1
|
Kuruma Y, Nomaki H, Isobe N, Matsuoka D, Shimane Y. The Potential of Artificial Cells Functioning under In Situ Deep-Sea Conditions. ACS Synth Biol 2024; 13:3144-3149. [PMID: 39353593 PMCID: PMC11494692 DOI: 10.1021/acssynbio.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Artificial cells with reconstructed cellular functions could serve as practical protocell models for studying the early cellular life on the Earth. Investigating the viability of protocell models in extreme environments where life may have arisen is important for advancing origin-of-life research. Here, we tested the survivability of lipid membrane vesicles in deep-sea environments. The vesicles were submerged in the deep-sea floor with a human-occupied vehicle. Although most of the vesicles were broken, some vesicles maintained a spherical shape after the dives. When a cell-free protein synthesis system was encapsulated inside, a few vesicles remained even after a 1,390 m depth dive. Interestingly, such artificial cells could subsequently synthesize protein in a nutrient-rich buffer solution. Together with on shore experiments showing artificial cells synthesized protein under high pressure, our results suggest artificial cells may be able to express genes in deep-sea environments where thermal energy is available from hydrothermal vents.
Collapse
Affiliation(s)
- Yutetsu Kuruma
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Hidetaka Nomaki
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Isobe
- Biogeochemistry
Research Center, Research Institute for Marine Resources Utilization
(MRU), Japan Agency for Marine-Earth Science
and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Daisuke Matsuoka
- Center
for Earth Information Science and Technology (CEIST), Research Institute for Value-Added-Information Generation (VAiG),
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 Japan
| | - Yasuhiro Shimane
- Institute
for Extra-cutting-edge Science and Technology Avant-garde Research
(X-star), Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
2
|
Liang S, Zhang T, Liu Z, Wang J, Zhu C, Kong Q, Fu X, Mou H. Response mechanism of Vibrio parahaemolyticus at high pressure revealed by transcriptomic analysis. Appl Microbiol Biotechnol 2022; 106:5615-5628. [DOI: 10.1007/s00253-022-12082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
3
|
Guo C, Nolan EM. Heavy-Metal Trojan Horse: Enterobactin-Directed Delivery of Platinum(IV) Prodrugs to Escherichia coli. J Am Chem Soc 2022; 144:12756-12768. [PMID: 35803281 DOI: 10.1021/jacs.2c03324] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The global crisis of untreatable microbial infections necessitates the design of new antibiotics. Drug repurposing is a promising strategy for expanding the antibiotic repertoire. In this study, we repurpose the clinically approved anticancer agent cisplatin into a targeted antibiotic by conjugating its Pt(IV) prodrug to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron (Fe) acquisition. The l-Ent-Pt(IV) conjugate (l-EP) exhibits antibacterial activity against Escherichia coli K12 and the uropathogenic isolate E. coli CFT073. Similar to cisplatin, l-EP causes a filamentous morphology in E. coli and initiates lysis in lysogenic bacteria. Studies with E. coli mutants defective in Ent transport proteins show that Ent mediates the delivery of l-EP into the E. coli cytoplasm, where reduction of the Pt(IV) prodrug releases the cisplatin warhead, causing growth inhibition and filamentation of E. coli. Substitution of Ent with its enantiomer affords the d-Ent-Pt(IV) conjugate (d-EP), which displays enhanced antibacterial activity, presumably because d-Ent cannot be hydrolyzed by Ent esterases and thus Fe cannot be released from this conjugate. E. coli treated with l/d-EP accumulate ≥10-fold more Pt as compared to cisplatin treatment. By contrast, human embryonic kidney cells (HEK293T) accumulate cisplatin but show negligible Pt uptake after treatment with either conjugate. Overall, this work demonstrates that the attachment of a siderophore repurposes a Pt anticancer agent into a targeted antibiotic that is recognized and transported by siderophore uptake machinery, providing a design strategy for drug repurposing by siderophore modification and heavy-metal "trojan-horse" antibiotics.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Hou S, Jia Z, Kryszczuk K, Chen D, Wang L, Holyst R, Feng X. Joint effect of surfactants and cephalexin on the formation of Escherichia coli filament. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110750. [PMID: 32446103 DOI: 10.1016/j.ecoenv.2020.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Both antibiotics and surfactants commonly exist in natural environment and have generated great concerns due to their biological influence on the ecosystem. A major concern lies in the capacity of antibiotics to induce bacterial filaments formation, which has potential health risks. However, their joint effect is not clear so far. Here, we studied the joint effect of cephalexin (Cex), a typical antibiotic, and differently charged surfactants on the formation of E. coli filaments. Three kinds of surfactants characterized by different charges were used: cationic surfactant (CTAB), anionic surfactant (SDS) and nonionic surfactant (Tween). Data showed that Cex alone caused the formation of E. coli filaments, elongating their maximum profile from ca. 2 μm (a single E. coli cell) to tens of micrometers (an E. coli filament). A joint use of surfactants with Cex could produce even longer E. coli filaments, elongating the maximum length of the bacteria to larger than 100 μm. The capacity order of different surfactants under their optimum concentrations to produce elongated E. coli filaments was Tween > SDS > CTAB. The E. coli filaments were characterized with a normal DNA distribution and a good cell membrane integrity. We measured the stiffness of bacterial cell wall by atomic force microscopy and correlated the elongation capacity of the E. coli filaments to the stiffness of cell wall. Zeta potential measurement indicated that inserting into or being bound to the cell surface in a large quantity was tested not to be the major way that surfactants interacted with bacteria.
Collapse
Affiliation(s)
- Sen Hou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510000, China.
| | - Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China; College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Katarzyna Kryszczuk
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510000, China
| | - Lining Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Robert Holyst
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Nguyen HTM, Akanuma G, Hoa TTM, Nakai Y, Kimura K, Yamamoto K, Inaoka T. Ribosome Reconstruction during Recovery from High-Hydrostatic-Pressure-Induced Injury in Bacillus subtilis. Appl Environ Microbiol 2019; 86:e01640-19. [PMID: 31604775 PMCID: PMC6912085 DOI: 10.1128/aem.01640-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Vegetative cells of Bacillus subtilis can recover from injury after high-hydrostatic-pressure (HHP) treatment at 250 MPa. DNA microarray analysis revealed that substantial numbers of ribosomal genes and translation-related genes (e.g., translation initiation factors) were upregulated during the growth arrest phase after HHP treatment. The transcript levels of cold shock-responsive genes, whose products play key roles in efficient translation, and heat shock-responsive genes, whose products mediate correct protein folding or degrade misfolded proteins, were also upregulated. In contrast, the transcript level of hpf, whose product (Hpf) is involved in ribosome inactivation through the dimerization of 70S ribosomes, was downregulated during the growth arrest phase. Sucrose density gradient sedimentation analysis revealed that ribosomes were dissociated in a pressure-dependent manner and then reconstructed. We also found that cell growth after HHP-induced injury was apparently inhibited by the addition of Mn2+ or Zn2+ to the recovery medium. Ribosome reconstruction in the HHP-injured cells was also significantly delayed in the presence of Mn2+ or Zn2+ Moreover, Zn2+, but not Mn2+, promoted dimer formation of 70S ribosomes in the HHP-injured cells. Disruption of the hpf gene suppressed the Zn2+-dependent accumulation of ribosome dimers, partially relieving the inhibitory effect of Zn2+ on the growth recovery of HHP-treated cells. In contrast, it was likely that Mn2+ prevented ribosome reconstruction without stimulating ribosome dimerization. Our results suggested that both Mn2+ and Zn2+ can prevent ribosome reconstruction, thereby delaying the growth recovery of HHP-injured B. subtilis cells.IMPORTANCE HHP treatment is used as a nonthermal processing technology in the food industry to inactivate bacteria while retaining high quality of foods under suppressed chemical reactions. However, some populations of bacterial cells may survive the inactivation. Although the survivors are in a transient nongrowing state due to HHP-induced injury, they can recover from the injury and then start growing, depending on the postprocessing conditions. The recovery process in terms of cellular components after the injury remains unclear. Transcriptome analysis using vegetative cells of Bacillus subtilis revealed that the translational machinery can preferentially be reconstructed after HHP treatment. We found that both Mn2+ and Zn2+ prolonged the growth-arrested stage of HHP-injured cells by delaying ribosome reconstruction. It is likely that ribosome reconstruction is crucial for the recovery of growth ability in HHP-injured cells. This study provides further understanding of the recovery process in HHP-injured B. subtilis cells.
Collapse
Affiliation(s)
- Huyen Thi Minh Nguyen
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | | | - Tu Thi Minh Hoa
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Yuji Nakai
- Institute of Regional Innovation, Hirosaki University, Aomori, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takashi Inaoka
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Ma J, Wang H, Yu L, Yuan W, Fu W, Gao F, Jiang Y. Dynamic self-recovery of injured Escherichia coli O157:H7 induced by high pressure processing. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Wakai S. Biochemical and thermodynamic analyses of energy conversion in extremophiles. Biosci Biotechnol Biochem 2018; 83:49-64. [PMID: 30381012 DOI: 10.1080/09168451.2018.1538769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the "limits of life". Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase.
Collapse
Affiliation(s)
- Satoshi Wakai
- a Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
8
|
Joseph J, Sharma S, Dave VP. Filamentous gram-negative bacteria masquerading as actinomycetes in infectious endophthalmitis: a review of three cases. J Ophthalmic Inflamm Infect 2018; 8:15. [PMID: 30306353 PMCID: PMC6179972 DOI: 10.1186/s12348-018-0157-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022] Open
Abstract
Background To report microbiological diagnostic dilemma posed by observation of unusual morphology of bacteria in the vitreous sample of a series of three cases of bacterial endophthalmitis. Results A non-comparative, descriptive case series is described. All three cases presented to the retina-vitreous clinic with a clinical diagnosis of acute endophthalmitis between January and April 2018. Two patients had a past history of cataract surgery, and one had antecedent trauma within 1–2 days of presentation. As per the institutional protocol, patients underwent pars plana vitrectomy with intraocular antibiotics (vancomycin and ceftazidime) and microbiological investigation of the vitreous sample. Microscopic visualization of the stained vitreous fluid revealed the presence of filamentous organisms suggestive of Actinomycetales. However, the culture showed growth of gram-negative bacilli (Pseudomonas aeruginosa, Klebsiella oxytoca, Morganella morganii) which were identified by ViTEK 2 compact system and biochemical tests. Though a combination antibiotic treatment of vancomycin and ceftazidime was given in all cases in view of the short history, the antibiotic susceptibility testing showed multi-drug resistance pattern in two out of three cases leading to unfavorable clinical outcome. Conclusions Gram-negative bacilli can develop abnormal morphology due to stress or sub-inhibitory antibiotic exposure, and it is important for ocular microbiologists and pathologists to be aware of this phenomenon to avoid misinterpretation that may lead to inappropriate treatment.
Collapse
Affiliation(s)
- Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, 500034, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, 500034, India
| | - Vivek Pravin Dave
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
9
|
Parlindungan E, Dekiwadia C, Tran KT, Jones OA, May BK. Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response. Microb Pathog 2017; 114:393-401. [PMID: 29233778 DOI: 10.1016/j.micpath.2017.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022]
Abstract
The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok+ cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements.
Collapse
|
11
|
Inaoka T, Kimura K, Morimatsu K, Yamamoto K. Characterization of high hydrostatic pressure-injured Bacillus subtilis cells. Biosci Biotechnol Biochem 2017; 81:1235-1240. [PMID: 28485219 DOI: 10.1080/09168451.2017.1292835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.
Collapse
Affiliation(s)
- Takashi Inaoka
- a Food Research Institute , National Agriculture and Food Research Organization , Tsukuba , Japan
| | - Keitarou Kimura
- a Food Research Institute , National Agriculture and Food Research Organization , Tsukuba , Japan
| | - Kazuya Morimatsu
- b Department of Food Production Science, Graduate School of Agriculture , Ehime University , Matsuyama , Japan
| | - Kazutaka Yamamoto
- a Food Research Institute , National Agriculture and Food Research Organization , Tsukuba , Japan
| |
Collapse
|
12
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
13
|
Burgaud G, Hué NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 2015; 166:700-9. [DOI: 10.1016/j.resmic.2015.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023]
|
14
|
Fichtel K, Logemann J, Fichtel J, Rullkötter J, Cypionka H, Engelen B. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface. Front Microbiol 2015; 6:1078. [PMID: 26500624 PMCID: PMC4594026 DOI: 10.3389/fmicb.2015.01078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment-basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.
Collapse
Affiliation(s)
- Katja Fichtel
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jörn Logemann
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jörg Fichtel
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Jürgen Rullkötter
- Organic Geochemistry Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Heribert Cypionka
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| | - Bert Engelen
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, OldenburgGermany
| |
Collapse
|
15
|
Sato H, Nakasone K, Yoshida T, Kato C, Maruyama T. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Extremophiles 2015; 19:751-62. [PMID: 25982740 DOI: 10.1007/s00792-015-0751-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022]
Abstract
When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).
Collapse
Affiliation(s)
- Hiroshi Sato
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Marietou A, Nguyen ATT, Allen EE, Bartlett DH. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure. Front Microbiol 2015; 5:749. [PMID: 25610434 PMCID: PMC4285802 DOI: 10.3389/fmicb.2014.00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/10/2014] [Indexed: 12/03/2022] Open
Abstract
Much of microbial life on Earth grows and reproduces under the elevated hydrostatic pressure conditions that exist in deep-ocean and deep-subsurface environments. In this study adaptive laboratory evolution (ALE) experiments were conducted to investigate the possible modification of the piezosensitive Escherichia coli for improved growth at high pressure. After approximately 500 generations of selection, a strain was isolated that acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, this strain displayed growth properties and changes in the proportion and regulation of unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. These changes developed concomitantly with a change in the gene encoding the acyl carrier protein, which is required for fatty acid synthesis.
Collapse
Affiliation(s)
- Angeliki Marietou
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Alice T T Nguyen
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Eric E Allen
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Abstract
Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.
Collapse
Affiliation(s)
- Masayoshi Nishiyama
- The Hakubi Center for Advanced Research/Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan,
| |
Collapse
|
18
|
Abstract
Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer.
Collapse
|
19
|
Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl Environ Microbiol 2014; 80:5992-6003. [PMID: 25063663 DOI: 10.1128/aem.02109-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure.
Collapse
|
20
|
Exploration of the Effects of High Hydrostatic Pressure on Microbial Growth, Physiology and Survival: Perspectives from Piezophysiology. Biosci Biotechnol Biochem 2014; 71:2347-57. [DOI: 10.1271/bbb.70015] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Passaris I, Ghosh A, Cenens W, Michiels CW, Lammertyn J, Aertsen A. Isolation and validation of an endogenous fluorescent nucleoid reporter in Salmonella Typhimurium. PLoS One 2014; 9:e93785. [PMID: 24695782 PMCID: PMC3973593 DOI: 10.1371/journal.pone.0093785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/10/2014] [Indexed: 01/24/2023] Open
Abstract
In this study we adapted a Mud-based delivery system to construct a random yfp reporter gene (encoding the yellow fluorescent protein) insertion library in the genome of Salmonella Typhimurium LT2, and used fluorescence activated cell sorting and fluorescence microscopy to screen for translational fusions that were able to clearly and specifically label the bacterial nucleoid. Two such fusions were obtained, corresponding to a translational yfp insertion in iscR and iolR, respectively. Both fusions were further validated, and the IscR::YFP fluorescent nucleoid reporter together with time-lapse fluorescence microscopy was subsequently used to monitor nucleoid dynamics in response to the filamentation imposed by growth of LT2 at high hydrostatic pressure (40-45 MPa). As such, we were able to reveal that upon decompression the apparently entangled LT2 chromosomes in filamentous cells rapidly and efficiently segregate, after which septation of the filament occurs. In the course of the latter process, however, cells with a "trilobed" nucleoid were regularly observed, indicative for an imbalance between septum formation and chromosome segregation.
Collapse
Affiliation(s)
- Ioannis Passaris
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Anirban Ghosh
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - William Cenens
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Chris W. Michiels
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBios, Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
- * E-mail:
| |
Collapse
|
22
|
Kumar P, Libchaber A. Pressure and temperature dependence of growth and morphology of Escherichia coli: experiments and stochastic model. Biophys J 2014; 105:783-93. [PMID: 23931326 DOI: 10.1016/j.bpj.2013.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1-400 atm) and temperature (23-40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.
Collapse
Affiliation(s)
- Pradeep Kumar
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York, USA.
| | | |
Collapse
|
23
|
Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 2013; 80:54-60. [PMID: 24123740 DOI: 10.1128/aem.02288-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ∼6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h(-1), and the maximum yield was 3.51 × 10(7) cells ml(-1). Cell size and shape changed with pressure, shifting from 4.0 to 5.0 μm in length and 0.5 to 0.8 μm in width at 60 MPa to 0.8- to 1.0-μm diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov.
Collapse
|
24
|
Black SL, Dawson A, Ward FB, Allen RJ. Genes required for growth at high hydrostatic pressure in Escherichia coli K-12 identified by genome-wide screening. PLoS One 2013; 8:e73995. [PMID: 24040140 PMCID: PMC3770679 DOI: 10.1371/journal.pone.0073995] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure.
Collapse
Affiliation(s)
- S. Lucas Black
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Angela Dawson
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - F. Bruce Ward
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rosalind J. Allen
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Cellular Filamentation After Sublethal High-Pressure Shock in Escherichia coli K12 is Mrr Dependent. Curr Microbiol 2013; 67:522-4. [DOI: 10.1007/s00284-013-0449-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
|
26
|
Zhang W, Liu X, Zheng F, Zeng S, Wu K, da Silva JAT, Duan J. Induction of rice mutations by high hydrostatic pressure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:182-187. [PMID: 23786816 DOI: 10.1016/j.plaphy.2013.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
High hydrostatic pressure (HHP) is an extreme thermo-physical factor that affects the synthesis of DNA, RNA and proteins and induces mutagenesis in microorganisms. Our previous studies showed that exposure to 25-100 MPa HHP for 12 h retarded the germination and affected the viability of rice (Oryza sativa L.) seeds, increased the tolerance of rice plants to cold stress and altered gene expression patterns in germinating rice seeds. However, the mutagenic effect of HHP on rice remains unknown. In this study, exposure to 25, 50, 75 or 100 MPa for 12 h HHP could efficiently induce variation in rice plants. Furthermore, presoaking time and HHP strength during HHP treatment affected the efficiency of mutation. In addition, the Comet assay revealed that exposure to 25-100 MPa HHP for 12 h induced DNA strand breakage in germinating seeds and may have been the source of mutations. Our results suggest that HHP is a promising physical mutagen in rice breeding.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Mota MJ, Lopes RP, Delgadillo I, Saraiva JA. Microorganisms under high pressure--adaptation, growth and biotechnological potential. Biotechnol Adv 2013; 31:1426-34. [PMID: 23831003 DOI: 10.1016/j.biotechadv.2013.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022]
Abstract
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.
Collapse
Affiliation(s)
- Maria J Mota
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
28
|
Abe A, Furukawa S, Migita Y, Tanaka M, Ogihara H, Morinaga Y. Sublethal High Hydrostatic Pressure Treatment Reveals the Importance of Genes Coding Cytoskeletal Protein in Escherichia Coli Morphogenesis. Curr Microbiol 2013; 67:515-21. [DOI: 10.1007/s00284-013-0392-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
|
29
|
Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 2013; 165:97-110. [PMID: 23727653 DOI: 10.1016/j.ijfoodmicro.2013.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
A number of studies have reported that pathogenic and nonpathogenic foodborne bacteria have the ability to form filaments in microbiological growth media and foods after prolonged exposure to sublethal stress or marginal growth conditions. In many cases, nucleoids are evenly spaced throughout the filamentous cells but septa are not visible, indicating that there is a blockage in the early steps of cell division but the mechanism behind filament formation is not clear. The formation of filamentous cells appears to be a reversible stress response. When filamentous cells are exposed to more favorable growth conditions, filaments divide rapidly into a number of individual cells, which may have major health and regulatory implications for the food industry because the potential numbers of viable bacteria will be underestimated and may exceed tolerated levels in foods when filamentous cells that are subjected to sublethal stress conditions are enumerated. Evidence suggests that filament formation under a number of sublethal stresses may be linked to a reduced energy state of bacterial cells. This review focuses on the conditions and extent of filament formation by foodborne bacteria under conditions that are used to control the growth of microorganisms in foods such as suboptimal pH, high pressure, low water activity, low temperature, elevated CO2 and exposure to antimicrobial substances as well as lack a of nutrients in the food environment and explores the impact of the sublethal stresses on the cell's inability to divide.
Collapse
Affiliation(s)
- Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada.
| | | | | |
Collapse
|
30
|
Follonier S, Escapa IF, Fonseca PM, Henes B, Panke S, Zinn M, Prieto MA. New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure. Microb Cell Fact 2013; 12:30. [PMID: 23537069 PMCID: PMC3621253 DOI: 10.1186/1475-2859-12-30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Elevated pressure, elevated oxygen tension (DOT) and elevated carbon dioxide tension (DCT) are readily encountered at the bottom of large industrial bioreactors and during bioprocesses where pressure is applied for enhancing the oxygen transfer. Yet information about their effect on bacteria and on the gene expression thereof is scarce. To shed light on the cellular functions affected by these specific environmental conditions, the transcriptome of Pseudomonas putida KT2440, a bacterium of great relevance for the production of medium-chain-length polyhydroxyalkanoates, was thoroughly investigated using DNA microarrays. Results Very well defined chemostat cultivations were carried out with P. putida to produce high quality RNA samples and ensure that differential gene expression was caused exclusively by changes of pressure, DOT and/or DCT. Cellular stress was detected at 7 bar and elevated DCT in the form of heat shock and oxidative stress-like responses, and indicators of cell envelope perturbations were identified as well. Globally, gene transcription was not considerably altered when DOT was increased from 40 ± 5 to 235 ± 20% at 7 bar and elevated DCT. Nevertheless, differential transcription was observed for a few genes linked to iron-sulfur cluster assembly, terminal oxidases, glutamate metabolism and arginine deiminase pathway, which shows their particular sensitivity to variations of DOT. Conclusions This study provides a comprehensive overview on the changes occurring in the transcriptome of P. putida upon mild variations of pressure, DOT and DCT. Interestingly, whereas the changes of gene transcription were widespread, the cell physiology was hardly affected, which illustrates how efficient reorganization of the gene transcription is for dealing with environmental changes that may otherwise be harmful. Several particularly sensitive cellular functions were identified, which will certainly contribute to the understanding of the mechanisms involved in stress sensing/response and to finding ways of enhancing the stress tolerance of microorganisms.
Collapse
Affiliation(s)
- Stéphanie Follonier
- Swiss Federal Laboratories for Materials Science and Technology, Gallen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Gayán E, Torres JA, Paredes-Sabja D. Hurdle Approach to Increase the Microbial Inactivation by High Pressure Processing: Effect of Essential Oils. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9055-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Follonier S, Panke S, Zinn M. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol 2012; 93:1805-15. [DOI: 10.1007/s00253-011-3854-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 02/02/2023]
|
33
|
Sekiguchi T, Saika A, Nomura K, Watanabe T, Watanabe T, Fujimoto Y, Enoki M, Sato T, Kato C, Kanehiro H. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ɛ-caprolactone)-degrading bacteria. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol 2010; 161:799-809. [DOI: 10.1016/j.resmic.2010.09.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 12/14/2022]
|
35
|
Vass H, Black SL, Herzig EM, Ward FB, Clegg PS, Allen RJ. A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:053710. [PMID: 20515148 DOI: 10.1063/1.3427224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a modular system for high-resolution microscopy at high hydrostatic pressure. The system consists of a pressurized cell of volume approximately 100 microl, a temperature controlled holder, a ram, and a piston. We have made each of these components in several versions which can be interchanged to allow a wide range of applications. Here, we report two pressure cells with pressure ranges 0.1-700 MPa and 0.1-100 MPa, which can be combined with hollow or solid rams and pistons. Our system is designed to work with fluorescent samples (using a confocal or epifluorescence microscope), but also allows for transmitted light microscopy via the hollow ram and piston. The system allows precise control of pressure and temperature (-20 to 70 degrees C), as well as rapid pressure quenching. We demonstrate its performance and versatility with two applications: time-resolved imaging of colloidal phase transitions caused by pressure changes between 0.1 and 100 MPa, and imaging the growth of Escherichia coli bacteria at 50 MPa. We also show that the isotropic-nematic phase transition of pentyl-cyanobiphenyl (5CB) liquid crystal provides a simple, convenient, and accurate method for calibrating pressure in the range 0.1-200 MPa.
Collapse
Affiliation(s)
- Hugh Vass
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Blom JF, Horňák K, Šimek K, Pernthaler J. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues. Environ Microbiol 2010; 12:2486-95. [DOI: 10.1111/j.1462-2920.2010.02222.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Rivalain N, Roquain J, Demazeau G. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 2010; 28:659-72. [PMID: 20398747 DOI: 10.1016/j.biotechadv.2010.04.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022]
Abstract
Compared to temperature, the development of pressure as a tool in the research field has emerged only recently (at the end of the XIXth century). Following several developments in Physics and Chemistry during the first half of the XXth century (in particular the synthesis of diamond in 1953-1954), high pressures were applied in Food Science, especially in Japan. The main objective was then to achieve the decontamination of foods while preserving their organoleptic properties. Now, a new step is engaged: the biological applications of high pressures, from food to pharmaceuticals and biomedical applications. This paper will focus on three main points: (i) a brief presentation of the pressure parameter and its characteristics, (ii) a description of the pressure effects on biological constituents from simple to more complex structures and (iii) a review of the different domains for which the application of high pressures is able to initiate potential developments in Biotechnologies.
Collapse
Affiliation(s)
- Nolwennig Rivalain
- ICMCB-CNRS - Université de Bordeaux - 87, avenue du Dr. Albert Schweitzer, PESSAC Cedex, France
| | | | | |
Collapse
|
38
|
Effects of moderate pressure on premeability and viability of Saccharomyces cerevisiae cells. KOREAN J CHEM ENG 2009. [DOI: 10.1007/s11814-009-0122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Khosravi-Darani K, Vasheghani-Farahani E. Application of Supercritical Fluid Extraction in Biotechnology. Crit Rev Biotechnol 2008; 25:231-42. [PMID: 16419619 DOI: 10.1080/07388550500354841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the present paper recent investigations on the applications of supercritical fluid extraction (SCE) from post fermentation biomass or in situ extraction of inhibitory fermentation products as a promising method for increasing the yield of extraction have been reviewed. Although supercritical CO2 (SC-CO2) is unfriendly, or even toxic, for some living cells and precludes direct fermentation in dense CO2, it does not rule out other useful applications for in situ extraction of inhibitory fermentation products and fractional extraction of biomass constituents. This technique is a highly desirable method for fractional extraction of biomass constituents, and intracellular metabolites due to the potential of system modification by physical parameters and addition of co-solvents to selectively extract compounds of different polarity, volatility and hydrophilicity without any contamination.
Collapse
Affiliation(s)
- K Khosravi-Darani
- Department of Chemical Engineering, Tarbiat Modarres University, Tehran, IR Iran
| | | |
Collapse
|
40
|
Aertsen A, Michiels CW. SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res Microbiol 2005; 156:233-7. [PMID: 15748989 DOI: 10.1016/j.resmic.2004.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/01/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
High-pressure treatment (>100 MPa) is known to induce several heat shock proteins as well as an SOS response in Escherichia coli. In the current work, we have investigated properties with respect to high-pressure treatment of mutants-deficient in Lon, a pressure-induced ATP-dependent protease that belongs to the heat shock regulon but that also has a link to the SOS regulon. We report that lon mutants show increased pressure sensitivity and exhibit hyperfilamentation during growth after high-pressure treatment. Both phenotypes could be entirely attributed to the action of the SOS protein SulA, a potent inhibitor of the cell division ring protein FtsZ and a specific target of the Lon protease, since they were suppressed by knock-out of SulA. Introduction of the lexA1 allele, which effectively blocks the entire SOS response, also suppressed the high pressure hypersensitivity of lon mutants, but not their UV hypersensitivity. These results indicate the existence of a SulA-dependent pathway of high-pressure-induced cell filamentation, and suggest involvement of the SOS response, and particularly of SulA, in high-pressure-mediated cell death in E. coli strains which are compromised in Lon function.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium.
| | | |
Collapse
|
41
|
Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW. An SOS response induced by high pressure in Escherichia coli. J Bacteriol 2004; 186:6133-41. [PMID: 15342583 PMCID: PMC515162 DOI: 10.1128/jb.186.18.6133-6141.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although pressure is an important environmental parameter in microbial niches such as the deep sea and is furthermore used in food preservation to inactivate microorganisms, the fundamental understanding of its effects on bacteria remains fragmentary. Our group recently initiated differential fluorescence induction screening to search for pressure-induced Escherichia coli promoters and has already reported induction of the heat shock regulon. Here the screening was continued, and we report for the first time that pressure induces a bona fide SOS response in E. coli, characterized by the RecA and LexA-dependent expression of uvrA, recA, and sulA. Moreover, it was shown that pressure is capable of triggering lambda prophage induction in E. coli lysogens. The remnant lambdoid e14 element, however, could not be induced by pressure, as opposed to UV irradiation, indicating subtle differences between the pressure-induced and the classical SOS response. Furthermore, the pressure-induced SOS response seems not to be initiated by DNA damage, since DeltarecA and lexA1 (Ind-) mutants, which are intrinsically hypersensitive to DNA damage, were not sensitized or were only very slightly sensitized for pressure-mediated killing and since pressure treatment was not found to be mutagenic. In light of these findings, the current knowledge of pressure-mediated effects on bacteria is discussed.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, K.U.Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
42
|
Ishii A, Oshima T, Sato T, Nakasone K, Mori H, Kato C. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 2004; 9:65-73. [PMID: 15340867 DOI: 10.1007/s00792-004-0414-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/01/2004] [Indexed: 11/29/2022]
Abstract
Hydrostatic pressure is a well-known physical stimulus, but its effects on cell physiology have not been clarified. To investigate pressure effects on Escherichia coli, we carried out DNA microarray analysis of the entire E. coli genome. The microarray results showed pleiotropic effects on gene expression. In particular, heat- and cold-stress responses were induced simultaneously by the elevated pressure. Upon temperature stress (including both temperature up- and down-shifts) and other environmental stresses, gene expression adjusts to adapt to such environmental changes through regulations by several DNA-binding proteins. An E. coli mutant, which deleted the hns gene encoding one of the regulator proteins, exhibited great pressure sensitivity. The result suggested that the H-NS protein was a possible transcriptional regulator for adaptation of the high-pressure stress.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Ishii A, Sato T, Wachi M, Nagai K, Kato C. Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology (Reading) 2004; 150:1965-1972. [PMID: 15184582 DOI: 10.1099/mic.0.26962-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some rod-shaped bacteria, including Escherichia coli, exhibit cell filamentation without septum formation under high-hydrostatic-pressure conditions, indicating that the cell-division process is affected by hydrostatic pressure. The effects of elevated pressure on FtsZ-ring formation in E. coli cells were examined using indirect immunofluorescence microscopy. Elevated pressure of 40 MPa completely inhibited colony formation of E. coli cells under the cultivation conditions used, and the cells exhibited obviously filamentous shapes. In the elongated cells, normal cell-division processes appeared to be inhibited, because no FtsZ rings were observed by indirect immunofluorescent staining. In addition, it was observed that hydrostatic pressure dissociated the E. coli FtsZ polymers in vitro. These results suggest that high hydrostatic pressure directly affects cell survival and morphology through the dissociation of the cytoskeletal frameworks.
Collapse
Affiliation(s)
- Akihiro Ishii
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takako Sato
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masaaki Wachi
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazuo Nagai
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Chiaki Kato
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
44
|
Drews O, Weiss W, Reil G, Parlar H, Wait R, Görg A. High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2002; 2:765-74. [PMID: 12112860 DOI: 10.1002/1615-9861(200206)2:6<765::aid-prot765>3.0.co;2-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated the cellular response to the application of high hydrostatic pressure. High pressure is increasingly used for food preservation. With high resolution 2-D electrophoresis we compared the protein patterns of atmospherically grown Lactobacillus sanfranciscensis with those pressure treated up to 200 MPa. We performed the comparative study by using overlapping immobilized pH gradients covering the pH range from 2.5 up to 12 in order to maximize the resolution for the detection of stress relevant proteins. For improved quantitative analysis, staining with SyproRuby was used in addition to silver staining. By computer aided image analysis we detected more than a dozen spots within the pH range from 3.5 to 9 that were more than two-fold increased or 50% decreased in their intensity upon high pressure treatment. Two of them (approx. values: pI 4.0 and 4.2, respectively; M(r) approximately 15 000) have almost identical matrix-assisted laser desorption/ionization-time of flight mass spectrometry spectra and were identified by liquid chromatography-tandem mass spectrometry as putative homologs/paralogs to cold shock proteins of Lactococcus lactis. Their expression is opposed (i.e. the more acidic one is repressed, while the other one is induced); this effect is maximal at 1 h, 150 MPa. It was further remarkable that by monitoring the barosensitivity of the cells within 25 MPa steps, we observed a differential pressure induction or repression of the detected proteins as well. For example one protein (approx. values: pI 4.2, M(r) approximately 15 000) shows a maximum induction after 1 h, 150 MPa while another one (pI 7.5, M(r) approximately 25 000) is maximally induced after 1 h, 50/75 MPa. This indicates a successive cell response and different signalling pathways for these responses.
Collapse
Affiliation(s)
- Oliver Drews
- FG Proteomik, Technische Universität München, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Pressures between 10 and 100 MPa can exert powerful effects on the growth and viability of organisms. Here I describe the effects of elevated pressure in this range on mesophilic (atmospheric pressure adapted) and piezophilic (high-pressure adapted) microorganisms. Examination of pressure effects on mesophiles makes use of this unique physical parameter to aid in the characterization of fundamental cellular processes, while in the case of piezophiles it provides information on the essence of the adaptation of life to high-pressure environments, which comprise the bulk of our biosphere. Research is presented on the isolation of pressure-resistant mutants, high-pressure regulation of gene expression, the role of membrane lipids and proteins in determining growth ability at high pressure, pressure effects on DNA replication and topology as well as on cell division, and the role of extrinsic factors in modulating enzyme activity at high pressure.
Collapse
Affiliation(s)
- D H Bartlett
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 8682 La Jolla Shores Drive, La Jolla, CA 92093-0202, USA.
| |
Collapse
|
46
|
Sato T, Miwa T, Ishii A, Kato C, Wachi M, Nagai K, Aizawa M, Horikoshi K. The dynamism of Escherichia coli under high hydrostatic pressure—repression of the FtsZ-ring formation and chromosomal DNA condensation. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0921-0423(02)80105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
47
|
Ehrmann MA, Scheyhing CH, Vogel RF. In vitro stability and expression of green fluorescent protein under high pressure conditions. Lett Appl Microbiol 2001; 32:230-4. [PMID: 11298931 DOI: 10.1046/j.1472-765x.2001.00892.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The objective of this work was to evaluate the use of wild-type GFP and mutant forms thereof as reporter for gene expression under high pressure conditions. METHODS AND RESULTS The intensity of fluorescence after high pressure treatment was checked by subjecting cells, crude protein extracts containing GFPs and purified GFPs to pressures ranging from 100 MPa to 900 MPa. All tested GFP's retained fluorescence up to 600 MPa without loss of intensity. Expression of GFP under sublethal conditions was investigated in Escherichia coli with plasmid pQBI63, in which rsGFP is placed downstream of the T7 RNA polymerase binding site. T7 RNA polymerase is controlled in E. coli BL21 (DE3) pLysS by an IPTG inducible lacUV5 promoter. A pressure induced increase of GFP expression was monitored at 50 Mpa and 70 MPa. CONCLUSION Fluorescence of GFPs is not influenced at pressures at which protein expression still occurs. We showed that the expression system used is inducible by pressurized conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This study proved GFP to be a suitable reporter for gene expression studies capable to detect pressure induced gene expression.
Collapse
Affiliation(s)
- M A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising-Weihenstephan, Germany.
| | | | | |
Collapse
|
48
|
Karatzas AK, Kets EP, Smid EJ, Bennik MH. The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J Appl Microbiol 2001; 90:463-9. [PMID: 11298243 DOI: 10.1046/j.1365-2672.2001.01266.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of the study was to investigate the combined antimicrobial action of the plant-derived volatile carvacrol and high hydrostatic pressure (HHP). METHODS AND RESULTS Combined treatments of carvacrol and HHP have been studied at different temperatures, using exponentially growing cells of Listeria monocytogenes, and showed a synergistic action. The antimicrobial effects were higher at 1 degrees C than at 8 or 20 degrees C. Furthermore, addition of carvacrol to cells exposed to sublethal HHP treatment caused similar reductions in viable numbers as simultaneous treatment with carvacrol and HHP. Synergism was also observed between carvacrol and HHP in semi-skimmed milk that was artificially contaminated with L. monocytogenes. CONCLUSION Carvacrol and HHP act synergistically and the antimicrobial effects of the combined treatment are greater at lower temperatures. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrates the synergistic antimicrobial effect of essential oils in combination with HHP and indicates the potential of these combined treatments in food processing.
Collapse
Affiliation(s)
- A K Karatzas
- Wageningen Centre for Food Sciences (WCFS), Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Allen EE, Bartlett DH. FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-Sea bacterium Photobacterium profundum strain SS9. J Bacteriol 2000; 182:1264-71. [PMID: 10671446 PMCID: PMC94411 DOI: 10.1128/jb.182.5.1264-1271.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To more fully explore the role of unsaturated fatty acids in high-pressure, low-temperature growth, the fabF gene from the psychrotolerant, piezophilic deep-sea bacterium Photobacterium profundum strain SS9 was characterized and its role and regulation were examined. An SS9 strain harboring a disruption in the fabF gene (strain EA40) displayed growth impairment at elevated hydrostatic pressure concomitant with diminished cis-vaccenic acid (18:1) production. However, growth ability at elevated pressure could be restored to wild-type levels by the addition of exogenous 18:1 to the growth medium. Transcript analysis did not indicate that the SS9 fabF gene is transcriptionally regulated, suggesting that the elevated 18:1 levels produced in response to pressure increase result from posttranscriptional changes. Unlike many pressure-adapted bacterial species such as SS9, the mesophile Escherichia coli did not regulate its fatty acid composition in an adaptive manner in response to changes in hydrostatic pressure. Moreover, an E. coli fabF strain was as susceptible to elevated pressure as wild-type cells. It is proposed that the SS9 fabF product, beta-ketoacyl-acyl carrier protein synthase II has evolved novel pressure-responsive characteristics which facilitate SS9 growth at high pressure.
Collapse
Affiliation(s)
- E E Allen
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
50
|
Abstract
A genomic library derived from the deep-sea bacterium Photobacterium profundum SS9 was conjugally delivered into a previously isolated pressure-sensitive SS9 mutant, designated EC1002 (E. Chi and D. H. Bartlett, J. Bacteriol. 175:7533-7540, 1993), and exconjugants were screened for the ability to grow at 280-atm hydrostatic pressure. Several clones were identified that had restored high-pressure growth. The complementing DNA was localized and in all cases found to possess strong homology to recD, a DNA recombination and repair gene. EC1002 was found to be deficient in plasmid stability, a phenotype also seen in Escherichia coli recD mutants. The defect in EC1002 was localized to a point mutation that created a stop codon within the recD gene. Two additional recD mutants were constructed by gene disruption and were both found to possess a pressure-sensitive growth phenotype, although the magnitude of the defect depended on the extent of 3' truncation of the recD coding sequence. Surprisingly, the introduction of the SS9 recD gene into an E. coli recD mutant had two dramatic effects. At high pressure, SS9 recD enabled growth in the E. coli mutant strain under conditions of plasmid antibiotic resistance selection and prevented cell filamentation. Both of these effects were recessive to wild-type E. coli recD. These results suggest that the SS9 recD gene plays an essential role in SS9 growth at high pressure and that it may be possible to identify additional aspects of RecD function through the characterization of this activity.
Collapse
Affiliation(s)
- K A Bidle
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | |
Collapse
|