1
|
García-Roldán A, Durán-Viseras A, de la Haba RR, Corral P, Sánchez-Porro C, Ventosa A. Genomic-based phylogenetic and metabolic analyses of the genus Natronomonas, and description of Natronomonas aquatica sp. nov. Front Microbiol 2023; 14:1109549. [PMID: 36744097 PMCID: PMC9895928 DOI: 10.3389/fmicb.2023.1109549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The genus Natronomonas is classified on the family Haloarculaceae, within the class Halobacteria and currently includes six species isolated from salterns, saline or soda lakes, and salt mines. All are extremely halophilic (optimal growth at 20-25% [w/v] NaCl) and neutrophilic, except Natronomonas pharaonis, the type species of the genus, that is haloalkaliphilic (showing optimal growth at pH 9.0) and possesses distinct phenotypic features, such as a different polar lipid profile than the rest of species of the genus. We have carried out a genome-based study in order to determine the phylogenetic structure of the genus Natronomonas and elucidate its current taxonomic status. Overall genomic relatedness indexes, i.e., OrthoANI (Average Nucleotide Identity), dDDH (digital DNA-DNA hybridization), and AAI (Average Amino acid Identity), were determined with respect to the species of Natronomonas and other representative taxa of the class Halobacteria. Our data show that the six species of Natronomonas constitute a coherent cluster at the genus level. Besides, we have characterized a new haloarchaeon, strain F2-12T, isolated from the brine of a pond of a saltern in Isla Cristina, Huelva, Spain, and we determined that it constitutes a new species of Natronomonas, for which we propose the name Natronomonas aquatica sp. nov. Besides, the metabolic analysis revealed a heterotrophic lifestyle and a versatile nitrogen metabolism for members of this genus. Finally, metagenomic fragment recruitments from a subset of hypersaline habitats, indicated that the species of Natronomonas are widely distributed in saline lakes and salterns as well as on saline soils. Species of this haloarchaeal genus can be considered as ubiquitous in intermediate to high salinity habitats.
Collapse
Affiliation(s)
- Alicia García-Roldán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana Durán-Viseras
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Cristina Sánchez-Porro, ✉
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,Antonio Ventosa,
| |
Collapse
|
2
|
Maymon M, Martínez-Hidalgo P, Tran SS, Ice T, Craemer K, Anbarchian T, Sung T, Hwang LH, Chou M, Fujishige NA, Villella W, Ventosa J, Sikorski J, Sanders ER, Faull KF, Hirsch AM. Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth. FRONTIERS IN PLANT SCIENCE 2015; 6:784. [PMID: 26442090 PMCID: PMC4585168 DOI: 10.3389/fpls.2015.00784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 05/02/2023]
Abstract
In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not.
Collapse
Affiliation(s)
- Maskit Maymon
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Pilar Martínez-Hidalgo
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Stephen S. Tran
- Bioinformatics, University of California, Los AngelesLos Angeles, CA, USA
| | - Tyler Ice
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Karena Craemer
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Teni Anbarchian
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Tiffany Sung
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Lin H. Hwang
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA
| | - Minxia Chou
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Nancy A. Fujishige
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - William Villella
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los AngelesLos Angeles, CA, USA
| | - Jérôme Ventosa
- Biotechnology, Plants, and Microorganisms Biology, University of Montpellier IIMontpellier, France
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweig, Germany
| | - Erin R. Sanders
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los AngelesLos Angeles, CA, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA
- Molecular Biology Institute, University of California, Los AngelesLos Angeles, CA, USA
| | - Ann M. Hirsch
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
- Molecular Biology Institute, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Ann M. Hirsch, Departments of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA
| |
Collapse
|