-240 days. The review presents the principles, merits, and demerits of various analytical methods for determination of sulfite, with special emphasis on sulfite biosensors.
Collapse
|
19
|
Robin S, Arese M, Forte E, Sarti P, Kolaj-Robin O, Giuffrè A, Soulimane T. Functional dissection of the multi-domain di-heme cytochrome c(550) from Thermus thermophilus. PLoS One 2013; 8:e55129. [PMID: 23383080 PMCID: PMC3561395 DOI: 10.1371/journal.pone.0055129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
In bacteria, oxidation of sulfite to sulfate, the most common strategy for sulfite detoxification, is mainly accomplished by the molybdenum-containing sulfite:acceptor oxidoreductases (SORs). Bacterial SORs are very diverse proteins; they can exist as monomers or homodimers of their core subunit, as well as heterodimers with an additional cytochrome c subunit. We have previously described the homodimeric SOR from Thermus thermophilus HB8 (SOR(TTHB8)), identified its physiological electron acceptor, cytochrome c(550), and demonstrated the key role of the latter in coupling sulfite oxidation to aerobic respiration. Herein, the role of this di-heme cytochrome c was further investigated. The cytochrome was shown to be composed of two conformationally independent domains, each containing one heme moiety. Each domain was separately cloned, expressed in E. coli and purified to homogeneity. Stopped-flow experiments showed that: i) the N-terminal domain is the only one accepting electrons from SOR(TTHB8); ii) the N- and C-terminal domains are in rapid redox equilibrium and iii) both domains are able to transfer electrons further to cytochrome c(552), the physiological substrate of the ba(3) and caa(3) terminal oxidases. These findings show that cytochrome c(550) functions as a electron shuttle, without working as an electron wire with one heme acting as the electron entry and the other as the electron exit site. Although contribution of the cytochrome c(550) C-terminal domain to T. thermophilus sulfur respiration seems to be dispensable, we suggest that di-heme composition of the cytochrome physiologically enables storage of the two electrons generated from sulfite oxidation, thereof ensuring efficient contribution of sulfite detoxification to the respiratory chain-mediated energy generation.
Collapse
Affiliation(s)
- Sylvain Robin
- Chemical and Environmental Science Department, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Marzia Arese
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Paolo Sarti
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Consiglio Nazionale delle Ricerche Istituto di Biologia e Patologia Molecolari, Rome, Italy
| | - Olga Kolaj-Robin
- Chemical and Environmental Science Department, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Alessandro Giuffrè
- Consiglio Nazionale delle Ricerche Istituto di Biologia e Patologia Molecolari, Rome, Italy
- * E-mail: (AG); (TS)
| | - Tewfik Soulimane
- Chemical and Environmental Science Department, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
- * E-mail: (AG); (TS)
| |
Collapse
|
20
|
Colorado-Peralta R, Sanchez-Vazquez M, Hernández-Ahuactzi IF, Sánchez-Ruiz SA, Contreras R, Flores-Parra A, Castillo-Blum SE. Structural study of molybdenum(VI) complexes containing bidentate ligands: Synthesis, characterization and DFT calculations. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 2012; 7:e37383. [PMID: 22693572 PMCID: PMC3365070 DOI: 10.1371/journal.pone.0037383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2012] [Indexed: 01/24/2023] Open
Abstract
Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was cloned, and its response to SO(2)/sulfite stress at the transcriptional level was characterized. In this study, the recombinant ZmSO protein was purified from E. coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite. Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite was enhanced by increasing SO expression levels. Interestingly, H(2)O(2) accumulation levels by histochemical detection and quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore, reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| | - Kaile Sun
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Meiping Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Ke Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hua Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| |
Collapse
|
22
|
A sulfite respiration pathway from Thermus thermophilus and the key role of newly identified cytochrome c₅₅₀. J Bacteriol 2011; 193:3988-97. [PMID: 21665981 DOI: 10.1128/jb.05186-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfite, produced for instance during amino acid metabolism, is a very reactive and toxic compound. Various detoxification mechanisms exist, but sulfite oxidoreductases (SORs) are one of the major actors in sulfite remediation in bacteria and animals. Here we describe the existence of an operon in the extreme thermophilic bacterium Thermus thermophilus HB8 encoding both a SOR and a diheme c-type cytochrome. The in vitro analysis clearly showed that the newly identified cytochrome c₅₅₀ acts as an acceptor of the electrons generated by the SOR enzyme during the oxidation of sulfite. The electrons are then rapidly shuttled via cytochrome c₅₅₂ to the terminal ba₃- and caa₃-type oxidases, thereby unveiling a novel electron transfer pathway, linking sulfite oxidation to oxygen reduction in T. thermophilus: sulfite → SOR(HB8) → cytochrome c₅₅₀ → cytochrome c₅₅₂ → ba₃ oxidase/caa₃ oxidase → O₂. The description of the complete pathway reveals that electrons generated during sulfite oxidation by the SOR are funneled into the respiratory chain, participating in the energy production of T. thermophilus.
Collapse
|
23
|
Low L, Ryan Kilmartin J, Paul V. B, Ulrike K. How are "Atypical" Sulfite Dehydrogenases Linked to Cell Metabolism? Interactions between the SorT Sulfite Dehydrogenase and Small Redox Proteins. Front Microbiol 2011; 2:58. [PMID: 21833314 PMCID: PMC3153034 DOI: 10.3389/fmicb.2011.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
Sulfite dehydrogenases (SDHs) are enzymes that catalyze the oxidation of the toxic and mutagenic compound sulfite to sulfate, thereby protecting cells from adverse effects associated with sulfite exposure. While some bacterial SDHs that have been characterized to date are able to use cytochrome c as an electron acceptor, the majority of these enzymes prefer ferricyanide as an electron acceptor and have therefore been termed "atypical" SDHs. Identifying the natural electron acceptor of these enzymes, however, is crucial for understanding how the "atypical" SDHs are integrated into cell metabolism. The SorT sulfite dehydrogenase from Sinorhizobium meliloti is a representative of this enzyme type and we have investigated the interactions of SorT with two small redox proteins, a cytochrome c and a Cu containing pseudoazurin, that are encoded in the same operon and are co-transcribed with the sorT gene. Both potential acceptor proteins have been purified and characterized in terms of their biochemical and electrochemical properties, and interactions and enzymatic studies with both the purified SorT sulfite dehydrogenase and components of the respiratory chain have been carried out. We were able to show for the first time that an "atypical" sulfite dehydrogenase can couple efficiently to a cytochrome c isolated from the same organism despite being unable to efficiently reduce horse heart cytochrome c, however, at present the role of the pseudoazurin in SorT electron transfer is unclear, but it is possible that it acts as an intermediate electron shuttle between. The SorT system appears to couple directly to the respiratory chain, most likely to a cytochrome oxidase.
Collapse
Affiliation(s)
- Louie Low
- School of Chemistry and Molecular Biosciences, Centre for Metals in Biology, The University of QueenslandSt. Lucia, QLD, Australia
| | - James Ryan Kilmartin
- School of Chemistry and Molecular Biosciences, Centre for Metals in Biology, The University of QueenslandSt. Lucia, QLD, Australia
| | - Bernhardt Paul V.
- School of Chemistry and Molecular Biosciences, Centre for Metals in Biology, The University of QueenslandSt. Lucia, QLD, Australia
| | - Kappler Ulrike
- School of Chemistry and Molecular Biosciences, Centre for Metals in Biology, The University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
24
|
Mangold S, Valdés J, Holmes DS, Dopson M. Sulfur metabolism in the extreme acidophile acidithiobacillus caldus. Front Microbiol 2011; 2:17. [PMID: 21687411 PMCID: PMC3109338 DOI: 10.3389/fmicb.2011.00017] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/25/2011] [Indexed: 12/20/2022] Open
Abstract
Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and ISC metabolism predicted genes included: sulfide-quinone reductase (sqr), tetrathionate hydrolase (tth), two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ), sulfur oxygenase reductase (sor), and various electron transport components. RNA transcript profiles by semi quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC) in A. caldus ISC metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.
Collapse
Affiliation(s)
| | - Jorge Valdés
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
- Departamento de Ciencias Biologicas, Andrés Bello UniversitySantiago, Chile
| | - Mark Dopson
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para VidaSantiago, Chile
| |
Collapse
|
25
|
Kappler U. Bacterial sulfite-oxidizing enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1-10. [DOI: 10.1016/j.bbabio.2010.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
|
26
|
Sulfite oxidation in Sinorhizobium meliloti. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1516-25. [DOI: 10.1016/j.bbabio.2009.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
|
27
|
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 2009; 33:999-1043. [PMID: 19645821 DOI: 10.1111/j.1574-6976.2009.00187.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lithotrophic sulfur oxidation is an ancient metabolic process. Ecologically and taxonomically diverged prokaryotes have differential abilities to utilize different reduced sulfur compounds as lithotrophic substrates. Different phototrophic or chemotrophic species use different enzymes, pathways and mechanisms of electron transport and energy conservation for the oxidation of any given substrate. While the mechanisms of sulfur oxidation in obligately chemolithotrophic bacteria, predominantly belonging to Beta- (e.g. Thiobacillus) and Gammaproteobacteria (e.g. Thiomicrospira), are not well established, the Sox system is the central pathway in the facultative bacteria from Alphaproteobacteria (e.g. Paracoccus). Interestingly, photolithotrophs such as Rhodovulum belonging to Alphaproteobacteria also use the Sox system, whereas those from Chromatiaceae and Chlorobi use a truncated Sox complex alongside reverse-acting sulfate-reducing systems. Certain chemotrophic magnetotactic Alphaproteobacteria allegedly utilize such a combined mechanism. Sulfur-chemolithotrophic metabolism in Archaea, largely restricted to Sulfolobales, is distinct from those in Bacteria. Phylogenetic and biomolecular fossil data suggest that the ubiquity of sox genes could be due to horizontal transfer, and coupled sulfate reduction/sulfide oxidation pathways, originating in planktonic ancestors of Chromatiaceae or Chlorobi, could be ancestral to all sulfur-lithotrophic processes. However, the possibility that chemolithotrophy, originating in deep sea, is the actual ancestral form of sulfur oxidation cannot be ruled out.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, University of Burdwan, West Bengal, India.
| | | |
Collapse
|
28
|
Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Microbiol Mol Biol Rev 2008; 72:228-48, table of contents. [PMID: 18535145 DOI: 10.1128/mmbr.00041-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY The importance of molybdoenzymes is exemplified both by the debilitating and fatal human diseases caused by their deficiency and by their persistence throughout evolution. Here, we show that the protein fold of the molybdopyranopterin-containing domain of sulfite oxidase (the SUOX fold) can be found in all three domains of life. Analyses of sequence data and protein structure comparisons (secondary structure matching) show that the SUOX fold is found in enzymes that have quite distinct macromolecular architectures comprising one or more domains and sometimes subsidiary subunits. These are summarized as follows: (i) animal SUOXs that contain an N-terminal cytochrome b(5) domain and an SUOX fold fused to a C-terminal dimerization domain; (ii) plant SUOX that contains an SUOX fold fused to a C-terminal dimerization domain; (iii) the YedY protein from Escherichia coli, which comprises only the SUOX fold; (iv) the sulfite dehydrogenase from Starkeya novella that contains the SUOX fold, a dimerization domain, and an additional c-type cytochrome subunit; and (v) the plant-type nitrate reductases, exemplified by that of Pichia angusta, that contain an N-terminal SUOX fold, a dimerization domain, a cytochrome b(5) domain, and a C-terminal NADH binding flavin adenine dinucleotide-containing domain. We used the primary sequences of the proteins containing an SUOX fold to mine 559 sequences of related proteins. A phylogeny of a nonredundant subset of these sequences was generated, and the resultant clades were categorized by sequence motif analyses in the context of the available protein structures. Based on the motif analyses, cladistics, and domain conservations, we are able to postulate a plausible pathway of SUOX fold enzyme evolution.
Collapse
|
29
|
Doonan CJ, Kappler U, George GN. Structure of the active site of sulfite dehydrogenase from Starkeya novella. Inorg Chem 2007; 45:7488-92. [PMID: 16933953 DOI: 10.1021/ic0607944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized and reduced active sites of the sulfite dehydrogenase from Starkeya novella. Our results provide the first direct structural information on the active site of the oxidized form of this enzyme and confirm the conclusions derived from protein crystallography that the molybdenum coordination is analogous to that of the sulfite oxidases. The molybdenum atom of the oxidized enzyme is bound by two Mo=O ligands at 1.73 A and three thiolate Mo-S ligands at 2.42 A, whereas the reduced enzyme has one oxo at 1.74 A, one long oxygen at 2.19 A (characteristic of Mo-OH2), and three Mo-S ligands at 2.40 A.
Collapse
Affiliation(s)
- Christian J Doonan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | | |
Collapse
|