1
|
Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. Front Cell Infect Microbiol 2021; 11:683670. [PMID: 34026667 PMCID: PMC8134695 DOI: 10.3389/fcimb.2021.683670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human pathogenic Cryptococcus species are the main agents of fungal meningitis in humans and the causes of other diseases collectively called cryptococcosis. There are at least eight evolutionary divergent lineages among these agents, with different lineages showing different geographic and/or ecological distributions. In this review, we describe the main strain typing methods that have been used to analyze the human pathogenic Cryptococcus and discuss how molecular markers derived from the various strain typing methods have impacted our understanding of not only cryptococcal epidemiology but also its evolutionary histories. These methods include serotyping, multilocus enzyme electrophoresis, electrophoretic karyotyping, random amplified polymorphic DNA, restriction fragment length polymorphism, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. The major findings and the advantages and disadvantages of each method are discussed. Together, while controversies remain, these strain typing methods have helped reveal (i) the broad phylogenetic pattern among these agents, (ii) the centers of origins for several lineages and their dispersal patterns, (iii) the distributions of genetic variation among geographic regions and ecological niches, (iv) recent hybridization among several lineages, and (v) specific mutations during infections within individual patients. However, significant challenges remain. Multilocus sequence typing and whole genome sequencing are emerging as the gold standards for continued strain typing and epidemiological investigations of cryptococcosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Gits-Muselli M, Campagne P, Desnos-Ollivier M, Le Pape P, Bretagne S, Morio F, Alanio A. Comparison of MultiLocus Sequence Typing (MLST) and Microsatellite Length Polymorphism (MLP) for Pneumocystis jirovecii genotyping. Comput Struct Biotechnol J 2020; 18:2890-2896. [PMID: 33163149 PMCID: PMC7593342 DOI: 10.1016/j.csbj.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pneumocystis jirovecii is an atypical fungus responsible for severe respiratory infections, often reported as local outbreaks in immunocompromised patients. Epidemiology of this infection, and transmission risk emphasises the need for developing genotyping techniques. Currently, two methods have emerged: Multilocus Sequence typing (MLST) and microsatellite length polymorphism (MLP). Here we compare an MLST strategy, including 2 nuclear loci and 2 mitochondrial loci, with an MLP strategy including 6 nuclear markers using 37 clinical PCR-positive respiratory samples from two French hospitals. Pneumocystis jirovecii MLST and MLP provided 30 and 35 different genotypes respectively. A higher number of mixed infections was detected using MLP (48.6% vs. 13.5% respectively; p = 0.002). Only one MLP marker (STR279) was statistically associated with the geographical origin of samples. Haplotype network inferred using the available genotypes yielded expanded network for MLP, characterized by more mutational steps as compared to MLST, suggesting that the MLP approach is more resolutive to separate genotypes. The correlation between genetic distances calculated based on MLST and MLP was modest with a R2 value = 0.32 (p < 0.001). Finally, both genotyping methods fulfilled important criteria: (i) a discriminatory power from 97.5% to 99.5% and (ii) being quick and convenient genotyping tools. While MLP appeared highly resolutive regarding genotypes mixture within samples, using one genotyping method rather than the other may also depend on the context (i.e., MLST for investigation of suspected clonal outbreaks versus MLP for population structure study) as well as local facilities.
Collapse
Affiliation(s)
- Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Pascal Campagne
- Hub of Bioinformatics and Biostatistics - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Patrice Le Pape
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie, CHU Nantes, Nantes, France.,Département de Parasitologie et Mycologie Médicale, EA1155 IICiMed, Institut de Recherche en Santé 2, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| | - Florent Morio
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie, CHU Nantes, Nantes, France.,Département de Parasitologie et Mycologie Médicale, EA1155 IICiMed, Institut de Recherche en Santé 2, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie; AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Institut Pasteur, CNRS, unité de Mycologie Moléculaire, Centre National de référence Mycoses invasives et Antifongiques (CNRMA), UMR2000, Paris, France
| |
Collapse
|
3
|
Rodrigues Netto MF, Júnior da Silva J, Andrielle da Silva T, Oliveira MC, Höfling JF, de Andrade Bressan E, Vargas de Oliveira Figueira A, Gomes Boriollo MF. DNA microsatellite genotyping of potentially pathogenic Candida albicans and C. dubliniensis isolated from the oral cavity and dental prostheses. Microb Pathog 2020; 149:104548. [PMID: 33059059 DOI: 10.1016/j.micpath.2020.104548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022]
Abstract
This study investigated the incidence, genetic diversity, antifungal sensitivity, and virulence of Candida albicans and C. dubliniensis isolated from subjects using dental prostheses and subjects clinically indicated for the first prosthetic rehabilitation. Subjects were divided into four groups and samples were collected twice: at first rehabilitation by removable partial (A) and total (C) dental prostheses, and replacement of the removable partial (B) and total (D) prostheses. Yeasts were genotyped using DNA microsatellite markers. Microbiological methods were used to screen for azole antifungal resistance and exoenzyme production. In the initial sampling, oral colonization by Candida was observed in 31 (53.4%) subjects in groups A (33.3%), B (68.2%), and D (65%); 20 (47.6%) subjects displayed colonization of prostheses: groups B (50%) and D (45%). The second sampling (±30 days) revealed Candida in 2 (3.4%: oral cavity) and 4 (6.9%: prosthetic) subjects from group B. C. albicans and C. dubliniensis displayed both polyclonal and monoclonal patterns of infection. Azole-resistant C. albicans and SAPs+ strains were prevalent. Related strains were found in one or several oral sites (mucosa and prosthesis), as well as intra- and inter-subject, -gender, -group, and -time of sampling. However, the patterns of clonality can be altered under dental care.
Collapse
Affiliation(s)
- Manoel Francisco Rodrigues Netto
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| | - Jeferson Júnior da Silva
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| | - Thaísla Andrielle da Silva
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| | - Mateus Cardoso Oliveira
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| | - José Francisco Höfling
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| | - Eduardo de Andrade Bressan
- Laboratory of Plant Improvement, Center of Nuclear Energy in Agriculture, University of São Paulo (CENA/USP), Piracicaba, SP, 13400-970, Brazil.
| | - Antonio Vargas de Oliveira Figueira
- Laboratory of Plant Improvement, Center of Nuclear Energy in Agriculture, University of São Paulo (CENA/USP), Piracicaba, SP, 13400-970, Brazil.
| | - Marcelo Fabiano Gomes Boriollo
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
4
|
Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin Microbiol Rev 2017; 30:671-707. [PMID: 28490578 DOI: 10.1128/cmr.00043-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genotyping studies of medically important fungi have addressed elucidation of outbreaks, nosocomial transmissions, infection routes, and genotype-phenotype correlations, of which secondary resistance has been most intensively investigated. Two methods have emerged because of their high discriminatory power and reproducibility: multilocus sequence typing (MLST) and microsatellite length polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on single-nucleotide polymorphisms within the coding regions of housekeeping genes. STR polymorphisms are based on the number of repeats of short DNA fragments, mostly outside coding regions, and thus are expected to be more polymorphic and more rapidly evolving than MLST markers. There is no consensus on a universal typing system. Either one or both of these approaches are now available for Candida spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the number of loci to be tested depend on the clinical question being addressed. Next-generation sequencing is becoming the most appropriate method for fungi with no MLP or MLST typing available. Whatever the molecular tool used, collection of clinical data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for investigating outbreaks and nosocomial transmission.
Collapse
|
5
|
Garcia-Hermoso D, Desnos-Ollivier M, Bretagne S. Typing Candida Species Using Microsatellite Length Polymorphism and Multilocus Sequence Typing. Methods Mol Biol 2016; 1356:199-214. [PMID: 26519075 DOI: 10.1007/978-1-4939-3052-4_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To gain more insight into the epidemiological relationships between isolates of Candida spp. obtained from various origins, several molecular typing techniques have been developed. Two methods have emerged in the 2000s as soon as enough knowledge of the Candida spp. genomes was available to choose adequate loci and primers, namely microsatellite length polymorphism (MLP) and multilocus sequence typing (MLST). To contrast with previous PCR-based methods, specific amplifications with stringent conditions easily reproducible are the basis of MLP and MLST. MLST relies on Sanger sequencing to detect single-nucleotide polymorphisms within housekeeping genes. MLP needs a first in silico step to select tandemly repeated stretches of two to five nucleotides. One of the two primers used to amplify a microsatellite locus is labeled and fragment sizing is automatically performed using high-resolution electrophoresis platforms. MLST provides results easily comparable between laboratories and active MLST schemes are publicly available for the main Candida species. For comparative studies, MLP needs standards to compensate for the electrophoretic variations depending on the platforms used. Both methods can help us gain insight into the genetic relatedness of fungal isolates, both with advantages and drawbacks, and the choice of one method rather than the other depends on the task in question.
Collapse
Affiliation(s)
- Dea Garcia-Hermoso
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France.,CNRS URA3012, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France.,CNRS URA3012, Paris, France
| | - Stéphane Bretagne
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, 25 rue du Dr. Roux, 75724, Paris cedex 15, France. .,CNRS URA3012, Paris, France. .,Laboratoire de Parasitologie-Mycologie, Groupe hospitalier Lariboisière-Saint Louis, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
6
|
Analysis of clinical and environmental Candida parapsilosis isolates by microsatellite genotyping--a tool for hospital infection surveillance. Clin Microbiol Infect 2015; 21:954.e1-8. [PMID: 26070962 DOI: 10.1016/j.cmi.2015.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 11/21/2022]
Abstract
Candida parapsilosis emerged as an important opportunistic pathogen, causing candidaemia worldwide. Nosocomial outbreaks triggered by this species have been frequently described, particularly in cancer patients. For a better understanding of its epidemiology, several typing methods are used and microsatellite analysis has been reported as highly discriminant. The main objective of this work was to study C. parapsilosis isolates by application of microsatellite genotyping to distinguish epidemiologically related strains, compare clinical and environmental isolates and determine possible routes of dispersion of the isolates in the hospital setting. A total of 129 C. parapsilosis isolates from different origins, including hospital environment and hands of healthcare workers, were genotyped using four microsatellite markers. The isolates were recovered from different health institutions. Analysis of C. parapsilosis isolates from hospital environment showed great genotypic diversity; however, the same or very similar genotypes were also found. The same multilocus genotype was shared by isolates recovered from the hand of a healthcare worker, from the hospital environment and from patients of the same healthcare institution, suggesting that these could be possible routes of transmission and that infections due to C. parapsilosis may be mainly related with exogenous transmission to the patient. Examination of sequential isolates from the same patients showed that colonizing and bloodstream isolates had the same multilocus genotype in the majority of cases. We demonstrate that this typing method is able to distinguish clonal clusters from genetically unrelated genotypes and can be a valuable tool to support epidemiologic investigations in the hospital setting.
Collapse
|
7
|
Gits-Muselli M, Peraldi MN, de Castro N, Delcey V, Menotti J, Guigue N, Hamane S, Raffoux E, Bergeron A, Valade S, Molina JM, Bretagne S, Alanio A. New Short Tandem Repeat-Based Molecular Typing Method for Pneumocystis jirovecii Reveals Intrahospital Transmission between Patients from Different Wards. PLoS One 2015; 10:e0125763. [PMID: 25933203 PMCID: PMC4416908 DOI: 10.1371/journal.pone.0125763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/26/2015] [Indexed: 12/26/2022] Open
Abstract
Pneumocystis pneumonia is a severe opportunistic infection in immunocompromised patients caused by the unusual fungus Pneumocystis jirovecii. Transmission is airborne, with both immunocompromised and immunocompetent individuals acting as a reservoir for the fungus. Numerous reports of outbreaks in renal transplant units demonstrate the need for valid genotyping methods to detect transmission of a given genotype. Here, we developed a short tandem repeat (STR)-based molecular typing method for P. jirovecii. We analyzed the P. jirovecii genome and selected six genomic STR markers located on different contigs of the genome. We then tested these markers in 106 P. jirovecii PCR-positive respiratory samples collected between October 2010 and November 2013 from 91 patients with various underlying medical conditions. Unique (one allele per marker) and multiple (more than one allele per marker) genotypes were observed in 34 (32%) and 72 (68%) samples, respectively. A genotype could be assigned to 55 samples (54 patients) and 61 different genotypes were identified in total with a discriminatory power of 0.992. Analysis of the allelic distribution of the six markers and minimum spanning tree analysis of the 61 genotypes identified a specific genotype (Gt21) in our hospital, which may have been transmitted between 10 patients including six renal transplant recipients. Our STR-based molecular typing method is a quick, cheap and reliable approach to genotype Pneumocystis jirovecii in hospital settings and is sensitive enough to detect minor genotypes, thus enabling the study of the transmission and pathophysiology of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Marie-Noelle Peraldi
- Service de transplantation rénale, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
- Université Paris-Diderot, Sorbonne Cité, Paris, France
| | - Nathalie de Castro
- Service de Maladie Infectieuses et tropicales, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Véronique Delcey
- Service de Médecine interne, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Hôpital Lariboisière, Paris, France
| | - Jean Menotti
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
- Université Paris-Diderot, Sorbonne Cité, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses invasives et Antifongiques, Paris, France
- CNRS URA3012, Paris, France
| | - Nicolas Guigue
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
- Université Paris-Diderot, Sorbonne Cité, Paris, France
| | - Samia Hamane
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Emmanuel Raffoux
- Service d’Hématologie adulte, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Anne Bergeron
- Université Paris-Diderot, Sorbonne Cité, Paris, France
- Service de Pneumologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Sandrine Valade
- Service de Réanimation, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Jean-Michel Molina
- Université Paris-Diderot, Sorbonne Cité, Paris, France
- Service de Maladie Infectieuses et tropicales, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
- Université Paris-Diderot, Sorbonne Cité, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses invasives et Antifongiques, Paris, France
- CNRS URA3012, Paris, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France
- Université Paris-Diderot, Sorbonne Cité, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses invasives et Antifongiques, Paris, France
- CNRS URA3012, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Wu Y, Zhou HJ, Che J, Li WG, Bian FN, Yu SB, Zhang LJ, Lu J. Multilocus microsatellite markers for molecular typing of Candida tropicalis isolates. BMC Microbiol 2014; 14:245. [PMID: 25410579 PMCID: PMC4247128 DOI: 10.1186/s12866-014-0245-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background Candida tropicalis is considered to be the leading pathogen causing nosocomial fungemia and hepatosplenic fungal infections in patients with cancer, particularly those with leukemia. Microsatellite-based typing methods using sets of genetic markers have been developed and reported for population structure analysis of C. albicans, C. glabrata, and C. parapsilosis, but no studies have been published for genetic analysis of C. tropicalis. The objective of this study was to develop new microsatellite loci that have the ability to distinguish among C. tropicalis isolates. Results DNA sequences containing over 10 bi- or tri-nucleotide repeats were selected from the C. tropicalis genome database. Thirty PCR primers sets specific for the microsatellite loci were designed and tested using eight clinically independent isolates. According to the amplification efficiency, specificity, and observed polymorphisms, eight markers were selected for further population structure analysis and molecular typing. Sixty-five independent C. tropicalis isolates were genotyped using these 8 markers. Based on these analyses, six microsatellite loci were confirmed, although two loci were found to be with unstable flanking areas. The six polymorphic loci displayed 4–22 alleles and 7–27 genotypes. The discriminatory power of the six loci ranged from 0.70 to 0.95. Genotyping results obtained by microsatellite analysis were compared to PCR-fingerprinting and multi-locus sequence typing (MLST). The comparisons showed that microsatellite analysis and MLST had the similar discriminatory power for C. tropicalis, which were more powerful than PCR-fingerprinting. Conclusions This is the first attempt to develop new microsatellite loci for C. tropicalis. These newly developed markers will be a valuable resource for the differentiation of C. tropicalis isolates. More C. tropicalis isolates will need to be sequenced and analyzed in order to fully show the potential of these newly developed microsatellite markers.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Hai-jian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Jie Che
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Wen-ge Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Fu-ning Bian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Shuan-bao Yu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| | - Li-juan Zhang
- Department of Gynecology and Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Jinxing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China.
| |
Collapse
|
9
|
Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J. Aplicación de las técnicas de tipificación molecular al estudio de brotes hospitalarios de candidemia. Rev Iberoam Micol 2014; 31:97-103. [DOI: 10.1016/j.riam.2013.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
|
10
|
Molecular fingerprints to identify Candida species. BIOMED RESEARCH INTERNATIONAL 2013; 2013:923742. [PMID: 23844370 PMCID: PMC3703398 DOI: 10.1155/2013/923742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022]
Abstract
A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence typing (MLST) and microsatellite length polymorphisms (MLP) analysis have recently emerged. MLST relies on DNA sequences of internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Both methods generate unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide a brief overview of a new method based on high-resolution DNA melting (HRM). This method identifies sequence differences by subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes.
Collapse
|
11
|
Saghrouni F, Ben Abdeljelil J, Boukadida J, Ben Said M. Molecular methods for strain typing of Candida albicans
: a review. J Appl Microbiol 2013; 114:1559-74. [DOI: 10.1111/jam.12132] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- F. Saghrouni
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | | | - J. Boukadida
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| | - M. Ben Said
- UR02SP13 Research Unit; Ministry of Public Health; Tunisia Tunisia
| |
Collapse
|
12
|
Gago S, Lorenzo B, Gomez-Lopez A, Cuesta I, Cuenca-Estrella M, Buitrago MJ. Analysis of strain relatedness using high resolution melting in a case of recurrent candiduria. BMC Microbiol 2013; 13:13. [PMID: 23343107 PMCID: PMC3561232 DOI: 10.1186/1471-2180-13-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several genotyping protocols have been described to study Candida albicans strains with different sensitivity values. In this study we have analyzed the genetic relatedness and the antifungal susceptibility of several Candida albicans strains isolated from a patient who from suffered recurrent candiduria for a period of five years. Strains were genotyped using Microsatellite Length Polymorphism (MLP) with three microsatellite markers (HIS 3, EF 3 and CDC 3), and a new method based on high resolution melting (HRM) was developed to analyze the microsatellite region. This method was compared with the conventional technique that uses capillary electrophoresis. RESULTS MICs of the isolates showed the existence of fluconazole susceptible and resistant strains. An inter-colony test using single concentration (8 and 16 mg/l) of fluconazole revealed the coexistence of both fluconazole susceptible and resistant strains. Both genotyping analysis methods showed that all the patient's isolates had a clonal origin. HRM analysis method developed was able to accurately establish strain relatedness and presented a discriminatory power of 0.77. CONCLUSIONS Although HRM analysis method presented a lower discriminatory power compared to methods based on capillary electrophoresis, it provided a more cost-effective and suitable alternative for genotyping C. albicans in a clinical laboratory.
Collapse
Affiliation(s)
- Sara Gago
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo, Km 2, Majadahonda, Madrid, 28220, Spain
| | - Belen Lorenzo
- Servicio de Microbiología, Hospital Virgen de la Concha, Zamora, España
| | - Alicia Gomez-Lopez
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo, Km 2, Majadahonda, Madrid, 28220, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo, Km 2, Majadahonda, Madrid, 28220, Spain
| | - Maria J Buitrago
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo, Km 2, Majadahonda, Madrid, 28220, Spain
| |
Collapse
|
13
|
Microsatellite-based genotyping of Candida parapsilosis sensu stricto isolates reveals dominance and persistence of a particular epidemiological clone among neonatal intensive care unit patients. INFECTION GENETICS AND EVOLUTION 2012; 13:105-8. [PMID: 23022715 DOI: 10.1016/j.meegid.2012.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 11/20/2022]
Abstract
In this study, using multilocus microsatellite analysis, we report the genetic characterization of 27 Candida parapsilosis isolates recovered in two different periods of time (2007-2009 and 2011-2012) from infants hospitalized in the neonatal intensive care unit of a hospital in Messina, Italy. The results revealed the persistence and dominance of a particular infectious genotype among NICU patients and highlight the power of the used microsatellite markers in clarifying epidemiologic associations, detect micro-evolutionary variations and facilitating the recognition of outbreaks.
Collapse
|
14
|
Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench MT, Bretagne S, Dromer F, Lortholary O. Candida spp. with acquired echinocandin resistance, France, 2004-2010. Emerg Infect Dis 2012; 18:86-90. [PMID: 22257484 PMCID: PMC3310099 DOI: 10.3201/eid1801.110556] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report 20 episodes of infection caused by acquired echinocandin-resistant Candida spp. harboring diverse and new Fksp mutations. For 12 patients, initial isolates (low MIC, wild-type Fksp sequence) and subsequent isolates (after caspofungin treatment, high MIC, mutated Fksp) were genetically related.
Collapse
Affiliation(s)
- Eric Dannaoui
- Centre National de Référence Mycologie et Antifongiques, Unité de Mycologie Moléculaire, CNRS URA3012, 25, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Quindós G, Eraso E, López-Soria LM, Ezpeleta G. [Invasive fungal disease: conventional or molecular mycological diagnosis?]. Enferm Infecc Microbiol Clin 2011; 30:560-71. [PMID: 22206948 DOI: 10.1016/j.eimc.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022]
Abstract
Diagnosis of invasive mycoses is a difficult challenge due to the limitations and low sensitivity of traditional microbiology methods which lead to diagnostic and therapeutic delays. The aim of this review is to summarise the state of the art of the molecular diagnosis of invasive fungal disease and to clarify its current role in the clinical practice. Conventional microbiological methods could be complemented with molecular methods in the rapid and definitive identification of fungal isolates. Biomarkers (β-glucan, galactomannan) are very useful in immunocompromised patients and have been included as probable invasive mycoses by the EORTC/MSG. Nucleic acid detection is currently used as a complementary tool for diagnosis. However, PCR can be very useful in mould invasive mycoses. Finally, the combined detection using biomarkers can improve the diagnosis. However, their applicability in the microbiology laboratory is not so easy and further studies are required for the appropriate evaluation of its clinical usefulness.
Collapse
Affiliation(s)
- Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, España.
| | | | | | | |
Collapse
|
16
|
Li L, Hu F, Chen W, Tang X, Song W, Kuang Y, Cai W, Chen X. Microsatellite analysis of clinical isolates of the opportunistic fungal pathogen Penicillium marneffei from AIDS patients in China. ACTA ACUST UNITED AC 2011; 43:616-24. [PMID: 21332284 DOI: 10.3109/00365548.2011.559649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Penicillium marneffei is an opportunistic fungus that may cause fatal disease, and usually infects acquired immune deficiency syndrome (AIDS) patients. The molecular epidemiology of this fungus remains enigmatic. METHODS A multilocus microsatellite typing (MLMT) system based on 11 microsatellite loci was applied to 169 unrelated isolates of P. marneffei obtained from AIDS patients, in order to identify their genetic diversity. These patients came from the provinces of Guangdong and Guangxi, areas endemic for P. marneffei in China. RESULTS For the overall population, the average number of alleles per locus ranged from 3 to 8 (mean 5.5), while the discriminatory power (DP) of each locus ranged from 0.235 to 0.651 (mean 0.512). By combining the information generated for 11 loci, MLMT detected 159 different multilocus genotypes (MTs), resulting in a high degree of discrimination (DP = 0.999). One hundred and sixty-nine isolates were further clustered into 9 types (from A to I) at the similarity coefficient of 0.80, with type A (80 isolates) and type B (60 isolates) being the most common types. Within 5 subpopulations from different regions of China, the distribution of MTs of P. marneffei isolates was diverse. Although 169 isolates shared a high genetic similarity (range 0.71-0.933), isolates from Guangxi and Guangdong provinces could be differentiated from each other and clustered into 2 categories by unweighted pair-group method with arithmetic mean (UPGMA) cluster analysis. CONCLUSIONS By MLMT, the genetic diversity of clinical P. marneffei isolates could be discriminated, the dominant strain of P. marneffei cultured from AIDS patients in China could be identified, and clinical isolates of P. marneffei from Guangxi Province could be differentiated from those from Guangdong Province.
Collapse
Affiliation(s)
- Linghua Li
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|