1
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Marozava S, Merl-Pham J, Müller H, Meckenstock RU. Adaptation of Carbon Source Utilization Patterns of Geobacter metallireducens During Sessile Growth. Front Microbiol 2020; 11:1271. [PMID: 32655526 PMCID: PMC7324539 DOI: 10.3389/fmicb.2020.01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
There are two main strategies known how microorganisms regulate substrate utilization: specialization on one preferred substrate at high concentrations in batch cultures or simultaneous utilization of many substrates at low concentrations in chemostats. However, it remains unclear how microorganisms utilize substrates at low concentrations in the subsurface: do they focus on a single substrate and exhibit catabolite repression or do they de-repress regulation of all catabolic pathways? Here, we investigated the readiness of Geobacter metallireducens to degrade organic substrates under sessile growth in sediment columns in the presence of a mixed community as a model for aquifers. Three parallel columns were filled with sand and flushed with anoxic medium at a constant inflow (18 ml h-1) of the substrate benzoate (1 mM) with non-limiting nitrate concentrations (30 mM) as electron acceptor. Columns were inoculated with the anaerobic benzoate degrader G. metallireducens. Microbial degradation produced concentration gradients of benzoate toward the column outlet. Metagenomics and label-free metaproteomics were used to detect and quantify the protein expression of G. metallireducens. Bulk benzoate concentrations below 0.2 mM led to increased abundance of catabolic proteins involved in utilization of fermentation products and aromatic compounds including the complete upregulation of the toluene-degrading pathway although toluene was not added to the medium. We propose that under sessile conditions and low substrate concentrations G. metallireducens expresses a specific set of catabolic pathways for preferred substrates, even when these substrates are not present.
Collapse
Affiliation(s)
- Sviatlana Marozava
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hubert Müller
- Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol 2016; 25:203-18. [PMID: 26346808 PMCID: PMC5019151 DOI: 10.1111/mec.13378] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/26/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023]
Abstract
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.
Collapse
Affiliation(s)
- Susan F. Bailey
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| | - Thomas Bataillon
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| |
Collapse
|
4
|
Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor. Biodegradation 2014; 25:705-18. [DOI: 10.1007/s10532-014-9693-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
5
|
Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 2013; 9:643. [PMID: 23385483 PMCID: PMC3588905 DOI: 10.1038/msb.2012.76] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli cells were evolved over 500 generations and profiled in four abiotic stressors to observe several cases of emerging cross-stress behavior whereby adaptation to one stressful environment provided fitness advantage when exposed to a second stressor. ![]()
Cross-stress dependencies were found to be ubiquitous, highly interconnected and can emerge within short timeframes. Several targets were implicated in adaptation and cross-stress protection, including genes related to iron transport and flagella. Adaptation in a first stress can lead to higher fitness to a second stress when compared with cells adapted only in the latter environment. Adaptation to any specific stress and the growth media was found to be generally independent.
Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain–stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.
Collapse
|
6
|
Dragosits M, Mattanovich D. Adaptive laboratory evolution -- principles and applications for biotechnology. Microb Cell Fact 2013; 12:64. [PMID: 23815749 PMCID: PMC3716822 DOI: 10.1186/1475-2859-12-64] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria.
| | | |
Collapse
|
7
|
Wilming A, Begemann J, Kuhne S, Regestein L, Bongaerts J, Evers S, Maurer KH, Büchs J. Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pekkonen M, Laakso JT. Temporal changes in species interactions in simple aquatic bacterial communities. BMC Ecol 2012; 12:18. [PMID: 22984961 PMCID: PMC3526521 DOI: 10.1186/1472-6785-12-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023] Open
Abstract
Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions.
Collapse
Affiliation(s)
- Minna Pekkonen
- Integrative Ecology Unit, Department of Biosciences, P,O, Box 65, FIN-00014 University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
9
|
Quan S, Ray JCJ, Kwota Z, Duong T, Balázsi G, Cooper TF, Monds RD. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli. PLoS Genet 2012; 8:e1002444. [PMID: 22253602 PMCID: PMC3257284 DOI: 10.1371/journal.pgen.1002444] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/16/2011] [Indexed: 01/22/2023] Open
Abstract
Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive), sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.
Collapse
Affiliation(s)
- Selwyn Quan
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - J. Christian J. Ray
- Department of Systems Biology–Unit 950, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zakari Kwota
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Trang Duong
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Gábor Balázsi
- Department of Systems Biology–Unit 950, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tim F. Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Russell D. Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Goelzer A, Fromion V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim Biophys Acta Gen Subj 2011; 1810:978-88. [PMID: 21689729 DOI: 10.1016/j.bbagen.2011.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Growth rate management in fast-growing bacteria is currently an active research area. In spite of the huge progress made in our understanding of the molecular mechanisms controlling the growth rate, fundamental questions concerning its intrinsic limitations are still relevant today. In parallel, systems biology claims that mathematical models could shed light on these questions. METHODS This review explores some possible reasons for the limitation of the growth rate in fast-growing bacteria, using a systems biology approach based on constraint-based modeling methods. RESULTS Recent experimental results and a new constraint-based modelling method named Resource Balance Analysis (RBA) reveal the existence of constraints on resource allocation between biological processes in bacterial cells. In this context, the distribution of a finite amount of resources between the metabolic network and the ribosomes limits the growth rate, which implies the existence of a bottleneck between these two processes. Any mechanism for saving resources increases the growth rate. GENERAL SIGNIFICANCE Consequently, the emergence of genetic regulation of metabolic pathways, e.g. catabolite repression, could then arise as a means to minimise the protein cost, i.e. maximising growth performance while minimising the resource allocation. This article is part of a Special Issue entitled Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- A Goelzer
- Institut National de la Recherche en Agronomie, Unité de Mathématique, Informatique et Génome, Jouy-en-Josas, France.
| | | |
Collapse
|
11
|
Narang A. Quantitative effect and regulatory function of cyclic adenosine 5'-phosphate in Escherichia coli. J Biosci 2009; 34:445-63. [PMID: 19805906 DOI: 10.1007/s12038-009-0051-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclic adenosine 5'-phosphate (cAMP) is a global regulator of gene expression in Escherichia coli. Despite decades of intensive study, the quantitative effect and regulatory function of cAMP remain the subjects of considerable debate. Here, we analyse the data in the literature to show that: (a) In carbon-limited cultures (including cultures limited by glucose), cAMP is at near-saturation levels with respect to expression of several catabolic promoters (including lac, ara and gal). It follows that cAMP receptor protein (CRP) cAMP-mediated regulation cannot account for the strong repression of these operons in the presence of glucose. (b) The cAMP levels in carbon-excess cultures are substantially lower than those observed in carbon-limited cultures under these conditions, the expression of catabolic promoters is very sensitive to variation of cAMP levels. (c)=CRPcAMP invariably activates the expression of catabolic promoters, but it appears to inhibit the expression of anabolic promoters. (d) These results suggest that the physiological function of cAMP is to maintain homeostatic energy levels. In carbon-limited cultures, growth is limited by the supply of energy; the cAMP levels therefore increase to enhance energy accumulation by activating the catabolic promoters and inhibiting the anabolic promoters. Conversely, in carbonexcess cultures, characterized by the availability of excess energy, the cAMP levels decrease in order to depress energy accumulation by inhibiting the catabolic promoters and activating the anabolic promoters.
Collapse
Affiliation(s)
- Atul Narang
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
12
|
Synergistic biodegradation of pentachlorophenol by Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385). World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0083-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Gene regulation in continuous cultures: a unified theory for bacteria and yeasts. Bull Math Biol 2008; 71:453-514. [PMID: 19067083 DOI: 10.1007/s11538-008-9369-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
During batch growth on mixtures of two growth-limiting substrates, microbes consume the substrates either sequentially (diauxie) or simultaneously. The ubiquity of these growth patterns suggests that they may be driven by a universal mechanism common to all microbial species. Recently, we showed that a minimal model accounting only for enzyme induction and dilution, the two processes that occur in all microbes, explains the phenotypes observed in batch cultures of various wild-type and mutant/recombinant cells (Narang and Pilyugin in J. Theor. Biol. 244:326-348, 2007). Here, we examine the extension of the minimal model to continuous cultures. We show that: (1) Several enzymatic trends, attributed entirely to cross-regulatory mechanisms, such as catabolite repression and inducer exclusion, can be quantitatively explained by enzyme dilution. (2) The bifurcation diagram of the minimal model for continuous cultures, which classifies the substrate consumption pattern at any given dilution rate and feed concentrations, provides a precise explanation for the empirically observed correlations between the growth patterns in batch and continuous cultures. (3) Numerical simulations of the model are in excellent agreement with the data. The model captures the variation of the steady state substrate concentrations, cell densities, and enzyme levels during the single- and mixed-substrate growth of bacteria and yeasts at various dilution rates and feed concentrations. This variation is well approximated by simple analytical expressions that furnish deep physical insights. (4) Since the minimal model describes the behavior of the cells in the absence of cross-regulatory mechanisms, it provides a rigorous framework for quantifying the effect of these mechanisms. We illustrate this by analyzing several data sets from the literature.
Collapse
|
14
|
Salmerón-Alcocer A, Ruiz-Ordaz N, Juárez-Ramírez C, Galíndez-Mayer J. Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp., Microbacterium phyllosphaerae, and Candida tropicalis. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran JM. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell 2007; 18:5100-12. [PMID: 17928405 DOI: 10.1091/mbc.e07-02-0131] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Effects of suboptimal temperatures on transcriptional regulation in yeast have been extensively studied in batch cultures. To eliminate indirect effects of specific growth rates that are inherent to batch-cultivation studies, genome-wide transcriptional responses to low temperatures were analyzed in steady-state chemostats, grown at a fixed specific growth rate (0.03 h(-1)). Although in vivo metabolic fluxes were essentially the same in cultures grown at 12 and at 30 degrees C, concentrations of the growth-limiting nutrients (glucose or ammonia) were higher at 12 degrees C. This difference was reflected by transcript levels of genes that encode transporters for the growth-limiting nutrients. Several transcriptional responses to low temperature occurred under both nutrient-limitation regimes. Increased transcription of ribosome-biogenesis genes emphasized the importance of adapting protein-synthesis capacity to low temperature. In contrast to observations in cold-shock and batch-culture studies, transcript levels of environmental stress response genes were reduced at 12 degrees C. Transcription of trehalose-biosynthesis genes and intracellular trehalose levels indicated that, in contrast to its role in cold-shock adaptation, trehalose is not involved in steady-state low-temperature adaptation. Comparison of the chemostat-based transcriptome data with literature data revealed large differences between transcriptional reprogramming during long-term low-temperature acclimation and the transcriptional responses to a rapid transition to low temperature.
Collapse
Affiliation(s)
- Siew Leng Tai
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Barrett RDH, MacLean RC, Bell G. Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am Nat 2005; 166:470-80. [PMID: 16224703 DOI: 10.1086/444440] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/30/2005] [Indexed: 11/04/2022]
Abstract
In complex environments that contain several substitutable resources, lineages may become specialized to consume only one or a few of them. Here we investigate the importance of environmental complexity in determining the evolution of niche width over approximately 900 generations in a chemically defined experimental system. We propagated 120 replicate lines of the bacterium Pseudomonas fluorescens in environments of different complexity by using between one and eight carbon substrates in each environment. Genotypes from populations selected in complex environments evolved greater mean and variance in fitness than those from populations selected in simple environments. Thus, lineages were able to adapt to several substrates simultaneously without any appreciable loss of function with respect to other substrates present in the media. There was greater genetic and genotype-by-environment interaction variance for fitness within populations selected in complex environments. It is likely that genetic variance in populations grown on complex media was maintained because the identity of the fittest genotype varied among carbon substrates. Our results suggest that evolution in complex environments will result neither in narrow specialists nor in complete generalists but instead in overlapping imperfect generalists, each of which has become adapted to a certain range of substrates but not to all.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, Quebec H3A 1B1, Canada.
| | | | | |
Collapse
|
17
|
Koch AL. Bacterial choices for the consumption of multiple resources for current and future needs. MICROBIAL ECOLOGY 2005; 49:183-97. [PMID: 15965728 DOI: 10.1007/s00248-003-1053-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 10/17/2003] [Indexed: 05/03/2023]
Abstract
Microorganisms differ in their effectiveness in uptake and selection of substances that they bring in from the environment. They also differ in how they balance the allocation of nutrients for immediate and for delayed use. Moreover, they may not take up resources as fast as they seemingly could, and they may extrude derivatives of substances just pumped in. A good deal of these apparent choices must reside in the uptake systems and the linkage of these with the cell's intermediate metabolism. An important feature is that a resource may vary in concentration from time to time, nutrient to nutrient, and habitat to habitat. This variation must have been critical to the evolution of regulatory processes. Some possibilities for the combined uptake and consumption are considered for substrates serving the same (homologous) and different (heterologous) roles for the bacterium. From the membrane transport processes diagrammed in Fig. 1c and Fig. 2 and corresponding computer program given in Appendix A, the combined effect of uptake processes and cell growth can be studied. The model can be modified for various alternate models to study the possible control of cellular uptake and metabolism for the range of ecological roles of the bacterium.
Collapse
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, Bloomington, IN 47405-6801, USA.
| |
Collapse
|
18
|
Babel W, Brinkmann U, Müller RH. The auxiliary substrate concept - an approach for overcoming limits of microbial performances. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/abio.370130302] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
Wick LM, Quadroni M, Egli T. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 2001; 3:588-99. [PMID: 11683869 DOI: 10.1046/j.1462-2920.2001.00231.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the ability of Escherichia coli K12 MG1655 to cope with excess and limitation of a carbon and energy source, we studied the changes in kinetic properties and two-dimensional (2D) gel protein patterns of an E. coli culture. The population was transferred from glucose-excess batch to glucose-limited continuous culture (D = 0.3 h(-1)), in which it was cultivated for 500 h (217 generations) and then transferred back to glucose-excess batch culture. Two different stages to glucose-limitation were recognized: a short-term physiological adaptation characterized by a general effort in enhancing the cell's substrate scavenging ability and mutations resulting in a population exhibiting increased glucose affinity. Physiological short-term adaptation to glucose-limitation was achieved by upregulation of 12 proteins, namely MglB, MalE, ArgT, DppA, RbsB, YdcS, LivJ (precursor), UgpB (precursor), AceA, AldA, AtpA and GatY. Eight of these proteins are periplasmic binding proteins of ABC transporters. Most of them are not involved in glucose transport regulons, but rather in chemotaxis and transport of other substrates, whereas MalE and MglB have previously been shown to belong to transport systems important in glucose transport under glucose-limited conditions. Evolution under low glucose concentration led to an up to 10-fold increase in glucose affinity (from a K(s) of 366 +/- 36 microg l(-1) at the beginning to 44 +/- 7 microg l(-1)). The protein pattern of a "500-h-old" continuous culture showed a highly increased expression of MglB and MalE as well as of the regulator protein MalI. When adapted cells taken from the "500-h-old" continuous culture were transferred to batch culture, an increased expression of MalE was observed, compared with cells from un-adapted batch-grown cells. Otherwise, no significant changes were observed in the protein pattern of batch-grown populations before and after 500 h of evolution in the glucose-limited continuous culture.
Collapse
Affiliation(s)
- L M Wick
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), PO Box 611, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
21
|
Abstract
There is a similarity between the metabolic dynamics of a microbial species growing on a mixture of two substrates and the dynamics of growth of two competing populations. Specifically, the enzymes catalyzing the uptake and catabolism of substrates exhibit phenomena analogous to extinction and coexistence."Extinction" of the enzymes associated with one of the substrates results in sequential utilization of the substrates (diauxie) (Monod, 1942). "Coexistence" of the enzymes associated with the substrates results in simultaneous utilization of the substrates (Egli, 1995). Here, we formulate a simple model that shows the basis for this dynamical similarity: The equations describing the evolution of the enzyme levels are dynamical analogs of the Lotka-Volterra model for two competing species. The analogy suggests ways of capturing the experimentally observed preculture-dependent growth patterns, i.e., growth patterns that vary depending on the physiological state of the preculture.
Collapse
Affiliation(s)
- A Narang
- Amoco Research Center, H-7, 150 West Warrenville Road, Naperville, Illinois 60563, USA.
| |
Collapse
|
22
|
Abstract
The uptake capabilities of the cell have evolved to permit growth at very low external nutrient concentrations. How are these capabilities controlled when the substrate concentrations are not extremely low and the uptake systems could import substrate much more rapidly than the metabolic capabilities of the cell might be able to handle? To answer this question, earlier theories for the kinetics of uptake through the cell envelope and steady-state systems of metabolic enzymes are discussed and a computer simulation is presented. The problems to the cell of fluctuating levels of nutrient and too much substrate during continuous culture are discussed. Too much substrate can lead to oligotrophy, substrate-accelerated death, entry into the viable but not culturable state, and lactose killing. The relationship between uptake and growth is considered. Finally, too little substrate may lead to catastrophic attempts at mounting molecular syntheses that cannot be completed.
Collapse
Affiliation(s)
- A L Koch
- Biology Department, Indiana University, Bloomington 47405, USA.
| |
Collapse
|
23
|
Matin A. Role of alternate sigma factors in starvation protein synthesis--novel mechanisms of catabolite repression. Res Microbiol 1996; 147:494-505. [PMID: 9084761 DOI: 10.1016/s0923-2508(96)90151-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
24
|
The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates. ADVANCES IN MICROBIAL ECOLOGY 1995. [DOI: 10.1007/978-1-4684-7724-5_8] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Egli T, Lendenmann U, Snozzi M. Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek 1993; 63:289-98. [PMID: 8279825 DOI: 10.1007/bf00871224] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several investigations have shown that during growth in carbon-limited chemostats the simultaneous utilisation of carbon substrates which usually provoke diauxie under batch conditions, i.e., 'mixed substrate growth,' is probably the rule under ecologically relevant growth conditions. In contrast, the models presently available for the description of the kinetics of microbial growth are all based on the use of single substrates. Systematic studies in chemostat culture have shown that steady-state residual concentrations of individual compounds were consistently lower during mixed substrate growth than during growth with the single substrates. This effect is clearly demonstrated for the case of Escherichia coli growing with mixtures of glucose plus galactose. The data presented indicate that the extent of reduction of steady-state residual substrate concentration is dependent on the proportions of the substrates in the mixture, the nature of substrates mixed and the regulation pattern of enzymes involved in their breakdown. If this behaviour can be shown to be typical for growth under environmental conditions, it may provide an explanation why microbes still grow relatively fast at the low substrate concentrations encountered in nature.
Collapse
Affiliation(s)
- T Egli
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf
| | | | | |
Collapse
|
26
|
Cultivation ofCandida blankii in simulated bagasse hemicellulose hydrolysate. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf01569741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch Microbiol 1991. [DOI: 10.1007/bf00245392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Affiliation(s)
- U Wanner
- Swiss Federal Institute for Water Resources and Water Pollution Control, Swiss Federal Institutes of Technology, Dübendorf
| | | |
Collapse
|
29
|
Berthelet M, Macleod RA. Effect of Na
+
Concentration and Nutritional Factors on the Lag Phase and Exponential Growth Rates of the Marine Bacterium
Deleya aesta
and of Other Marine Species. Appl Environ Microbiol 1989; 55:1754-60. [PMID: 16347969 PMCID: PMC202946 DOI: 10.1128/aem.55.7.1754-1760.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of the marine bacterium
Deleya aesta
in a succinate minimal medium showed increasingly long lag phases as Na
+
was decreased below the optimum (200 to 500 mM). The minimum Na
+
concentration permitting growth consistently was 15 mM. Supplementation of the medium with KHCO
3
(as a source of CO
2
) or yeast extract, especially in combination, reduced the lag phase, increased the rate of exponential growth, and allowed growth at 8 mM Na
+
. KHCO
3
did not reduce the lag period but did increase the rate of exponential growth of
Deleya venusta, Deleya pacifica
, and
Alteromonas haloplanktis
214. Yeast extract was active for all three. The effect of yeast extract on
D. aesta
could be reproduced by a mixture of amino acids approximating its amino acid composition.
l
-Alanine,
l
-aspartate, and
l
-methionine, in combination, were the most effective in reducing the lag phase, although not as effective as the complete mixture. Succinate,
l
-aspartate, and
l
-alanine were transported into the cells by largely independent pathways and oxidized at rates which were much lower at 10 than at 200 mM Na
+
.
l
-Methionine was transported at a low rate in the absence of Na
+
and at a higher rate at 10 mM but was not oxidized. Above 25 mM Na
+
, the rate of transport of the carbon source was not the rate-limiting step for growth. It is concluded that a combination of transportable carbon sources reduced the lag period and increased the rate of exponential growth because they can be taken up independently and at low Na
+
utilized simultaneously.
Collapse
Affiliation(s)
- M Berthelet
- Department of Microbiology, Macdonald College of McGill University, 21,111 Lakeshore Road, Ste Anne de Bellevue, Quebec H9X 1C0, Canada
| | | |
Collapse
|
30
|
Strobel HJ, Russell JB. Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression. Appl Environ Microbiol 1987; 53:2505-10. [PMID: 3122655 PMCID: PMC204137 DOI: 10.1128/aem.53.10.2505-2510.1987] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacteroides ruminicola B(1)4, a predominant ruminal and cecal bacterium, was grown in batch and continuous cultures, and beta-glucosidase activity was measured by following the hydrolysis of p-nitrophenyl-beta-glucopyranoside. Specific activity was high when the bacterium was grown in batch cultures containing cellobiose, mannose, or lactose (greater than 286 U/g of protein). Activity was reduced approximately 90% when the organism was grown on glucose, sucrose, fructose, maltose, or arabinose. The specific activity of cells fermenting glucose was initially low but increased as glucose was depleted. When glucose was added to cultures growing on cellobiose, beta-glucosidase synthesis ceased immediately. Catabolite repression by glucose was not accompanied by diauxic growth and was not relieved by cyclic AMP. Since glucose-grown cultures eventually exhibited high beta-glucosidase activity, cellobiose was not needed as an inducer. Catabolite repression explained beta-glucosidase activity of batch cultures and high-dilution-rate chemostats where glucose accumulated, but it could not account for activity at slow dilution rates. Maximal beta-glucosidase activity was observed at a dilution rate of approximately 0.35 h-1, and cellobiose-limited chemostats showed a 15-fold decrease in activity as the dilution rate declined. An eightfold decline was observed in glucose-limited chemostats. Since inducer availability was not a confounding factor in glucose-limited chemostats, the growth rate-dependent derepression could not be explained by other mechanisms.
Collapse
Affiliation(s)
- H J Strobel
- Department of Animal Science, Cornell University, Ithaca, New York
| | | |
Collapse
|
31
|
|
32
|
Brooke A, Attwood M. Regulation of enzyme synthesis in Hyphomicrobium X: Growth on mixtures of methylamine and ethanol in continuous cultures. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb00871.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Abstract
Microbial cometabolism, i.e. "transformation of a non-growth substrate in the obligate presence of a growth substrate or another transformable compound" (Dalton and Stirling 1982) is a whole-cell phenomenon physiologically based on coupling of different catabolic pathways at the cellular level. It is frequently observed in transformation of xenobiotic non-growth substrates by individual microbial species. Transformation processes of this type are usually mediated by appropriate non-specific enzymes of the peripheric cellular metabolism able to modify a variety of substances other than their natural substrates. The precise mechanisms of coupling between metabolism of xenobiotic non-growth substrates and of particular additional carbon substrates may be different depending on the substrates and the microbial species involved. However, experimental data indicate that the primary function of the respective additional carbon substrates is to supply either energy, cofactors or metabolites for the different cellular events involved in the transformation process (e.g. uptake of the xenobiotic non-growth substrate, functioning of appropriate degradative enzymes of the peripheric cellular metabolism). Cometabolism of xenobiotics involves nothing special or novel from the standpoint of biochemistry. On the contrary, there are numerous examples where the turnover of particular natural compounds by certain aerobic or anaerobic microorganisms is essentially based on coupling of different catabolic pathways at the cellular level by transfer of hydrogen (i.e. reducing power) and/or energy between two or more enzymatic reactions. Synthetic chemicals which resist total degradation by individual microbial species may undergo mineralization due to complementary catabolic sequences mediated by certain multispecies microbial associations with cometabolic transformations being the initial steps. Although taking place in certain natural habitats (e.g. rhizospheres, sewage), microbial cometabolism of xenobiotics in natural ecosystems occurs with slow rates since the respective cometabolizing populations are generally small and will not increase in number or biomass in response to the introduced chemicals. However, under conditions of axenic microbial cultures, high concentrations of biomass, and appropriate substrate mixtures cometabolism of synthetic chemicals may be a useful technique of considerable practical importance to accumulate biochemical products at high yields. In addition, cometabolic capabilities of wild-type microorganisms may serve as a tool for the construction of microbial strains with a new degradative potential for recalcitrant xenobiotic compounds.
Collapse
|
34
|
Kompala DS, Ramkrishna D, Tsao GT. Cybernetic modeling of microbial growth on multiple substrates. Biotechnol Bioeng 1984; 26:1272-81. [DOI: 10.1002/bit.260261103] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Mountfort DO, Asher RA. Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 1983; 46:1331-8. [PMID: 6660873 PMCID: PMC239572 DOI: 10.1128/aem.46.6.1331-1338.1983] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neocallimastix frontalis PN-1 utilized the soluble sugars D-glucose, D-cellobiose, D-fructose, maltose, sucrose, and D-xylose for growth. L-Arabinose, D-galactose, D-mannose, and D-xylitol did not support growth of the fungus. Paired substrate test systems were used to determine whether any two sugars were utilized simultaneously or sequentially. Of the paired monosaccharides tested, glucose was found to be preferentially utilized compared with fructose and xylose. The disaccharides cellobiose and sucrose were preferentially utilized compared with fructose and glucose, respectively, an cellobiose was also the preferred substrate compared with xylose. Xylose was the preferred substrate compared with maltose. In further incubations, the fungus was grown on the substrate utilized last in the two-substrate tests. After moderate growth was attained, the preferred substrate was added to the culture medium. Inhibition of nonpreferred substrate utilization by the addition of the preferred substrate was taken as evidence of catabolite regulation. For the various combinations of substrates tested, fructose and xylose utilization was found to be inhibited in the presence of glucose, indicating that catabolite regulation was involved. No clear-cut inhibition was observed with any of the other substrate combinations tested. The significance of these findings in relation to rumen microbial interactions and competitions is discussed.
Collapse
|
36
|
Kilian SG, Prior BA, Lategan PM. Diauxic utilization of glucose-cellobiose mixtures by Candida wickerhamii. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00504747] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
|
38
|
Eggeling L, Sahm H. Enhanced utilization-rate of methanol during growth on a mixed substrate: A continuous culture study with Hansenula polymorpha. Arch Microbiol 1981. [DOI: 10.1007/bf00414601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Smith SS, Atkinson DE. The expression of beta-galactosidase by Escherichia coli during continuous culture. Arch Biochem Biophys 1980; 202:573-81. [PMID: 6779708 DOI: 10.1016/0003-9861(80)90464-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Gottschal JC, Kuenen JG. Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. Arch Microbiol 1980. [DOI: 10.1007/bf00421888] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
|
42
|
Russell JB, Delfino FJ, Baldwin RL. Effects of Combinations of Substrates on Maximum Growth Rates of Several Rumen Bacteria. Appl Environ Microbiol 1979; 37:544-9. [PMID: 16345360 PMCID: PMC243252 DOI: 10.1128/aem.37.3.544-549.1979] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five rumen bacteria,
Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Butyrivibrio fibrisolvens
, and
Streptococcus bovis
were grown in media containing nonlimiting concentrations of glucose, sucrose, maltose, cellobiose, xylose and/or lactate. Each bacterium was grown with every substrate that it could ferment in every possible two-way combination. Only once did a combination of substrates result in a higher maximum growth rate than that observed with either substrate alone. Such stimulations of growth rate would be expected if specific factors unique to individual substrates (transport proteins and/or enzymes) were limiting. Since such synergisms were rare, it was concluded that more general factors limit maximum growth rates in these five bacteria.
Collapse
Affiliation(s)
- J B Russell
- Department of Animal Science, University of California, Davis, California 95616
| | | | | |
Collapse
|
43
|
Regulation of the utilization of 4-hydroxybenzoate and 4-hydroxycinnamate in batch and continuous cultures of Pseudomonas testosteroni. Arch Microbiol 1979. [DOI: 10.1007/bf00409095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Johnston J, McKay A. Population variations in chemostat cultures ofSaccharomyces cerevisiae. FEMS Microbiol Lett 1977. [DOI: 10.1111/j.1574-6968.1977.tb00968.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Harder W, Kuenen JG. A review. Microbial selection in continuous culture. THE JOURNAL OF APPLIED BACTERIOLOGY 1977; 43:1-24. [PMID: 332677 DOI: 10.1111/j.1365-2672.1977.tb00717.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
|
47
|
Chapman AG, Atkinson DE. Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. Adv Microb Physiol 1977; 15:253-306. [PMID: 143876 DOI: 10.1016/s0065-2911(08)60318-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Schifsky R, McKay L. Isolation of Streptococcus lactis C2 Mutants with High Phosho-β-Galactosidase Activity. J Dairy Sci 1975. [DOI: 10.3168/jds.s0022-0302(75)84595-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
|
50
|
Kuenen JG, Veldkamp H. Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. ARCHIV FUR MIKROBIOLOGIE 1973; 94:173-90. [PMID: 4591719 DOI: 10.1007/bf00416691] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|