1
|
Mouafo PT, Nkengfack H, Tchoffo RN, Nguepi ND, Domguia EN. Examining the effectiveness of dissuasive taxes as a policy tool for reducing tobacco and alcohol consumption in Cameroon: A welfare and microsimulation analysis. Heliyon 2024; 10:e40174. [PMID: 39605828 PMCID: PMC11600084 DOI: 10.1016/j.heliyon.2024.e40174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Deterrent taxes are a crucial policy tool for reducing the consumption of harmful products like tobacco and alcohol. However, assessing dissuasive taxes impact different income groups is important to ensure that their burden is not disproportionately borne by low-income households. This study examines the effectiveness of deterrent taxes as an economic policy tool for reducing tobacco and alcohol consumption in Cameroon. We analyse the impact on household welfare and distributional effects using microsimulation analysis. The data come from the Cameroon Household Living Conditions Survey and the 2022 tax records. Our methodology is based on a dynamic computable general equilibrium (CGE) model enriched with an addiction model. The results indicate that deterrent taxes can significantly reduce the consumption of these harmful products but also have regressive effects on low-income households. In response, we recommend the adoption of a progressive tax structure and the establishment of targeted support programmes to mitigate the negative impact on vulnerable populations.
Collapse
Affiliation(s)
- Paul Tadzong Mouafo
- University of Dschang, Centre de Recherche de Management et d’Economie (CERME), Dschang, Cameroon
| | - Hilaire Nkengfack
- University of Dschang, Faculty of Economics and Management, Dschang, Cameroon
| | - Rodrigue Nobosse Tchoffo
- University of Dschang, Groupe de Recherche en Economie Appliquée et Developpement (GREAD), Dschang, Cameroon
| | - Nelson Derrick Nguepi
- Université catholique de Louvain, Economics School of Louvain (Belgium), University of Dschang, Groupe de Recherche en Economie Appliquée et Developpement (GREAD), Dschang, Cameroon
| | - Edmond Noubissi Domguia
- University of Dschang, Centre de Recherche de Management et d’Economie (CERME), Dschang, Cameroon
| |
Collapse
|
2
|
Mesman AW, Calderon RI, Hauns L, Pollock NR, Mendoza M, Holmberg RC, Franke MF. Detection of Mycobacterium tuberculosis transrenal DNA in urine samples among adults in Peru. Tuberculosis (Edinb) 2024; 148:102549. [PMID: 39098064 PMCID: PMC11381138 DOI: 10.1016/j.tube.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Diagnosis of pulmonary tuberculosis (TB) relies on a sputum sample, which cannot be obtained from all symptomatic individuals. Mycobacterium tuberculosis (Mtb) transrenal DNA (trDNA) has been detected in urine, an easily obtainable, noninvasive, alternative sample type. However, reported sensitivities have been variable and likely depend on collection and assay procedures and aspects of trDNA biology. We analyzed three serial urine samples from each of 75 adults with culture-confirmed pulmonary TB disease in Lima, Peru for detection of trDNA using short-fragment real-time PCR. Additionally, we examined host, urine, and sampling factors associated with detection. Overall per-sample sensitivity was 38 % (95 % Confidence Interval [CI] 30-45 %). On an individual level (i.e., any of the three samples positive), sensitivity was 73 % (95 % CI: 62-83 %). Sensitivity was highest among samples from patients with smear-positive TB, 92 % (95 % CI: 62-100 %). Specificity from a single sample from each of 10 healthy controls was 100 % (95 % CI: 69-100 %). Adjusting our assay positivity threshold increased individual-level sensitivity to 88 % (95 % CI: 78-94 %) overall without affecting the specificity. We did not find associations between Mtb trDNA detection and individual characteristics or urine sample characteristics. Overall, our results support the potential of trDNA detection for TB diagnosis.
Collapse
Affiliation(s)
- Annelies W Mesman
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA.
| | - Roger I Calderon
- Socios En Salud Sucursal Perú, Av. Javier Prado Este 492, San Isidro, Lima, 15001, Peru.
| | - Laura Hauns
- Akonni Biosystems, 400 Sagner Ave, Frederick, MD, 21701, USA.
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Milagros Mendoza
- Socios En Salud Sucursal Perú, Av. Javier Prado Este 492, San Isidro, Lima, 15001, Peru.
| | | | - Molly F Franke
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Yan AJ, Olson AM, Weigel KM, Luabeya AK, Heiniger E, Hatherill M, Cangelosi GA, Yager P. Detection of Mycobacterium tuberculosis from tongue swabs using sonication and sequence-specific hybridization capture. PLoS One 2024; 19:e0308235. [PMID: 39146324 PMCID: PMC11326604 DOI: 10.1371/journal.pone.0308235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Tongue swabs hold promise as a non-invasive sample for diagnosing tuberculosis (TB). However, their utility as replacements for sputum has been limited by their varied diagnostic performance in PCR assays compared to sputum. The use of silica-based DNA extraction methods may limit sensitivity due to incomplete lysis of Mycobacterium tuberculosis (MTB) cells and co-extraction of non-target nucleic acid, which may inhibit PCR. Specificity may also be compromised because these methods are labor-intensive and prone to cross-contamination. To address these limitations, we developed a sample preparation method that combines sonication for MTB lysis and a sequence-specific MTB DNA capture method using hybridization probes immobilized on magnetic beads. In spiked tongue swabs, our hybridization capture method demonstrated a 100-fold increase in MTB DNA yield over silica-based Qiagen DNA extraction and ethanol precipitation. In a study conducted on clinical samples from South Africa, our protocol had 74% (70/94) sensitivity and 98% (41/42) specificity for detecting active pulmonary TB with sputum Xpert MTB/RIF Ultra as the reference standard. While hybridization capture did not show improved sensitivity over Qiagen DNA extraction and ethanol precipitation, it demonstrated better specificity than previously reported methods and was easier to perform. With integration into point-of-care platforms, these strategies have the potential to help enable rapid non-sputum-based TB diagnosis across key underserved patient populations.
Collapse
Affiliation(s)
- Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Alaina M. Olson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Angelique K. Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Erin Heiniger
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerard A. Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Olson AM, Wood RC, Weigel KM, Yan AJ, Lochner KA, Dragovich RB, Luabeya AK, Yager P, Hatherill M, Cangelosi GA. High-sensitivity detection of Mycobacterium tuberculosis DNA in tongue swab samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311064. [PMID: 39108520 PMCID: PMC11302704 DOI: 10.1101/2024.07.26.24311064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Tongue swab (TS) sampling combined with qPCR to detect Mycobacterium tuberculosis (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity. In one, centrifugation was used to concentrate tongue dorsum bacteria from 2-mL suspensions eluted from high-capacity foam swab samples. The pellets were resuspended as 500-μL suspensions, and then mechanically lysed prior to dual-target qPCR to detect MTB insertion elements IS6110 and IS1081. Fractionation experiments demonstrated that most of the MTB DNA signal in clinical swab samples (99.22% ± 1.46%) was present in the sedimentable fraction. When applied to archived foam swabs collected from 124 South Africans with presumptive TB, this strategy exhibited 83% sensitivity (71/86) and 100% specificity (38/38) relative to sputum MRS (microbiological reference standard; sputum culture and/or Xpert® Ultra). The second strategy used sequence-specific magnetic capture (SSMaC) to concentrate DNA released from MTB cells. This protocol was evaluated on archived Copan FLOQSwabs® flocked swab samples collected from 128 South African participants with presumptive TB. Material eluted into 500 μL buffer was mechanically lysed. The suspensions were digested by proteinase K, hybridized to biotinylated dual-target oligonucleotide probes, and then concentrated ~20-fold using magnetic separation. Upon dual-target qPCR testing of concentrates, this strategy exhibited 90% sensitivity (83/92) and 97% specificity (35/36) relative to sputum MRS. These results point the way toward automatable, high-sensitivity methods for detecting MTB DNA in TS. Importance Improved testing for tuberculosis (TB) is needed. Using a more accessible sample type than sputum may enable the detection of more cases, but it is critical that alternative samples be tested appropriately. Here, we describe two new, highly accurate methods for testing tongue swabs for TB DNA.
Collapse
Affiliation(s)
- Alaina M. Olson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rachel C. Wood
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Katherine A. Lochner
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rane B. Dragovich
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Angelique K. Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Gerard A. Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Hu Y, Zhao Y, Zhang Y, Chen W, Zhang H, Jin X. Cell-free DNA: a promising biomarker in infectious diseases. Trends Microbiol 2024:S0966-842X(24)00168-9. [PMID: 38997867 DOI: 10.1016/j.tim.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Infectious diseases pose serious threats to public health worldwide. Conventional diagnostic methods for infectious diseases often exhibit low sensitivity, invasiveness, and long turnaround times. User-friendly point-of-care tests are urgently needed for early diagnosis, treatment monitoring, and prognostic prediction of infectious diseases. Cell-free DNA (cfDNA), a promising non-invasive biomarker widely used in oncology and pregnancy, has shown great potential in clinical applications for diagnosing infectious diseases. Here, we discuss the most recent cfDNA research on infectious diseases from both the pathogen and host perspectives. We also discuss the technical challenges in this field and propose solutions to overcome them. Additionally, we provide an outlook on the potential of cfDNA as a diagnostic, treatment, and prognostic marker for infectious diseases.
Collapse
Affiliation(s)
- Yuxuan Hu
- BGI Research, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | | | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Weijun Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China.
| |
Collapse
|
6
|
Mahmoudi S, García MJ, Drain PK. Current approaches for diagnosis of subclinical pulmonary tuberculosis, clinical implications and future perspectives: a scoping review. Expert Rev Clin Immunol 2024; 20:715-726. [PMID: 38879875 DOI: 10.1080/1744666x.2024.2326032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Subclinical tuberculosis (TB) is the presence of TB disease among people who are either asymptomatic or have minimal symptoms. AREAS COVERED Currently, there are no accurate diagnostic tools and clear treatment approaches for subclinical TB. In this study, a comprehensive literature search was conducted across major databases. This review aimed to uncover the latest advancements in diagnostic approaches, explore their clinical implications, and outline potential future perspectives. While innovative technologies are in development to enable sputum-free TB tests, there remains a critical need for precise diagnostic tools tailored to the unique characteristics of subclinical TB. Given the complexity of subclinical TB, a multidisciplinary approach involving clinicians, microbiologists, epidemiologists, and public health experts is essential. Further research is needed to establish standardized diagnostic criteria and treatment guidelines specifically tailored for subclinical TB, acknowledging the unique challenges posed by this elusive stage of the disease. EXPERT OPINION Efforts are needed for the detection, diagnosis, and treatment of subclinical TB. In this review, we describe the importance of subclinical TB, both from a clinical and public health perspective and highlight the diagnostic and treatment gaps of this stage.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria J García
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Paul K Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Tschan Y, Sasamalo M, Hiza H, Fellay J, Gagneux S, Reither K, Hella J, Portevin D. Diagnostic accuracy of a sequence-specific Mtb-DNA hybridization assay in urine: a case-control study including subclinical TB cases. Microbiol Spectr 2024; 12:e0042624. [PMID: 38717151 PMCID: PMC11237410 DOI: 10.1128/spectrum.00426-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases globally. Timely diagnosis is a key step in the management of TB patients and in the prevention of further transmission events. Current diagnostic tools are limited in these regards. There is an urgent need for new accurate non-sputum-based diagnostic tools for the detection of symptomatic as well as subclinical TB. In this study, we recruited 52 symptomatic TB patients (sputum Xpert MTB/RIF positive) and 58 household contacts to assess the accuracy of a sequence-specific hybridization assay that detects the presence of Mtb cell-free DNA in urine. Using sputum Xpert MTB/RIF as a reference test, the magnetic bead-capture assay could discriminate active TB from healthy household contacts with an overall sensitivity of 72.1% [confidence interval (CI) 0.59-0.86] and specificity of 95.5% (CI 0.90-1.02) with a positive predictive value of 93.9% and negative predictive value of 78.2%. The detection of Mtb-specific DNA in urine suggested four asymptomatic TB infection cases that were confirmed in all instances either by concomitant Xpert MTB/RIF sputum testing or by follow-up investigation raising the specificity of the index test to 100%. We conclude that sequence-specific hybridization assays on urine specimens hold promise as non-invasive tests for the detection of subclinical TB. IMPORTANCE There is an urgent need for a non-sputum-based diagnostic tool allowing sensitive and specific detection of all forms of tuberculosis (TB) infections. In that context, we performed a case-control study to assess the accuracy of a molecular detection method enabling the identification of cell-free DNA from Mycobacterium tuberculosis that is shed in the urine of tuberculosis patients. We present accuracy data that would fulfill the target product profile for a non-sputum test. In addition, recent epidemiological data suggested that up to 50% of individuals secreting live bacilli do not present with symptoms at the time of screening. We report, here, that the investigated index test could also detect instances of asymptomatic TB infections among household contacts.
Collapse
Affiliation(s)
- Yves Tschan
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Hellen Hiza
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Peng H, Pan M, Zhou Z, Chen C, Xing X, Cheng S, Zhang S, Zheng H, Qian K. The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples. Front Cell Dev Biol 2024; 12:1385041. [PMID: 38784382 PMCID: PMC11111958 DOI: 10.3389/fcell.2024.1385041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cell-free DNA (cfDNA), a burgeoning class of molecular biomarkers, has been extensively studied across a variety of biomedical fields. As a key component of liquid biopsy, cfDNA testing is gaining prominence in disease detection and management due to the convenience of sample collection and the abundant wealth of genetic information it provides. However, the broader clinical application of cfDNA is currently impeded by a lack of standardization in the preanalytical procedures for cfDNA analysis. A number of fundamental challenges, including the selection of appropriate preanalytical procedures, prevention of short cfDNA fragment loss, and the validation of various cfDNA measurement methods, remain unaddressed. These existing hurdles lead to difficulties in comparing results and ensuring repeatability, thereby undermining the reliability of cfDNA analysis in clinical settings. This review discusses the crucial preanalytical factors that influence cfDNA analysis outcomes, including sample collection, transportation, temporary storage, processing, extraction, quality control, and long-term storage. The review provides clarification on achievable consensus and offers an analysis of the current issues with the goal of standardizing preanalytical procedures for cfDNA analysis.
Collapse
Affiliation(s)
- Hongwei Peng
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Pan
- Taihe Skills Training Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zongning Zhou
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Congbo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Shanshan Zhang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Wood RC, Luabeya AK, Dragovich RB, Olson AM, Lochner KA, Weigel KM, Codsi R, Mulenga H, de Vos M, Kohli M, Penn-Nicholson A, Hatherill M, Cangelosi GA. Diagnostic accuracy of tongue swab testing on two automated tuberculosis diagnostic platforms, Cepheid Xpert MTB/RIF Ultra and Molbio Truenat MTB Ultima. J Clin Microbiol 2024; 62:e0001924. [PMID: 38483169 PMCID: PMC11005402 DOI: 10.1128/jcm.00019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Tongue dorsum swabbing is a potential alternative to sputum collection for tuberculosis (TB) testing. Previous studies showed that Cepheid Xpert MTB/RIF Ultra (Xpert Ultra) can detect Mycobacterium tuberculosis DNA on tongue swabs stored in buffer, with 72% sensitivity and 100% specificity relative to a sputum microbiological reference standard (sputum MRS). The present study evaluated a more convenient sample collection protocol (dry swab storage), combined with streamlined sample processing protocols, for evaluating two commercial TB diagnostic tests: Xpert Ultra and Molbio Truenat MTB Ultima (MTB Ultima). Copan FLOQSwabs were self-collected or collected by study workers from 321 participants in Western Cape, South Africa. All participants had symptoms suggestive of TB, and 245 of them had sputum MRS-confirmed TB (by sputum MGIT culture and/or Xpert Ultra). One tongue swab per participant was tested on Xpert Ultra, and another tongue swab was tested with MTB Ultima. Xpert Ultra was 75.5% sensitive and 100% specific relative to sputum MRS, similar to previous methods that used swabs stored in buffer. MTB Ultima was 71.6% sensitive and 96.9% specific relative to sputum MRS. When sample lysates that were false-negative or invalid by MTB Ultima were frozen, thawed, and re-tested, MTB Ultima sensitivity rose to 79.1%. Both tests were more sensitive with swabs from participants with higher sputum Xpert Ultra semi-quantitative results. Although additional development could improve diagnostic accuracy, these results further support tongue swabs as easy-to-collect samples for TB testing. IMPORTANCE Tongue dorsum swabbing is a promising alternative to sputum collection for tuberculosis (TB) testing. Our results lend further support for tongue swabs as exceptionally easy-to-collect samples for high-throughput TB testing.
Collapse
Affiliation(s)
- Rachel C. Wood
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Angelique K. Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rane B. Dragovich
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Alaina M. Olson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Katherine A. Lochner
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Renée Codsi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerard A. Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Tseng YH, Pan SW, Feng JY, Su WJ, Huang CYF, Chen YM. Detecting circulating microbial cell-free DNA by next-generation sequencing in patients with Mycobacterium avium complex-lung disease: A pilot study. Tzu Chi Med J 2024; 36:67-75. [PMID: 38406566 PMCID: PMC10887338 DOI: 10.4103/tcmj.tcmj_191_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 02/27/2024] Open
Abstract
Objectives Determining a diagnosis for non-Tuberculous mycobacterium (NTM)-lung disease (LD) remains difficult. The value of circulating cell-free DNA (cfDNA) secreted from microbes has been established in the detection of pathogens in septic patients. However, it is unknown whether NTM-derived cfDNA is detectable in plasma from patients with NTM-LD and whether this is associated with the disease status of NTM-LD, especially in patients with Mycobacterium avium complex (MAC)-LD. Materials and Methods In this pilot study, from 2018 to 2019, we enrolled adult patients with MAC-LD at Taipei Veterans General Hospital in Taiwan for the detection of circulating cfDNA. We performed cfDNA extraction from plasma, next-generation sequencing (NGS) for nonhuman cfDNA, and sequence matching to a microbial database and then assessed the association between pathogen cfDNA and MAC-LD. Results Two (40%) plasma samples from MAC-LD patients had detectable MAC-specific cfDNA, namely one instance of DNA polymerase III alpha subunit and one instance of ATP-binding cassette transporters permease. The plasma samples from the three other MAC-LD cases and the one tuberculosis control were negative for either NTM-derived cfDNA or tuberculosis-related cfDNA. In addition to MAC-specific cfDNA, Ralstonia solanacearum, Staphylococcus aureus, and Pasteurella multocida were the most observed bacteria in our patients. The two patients with MAC-cfDNA positivity yielded higher radiographic scores (P = 0.076) and presented a higher number of nonhuman reads than those without MAC-cfDNA positivity (P = 0.083). Conclusion Using NGS method, we demonstrated MAC-cfDNA was detectable in patients with MAC-LD. Further large-scale research is warranted to assess the clinical value of detecting MAC-specific cfDNA in MAC-LD patients.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Juin Su
- Division of Chest Medicine, Department of Internal Medicine, China Medical University Hospital, Taipei Branch, Taipei, Taiwan
| | - Chi-Ying F Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Kanaujia R, Sharma V, Biswal M, Singh S, Ray P, Angrup A. Microbial cell-free DNA detection: Minimally invasive diagnosis of infectious diseases. Indian J Med Microbiol 2023; 46:100433. [PMID: 37945127 DOI: 10.1016/j.ijmmb.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Detection of infectious diseases, especially among immunocompromised and patients on prolonged anti-microbial treatment, remains challenging, limited by conventional techniques with low sensitivity and long-turnaround time. Molecular detection by polymerase chain reaction (PCR) also has limited utility as it requires a targeted approach with prior suspicion of the infecting organism. Advancements in sequencing methodologies, specifically next-generation sequencing (NGS), have presented a promising opportunity to identify pathogens in cases where conventional techniques may be inadequate. However, the direct application of these techniques for diagnosing invasive infections is still limited by the need for invasive sampling, highlighting the pressing need to develop and implement non-invasive or minimally invasive approaches to improve the diagnosis of invasive infections. OBJECTIVES The objectives of this article are to explore the notable features, clinical utility, and constraints associated with the detection of microbial circulating cell-free DNA (mcfDNA) as a minimally invasive diagnostic tool for infectious diseases. CONTENT The mcfDNA detection provides an opportunity to identify micro-organisms in the blood of a patient. It is especially beneficial in immunocompromised patients where invasive sampling is not possible or where repeated cultures are negative. This review will discuss the applications and constraints of detecting mcfDNA for diagnosing infections and the various platforms available for its detection.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, AIMS, Mohali, India
| | - Pallab Ray
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Archana Angrup
- Department of Medical Microbiology, PGIMER, Chandigarh, India.
| |
Collapse
|
12
|
Wood RC, Luabeya AK, Dragovich RB, Olson AM, Lochner KA, Weigel KM, Codsi R, Mulenga H, de Vos M, Kohli M, Penn-Nicholson A, Hatherill M, Cangelosi GA. Tongue swab testing on two automated tuberculosis diagnostic platforms, Cepheid Xpert ® MTB/RIF Ultra and Molbio Truenat ® MTB Ultima. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.10.23296833. [PMID: 37873199 PMCID: PMC10593025 DOI: 10.1101/2023.10.10.23296833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tongue dorsum swabbing is a potential alternative to sputum collection for tuberculosis (TB) testing. Previous studies showed that Cepheid Xpert® MTB/RIF Ultra (Xpert Ultra) can detect Mycobacterium tuberculosis (MTB) DNA in tongue swabs stored in buffer, with 72% sensitivity and 100% specificity relative to a sputum microbiological reference standard (sputum MRS). The present study evaluated a more convenient sample collection protocol (dry swab storage), combined with streamlined sample processing protocols, for side-by-side analysis using two commercial TB diagnostic tests: Xpert Ultra and Molbio Truenat® MTB Ultima (MTB Ultima). Copan FLOQSwabs were self-collected, or collected by study workers, from 321 participants in Western Cape, South Africa. All participants had symptoms suggestive of TB, and 245 of them had sputum MRS-confirmed TB (by sputum culture and/or Xpert Ultra). One tongue swab per participant was tested on Xpert Ultra and another tongue swab was tested with MTB Ultima. Xpert Ultra was 75.4% sensitive and 100% specific, and MTB Ultima was 71.6% sensitive and 96.9% specific, relative to sputum MRS. When sample lysates that were false-negative by MTB Ultima were frozen, thawed, and re-tested, MTB Ultima sensitivity rose to 79.1%. Both tests were more sensitive with swabs from participants with higher sputum Xpert semi-quantitative results. The protocol for Xpert Ultra enabled fast and easy testing of dry-stored swabs with no loss of accuracy relative to previous methods. MTB Ultima testing of dry-stored swabs exhibited comparable performance to Xpert Ultra. These results further support tongue swabs as easy-to-collect samples for high-throughput TB testing.
Collapse
Affiliation(s)
- Rachel C Wood
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Angelique K Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rane B Dragovich
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Alaina M Olson
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Katherine A Lochner
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Kris M Weigel
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Renée Codsi
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerard A Cangelosi
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, United States of America
| |
Collapse
|
13
|
Lehman A, Ellis J, Nalintya E, Bahr NC, Loyse A, Rajasingham R. Advanced HIV disease: A review of diagnostic and prophylactic strategies. HIV Med 2023; 24:859-876. [PMID: 37041113 PMCID: PMC10642371 DOI: 10.1111/hiv.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Despite expanded access to antiretroviral therapy (ART) and the rollout of the World Health Organization's (WHO) 'test-and-treat' strategy, the proportion of people with HIV (PWH) presenting with advanced HIV disease (AHD) remains unchanged at approximately 30%. Fifty percent of persons with AHD report prior engagement to care. ART failure and insufficient retention in HIV care are major causes of AHD. People living with AHD are at high risk for opportunistic infections and death. In 2017, the WHO published guidelines for the management of AHD that included a comprehensive package of care for screening and prophylaxis of major opportunistic infections (OIs). In the interim, ART regimens have evolved: integrase inhibitors are first-line therapy globally, and the diagnostic landscape is evolving. The objective of this review is to highlight novel point-of-care (POC) diagnostics and treatment strategies that can facilitate OI screening and prophylaxis for persons with AHD. METHODS We reviewed the WHO guidelines for recommendations for persons with AHD. We summarized the scientific literature on current and emerging diagnostics, along with emerging treatment strategies for persons with AHD. We also highlight the key research and implementation gaps together with potential solutions. RESULTS While POC CD4 testing is being rolled out in order to identify persons with AHD, this alone is insufficient; implementation of the Visitect CD4 platform has been challenging given operational and test interpretation issues. Numerous non-sputum POC TB diagnostics are being evaluated, many with limited sensitivity. Though imperfect, these tests are designed to provide rapid results (within hours) and are relatively affordable for resource-poor settings. While novel POC diagnostics are being developed for cryptococcal infection, histoplasmosis and talaromycosis, implementation science studies are urgently needed to understand the clinical benefit of these tests in the routine care. CONCLUSIONS Despite progress with HIV treatment and prevention, a persistent 20%-30% of PWH present to care with AHD. Unfortunately, these persons with AHD continue to carry the burden of HIV-related morbidity and mortality. Investment in the development of additional POC or near-bedside CD4 platforms is urgently needed. Implementation of POC diagnostics theoretically could improve HIV retention in care and thereby reduce mortality by overcoming delays in laboratory testing and providing patients and healthcare workers with timely same-day results. However, in real-world scenarios, people with AHD have multiple comorbidities and imperfect follow-up. Pragmatic clinical trials are needed to understand whether these POC diagnostics can facilitate timely diagnosis and treatment, thereby improving clinical outcomes such as HIV retention in care.
Collapse
Affiliation(s)
- Alice Lehman
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jayne Ellis
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Nathan C. Bahr
- Division of Infectious Diseases, University of Kansas, Kansas City, Kansas, USA
| | - Angela Loyse
- Division of Infection and Immunity Research Institute, St George’s University of London, London, UK
| | - Radha Rajasingham
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Mesman AW, Calderon RI, Hauns L, Pollock NR, Mendoza M, Holmberg RC, Franke MF. Detection of Mycobacterium tuberculosis transrenal DNA in urine samples among adult patients in Peru. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.26.23293199. [PMID: 37546779 PMCID: PMC10402216 DOI: 10.1101/2023.07.26.23293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Diagnosis of tuberculosis (TB) relies on a sputum sample, which cannot be obtained from all symptomatic patients. Mycobacterium tuberculosis (Mtb) transrenal DNA (trDNA) has been detected in urine, an easily obtainable, noninvasive, alternative sample type. However, reported sensitivities have been variable and likely depend on collection/assay procedures and aspects of trDNA biology. We analyzed three serial urine samples from each of 75 adults with culture-confirmed pulmonary TB disease in Lima, Peru for detection of trDNA using short-fragment real-time PCR. Additionally, we examined host, urine, and sampling factors associated with detection. Overall sample sensitivity was 38% (95% Confidence Interval [CI] 30-45%). On a patient level (i.e., any of three samples positive), sensitivity was 73% (95% CI: 62-83%). Sensitivity was highest among samples from patients with smear-positive TB, 92% (95% CI: 62-100%). Specificity from a single sample from each of 10 healthy controls was 100% (95% CI: 69-100%). Adjusting our assay positivity threshold increased patient-level sensitivity to 88% (95% CI: 78-94%) overall without affecting the specificity. We did not find associations between Mtb trDNA detection and either patient characteristics or urine sample characteristics. Overall, our results support the potential of trDNA detection for TB diagnosis.
Collapse
Affiliation(s)
- Annelies W Mesman
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA
| | | | | | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA
| | | | | | - Molly F Franke
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Broger T, Koeppel L, Huerga H, Miller P, Gupta-Wright A, Blanc FX, Esmail A, Reeve BWP, Floridia M, Kerkhoff AD, Ciccacci F, Kasaro MP, Thit SS, Bastard M, Ferlazzo G, Yoon C, Van Hoving DJ, Sossen B, García JI, Cummings MJ, Wake RM, Hanson J, Cattamanchi A, Meintjes G, Maartens G, Wood R, Theron G, Dheda K, Olaru ID, Denkinger CM. Diagnostic yield of urine lipoarabinomannan and sputum tuberculosis tests in people living with HIV: a systematic review and meta-analysis of individual participant data. Lancet Glob Health 2023; 11:e903-e916. [PMID: 37202025 DOI: 10.1016/s2214-109x(23)00135-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sputum is the most widely used sample to diagnose active tuberculosis, but many people living with HIV are unable to produce sputum. Urine, in contrast, is readily available. We hypothesised that sample availability influences the diagnostic yield of various tuberculosis tests. METHODS In this systematic review and meta-analysis of individual participant data, we compared the diagnostic yield of point-of-care urine-based lipoarabinomannan tests with that of sputum-based nucleic acid amplification tests (NAATs) and sputum smear microscopy (SSM). We used microbiologically confirmed tuberculosis based on positive culture or NAAT from any body site as the denominator and accounted for sample provision. We searched PubMed, Web of Science, Embase, African Journals Online, and clinicaltrials.gov from database inception to Feb 24, 2022 for randomised controlled trials, cross-sectional studies, and cohort studies that assessed urine lipoarabinomannan point-of-care tests and sputum NAATs for active tuberculosis detection in participants irrespective of tuberculosis symptoms, HIV status, CD4 cell count, or study setting. We excluded studies in which recruitment was not consecutive, systematic, or random; provision of sputum or urine was an inclusion criterion; less than 30 participants were diagnosed with tuberculosis; early research assays without clearly defined cutoffs were tested; and humans were not studied. We extracted study-level data, and authors of eligible studies were invited to contribute deidentified individual participant data. The main outcomes were the tuberculosis diagnostic yields of urine lipoarabinomannan tests, sputum NAATs, and SSM. Diagnostic yields were predicted using Bayesian random-effects and mixed-effects meta-analyses. This study is registered with PROSPERO, CRD42021230337. FINDINGS We identified 844 records, from which 20 datasets and 10 202 participants (4561 [45%] male participants and 5641 [55%] female participants) were included in the meta-analysis. All studies assessed sputum Xpert (MTB/RIF or Ultra, Cepheid, Sunnyvale, CA, USA) and urine Alere Determine TB LAM (AlereLAM, Abbott, Chicago, IL, USA) in people living with HIV aged 15 years or older. Nearly all (9957 [98%] of 10 202) participants provided urine, and 82% (8360 of 10 202) provided sputum within 2 days. In studies that enrolled unselected inpatients irrespective of tuberculosis symptoms, only 54% (1084 of 1993) of participants provided sputum, whereas 99% (1966 of 1993) provided urine. Diagnostic yield was 41% (95% credible interval [CrI] 15-66) for AlereLAM, 61% (95% Crl 25-88) for Xpert, and 32% (95% Crl 10-55) for SSM. Heterogeneity existed across studies in the diagnostic yield, influenced by CD4 cell count, tuberculosis symptoms, and clinical setting. In predefined subgroup analyses, all tests had higher yields in symptomatic participants, and AlereLAM yield was higher in those with low CD4 counts and inpatients. AlereLAM and Xpert yields were similar among inpatients in studies enrolling unselected participants who were not assessed for tuberculosis symptoms (51% vs 47%). AlereLAM and Xpert together had a yield of 71% in unselected inpatients, supporting the implementation of combined testing strategies. INTERPRETATION AlereLAM, with its rapid turnaround time and simplicity, should be prioritised to inform tuberculosis therapy among inpatients who are HIV-positive, regardless of symptoms or CD4 cell count. The yield of sputum-based tuberculosis tests is undermined by people living with HIV who cannot produce sputum, whereas nearly all participants are able to provide urine. The strengths of this meta-analysis are its large size, the carefully harmonised denominator, and the use of Bayesian random-effects and mixed-effects models to predict yields; however, data were geographically restricted, clinically diagnosed tuberculosis was not considered in the denominator, and little information exists on strategies for obtaining sputum samples. FUNDING FIND, the Global Alliance for Diagnostics.
Collapse
Affiliation(s)
- Tobias Broger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa Koeppel
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Helena Huerga
- Field Epidemiology Department, Epicentre, Paris, France
| | - Poppy Miller
- New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Ankur Gupta-Wright
- Institute for Global Health, University College London, London, UK; Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - François-Xavier Blanc
- Service de Pneumologie, l'institut du thorax, Nantes Université, CHU Nantes, Nantes, France
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute, University of Cape Town, Cape Town, South Africa; South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Byron W P Reeve
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marco Floridia
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrew D Kerkhoff
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Trauma Center, University of California San Francisco, San Francisco, CA, USA; Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - Fausto Ciccacci
- UniCamillus, International University of Health and Medical Science, Rome, Italy; Community of Sant'Egidio, DREAM programme, Rome, Italy
| | - Margaret P Kasaro
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; UNC Global Projects, LLC Zambia, Lusaka, Zambia
| | - Swe Swe Thit
- Department of Medicine, University of Medicine 2, Yangon, Myanmar
| | | | | | - Christina Yoon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA; Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - Daniël J Van Hoving
- Division of Emergency Medicine, University of Cape Town, Cape Town, South Africa; Division of Emergency Medicine, Stellenbosch University, Cape Town, South Africa
| | - Bianca Sossen
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Juan Ignacio García
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, NY, USA; Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rachel M Wake
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, Johannesburg, South Africa; Institute for Infection and Immunity, St George's University of London, London, UK
| | - Josh Hanson
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Adithya Cattamanchi
- Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of California Irvine, Irvine, CA, USA
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Keertan Dheda
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK; Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute, University of Cape Town, Cape Town, South Africa; South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Ioana Diana Olaru
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany; Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany; German Center for Infection Research, partner site, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
16
|
Chang A, Mzava O, Djomnang LAK, Lenz JS, Burnham P, Kaplinsky P, Andama A, Connelly J, Bachman CM, Cattamanchi A, Steadman A, De Vlaminck I. Metagenomic DNA sequencing to quantify Mycobacterium tuberculosis DNA and diagnose tuberculosis. Sci Rep 2022; 12:16972. [PMID: 36216964 PMCID: PMC9551046 DOI: 10.1038/s41598-022-21244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a significant cause of mortality worldwide. Metagenomic next-generation sequencing has the potential to reveal biomarkers of active disease, identify coinfection, and improve detection for sputum-scarce or culture-negative cases. We conducted a large-scale comparative study of 428 plasma, urine, and oral swab samples from 334 individuals from TB endemic and non-endemic regions to evaluate the utility of a shotgun metagenomic DNA sequencing assay for tuberculosis diagnosis. We found that the composition of the control population had a strong impact on the measured performance of the diagnostic test: the use of a control population composed of individuals from a TB non-endemic region led to a test with nearly 100% specificity and sensitivity, whereas a control group composed of individuals from TB endemic regions exhibited a high background of nontuberculous mycobacterial DNA, limiting the diagnostic performance of the test. Using mathematical modeling and quantitative comparisons to matched qPCR data, we found that the burden of Mycobacterium tuberculosis DNA constitutes a very small fraction (0.04 or less) of the total abundance of DNA originating from mycobacteria in samples from TB endemic regions. Our findings suggest that the utility of a minimally invasive metagenomic sequencing assay for pulmonary tuberculosis diagnostics is limited by the low burden of M. tuberculosis and an overwhelming biological background of nontuberculous mycobacterial DNA.
Collapse
Affiliation(s)
- Adrienne Chang
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Omary Mzava
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Liz-Audrey Kounatse Djomnang
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Joan Sesing Lenz
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Philip Burnham
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Peter Kaplinsky
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Alfred Andama
- grid.11194.3c0000 0004 0620 0548Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Adithya Cattamanchi
- grid.266102.10000 0001 2297 6811Center for Tuberculosis and Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Iwijn De Vlaminck
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| |
Collapse
|
17
|
Nandlal L, Perumal R, Naidoo K. Rapid Molecular Assays for the Diagnosis of Drug-Resistant Tuberculosis. Infect Drug Resist 2022; 15:4971-4984. [PMID: 36060232 PMCID: PMC9438776 DOI: 10.2147/idr.s381643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
- Correspondence: Rubeshan Perumal, Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa, Email
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC)-CAPRISA-TB-HIV Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal Nelson R Mandela School of Medicine, Durban, South Africa
| |
Collapse
|
18
|
Gulati GK, Panpradist N, Stewart SWA, Beck IA, Boyce C, Oreskovic AK, García-Morales C, Avila-Ríos S, Han PD, Reyes-Terán G, Starita LM, Frenkel LM, Lutz BR, Lai JJ. Simultaneous monitoring of HIV viral load and screening of SARS-CoV-2 employing a low-cost RT-qPCR test workflow. Analyst 2022; 147:3315-3327. [PMID: 35762367 PMCID: PMC10143869 DOI: 10.1039/d2an00405d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.
Collapse
Affiliation(s)
- Gaurav K Gulati
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Global Health of Women, Adolescents, and Children (Global WACh), School of Public Health, University of Washington, Seattle, Washington, USA
| | - Samuel W A Stewart
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ingrid A Beck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ceejay Boyce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Amy K Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Claudia García-Morales
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Santiago Avila-Ríos
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Peter D Han
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Gustavo Reyes-Terán
- Coordination of the Mexican National Institutes of Health and High Specialty Hospitals, Mexico City, Mexico
| | - Lea M Starita
- Department of Genome Sciences, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Departments of Medicine, Pediatrics, Laboratory Medicine and Pathology, Global Health and Medicine, University of Washington, Seattle, Washington, USA
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - James J Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
19
|
Khimova E, Gonzalo X, Popova Y, Eliseev P, Andrey M, Nikolayevskyy V, Broda A, Drobniewski F. Urine biomarkers of pulmonary tuberculosis. Expert Rev Respir Med 2022; 16:615-621. [PMID: 35702997 DOI: 10.1080/17476348.2022.2090341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sputum-based tuberculosis diagnosis does not address the needs of certain categories of patients. Active development of a noninvasive urine-based diagnosis could provide an alternative approach. We reviewed publications covering more than 30 urine biomarkers proposed as significant for TB diagnosis. Analytical approaches were heterogeneous in design and methods; few studies on diagnostic outcome prediction described a formal specificity and sensitivity analysis. AREAS COVERED This review describes studies of non-sputum diagnostic approaches of pulmonary TB based on urine using specific TB biomarkers. The search was performed until December 2021, using terms [Tuberculosis] + [urine] + [biomarkers] in PubMed and Cochrane databases. Publications concerning LAM urine diagnostics were excluded as they have been described elsewhere. EXPERT OPINION Microbiological culture of sputum is considered to be the 'gold standard' diagnostic for pulmonary TB but the methodology is slow due to the slow growth of the TB bacteria. Urine provides a large volume of sample. Investigators have evaluated urine for either TB pathogen biomarkers or host biomarkers with some success as the review demonstrates. Detection sensitivity remains a significant problem. In future, combination of host and pathogen biomarkers could increase the sensitivity and specificity of TB diagnosis.
Collapse
Affiliation(s)
- Elena Khimova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Ximena Gonzalo
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Yulia Popova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Platon Eliseev
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Maryandyshev Andrey
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | | | - Agnieszka Broda
- Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
20
|
Nathavitharana RR, Garcia-Basteiro AL, Ruhwald M, Cobelens F, Theron G. Reimagining the status quo: How close are we to rapid sputum-free tuberculosis diagnostics for all? EBioMedicine 2022; 78:103939. [PMID: 35339423 PMCID: PMC9043971 DOI: 10.1016/j.ebiom.2022.103939] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 01/26/2023] Open
Abstract
Rapid, accurate, sputum-free tests for tuberculosis (TB) triage and confirmation are urgently needed to close the widening diagnostic gap. We summarise key technologies and review programmatic, systems, and resource issues that could affect the impact of diagnostics. Mid-to-early-stage technologies like artificial intelligence-based automated digital chest X-radiography and capillary blood point-of-care assays are particularly promising. Pitfalls in the diagnostic pipeline, included a lack of community-based tools. We outline how these technologies may complement one another within the context of the TB care cascade, help overturn current paradigms (eg, reducing syndromic triage reliance, permitting subclinical TB to be diagnosed), and expand options for extra-pulmonary TB. We review challenges such as the difficulty of detecting paucibacillary TB and the limitations of current reference standards, and discuss how researchers and developers can better design and evaluate assays to optimise programmatic uptake. Finally, we outline how leveraging the urgency and innovation applied to COVID-19 is critical to improving TB patients' diagnostic quality-of-care.
Collapse
Affiliation(s)
- Ruvandhi R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, USA
| | - Alberto L Garcia-Basteiro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Morten Ruhwald
- FIND, the global alliance for diagnostics, Geneva, Switzerland
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
21
|
Rosenbohm JM, Klapperich CM, Cabodi M. Tunable Duplex Semiquantitative Detection of Nucleic Acids with a Visual Lateral Flow Immunoassay Readout. Anal Chem 2022; 94:3956-3962. [PMID: 35199994 PMCID: PMC10017168 DOI: 10.1021/acs.analchem.1c05039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quantitative nucleic acid amplification testing (NAAT) is a key enabling technology for infectious disease management, especially in instances where viral load informs therapeutic decisions. Inadequate access to quantitative NAATs remains a challenge to the successful deployment of antiretroviral therapy (ART) regimens for patients with chronic hepatitis B virus (CHB) in low resourced settings (LRS). Current field-deployable NAATs are generally qualitative (yes/no) rather than quantitative in nature, making them ill-suited for viral load monitoring programs for CHB patients. Here, we report the development of a proof-of-concept molecular diagnostic test, the semiquantitative ligation and amplification (SQLA) assay, which achieves semiquantitative detection of input target DNA at two independently tunable detection thresholds with a simple visual readout. The SQLA assay utilizes a duplex competitive thermophilic helicase-dependent amplification (tHDA) chemistry and can be performed in under 1 h.
Collapse
Affiliation(s)
- Justin M Rosenbohm
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Catherine M Klapperich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
22
|
Vaezipour N, Fritschi N, Brasier N, Bélard S, Domínguez J, Tebruegge M, Portevin D, Ritz N. Towards Accurate Point-of-Care Tests for Tuberculosis in Children. Pathogens 2022; 11:pathogens11030327. [PMID: 35335651 PMCID: PMC8949489 DOI: 10.3390/pathogens11030327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
In childhood tuberculosis (TB), with an estimated 69% of missed cases in children under 5 years of age, the case detection gap is larger than in other age groups, mainly due to its paucibacillary nature and children’s difficulties in delivering sputum specimens. Accurate and accessible point-of-care tests (POCTs) are needed to detect TB disease in children and, in turn, reduce TB-related morbidity and mortality in this vulnerable population. In recent years, several POCTs for TB have been developed. These include new tools to improve the detection of TB in respiratory and gastric samples, such as molecular detection of Mycobacterium tuberculosis using loop-mediated isothermal amplification (LAMP) and portable polymerase chain reaction (PCR)-based GeneXpert. In addition, the urine-based detection of lipoarabinomannan (LAM), as well as imaging modalities through point-of-care ultrasonography (POCUS), are currently the POCTs in use. Further to this, artificial intelligence-based interpretation of ultrasound imaging and radiography is now integrated into computer-aided detection products. In the future, portable radiography may become more widely available, and robotics-supported ultrasound imaging is currently being trialed. Finally, novel blood-based tests evaluating the immune response using “omic-“techniques are underway. This approach, including transcriptomics, metabolomic, proteomics, lipidomics and genomics, is still distant from being translated into POCT formats, but the digital development may rapidly enhance innovation in this field. Despite these significant advances, TB-POCT development and implementation remains challenged by the lack of standard ways to access non-sputum-based samples, the need to differentiate TB infection from disease and to gain acceptance for novel testing strategies specific to the conditions and settings of use.
Collapse
Affiliation(s)
- Nina Vaezipour
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
- Infectious Disease and Vaccinology Unit, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
| | - Noé Brasier
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zurich, 8093 Zurich, Switzerland;
- Department of Digitalization & ICT, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Bélard
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Institute of Tropical Medicine and International Health, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - José Domínguez
- Institute for Health Science Research Germans Trias i Pujol. CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Marc Tebruegge
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WCN1 1EH, UK;
- Department of Pediatrics, The Royal Children’s Hospital Melbourne, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Damien Portevin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland;
- University of Basel, 4001 Basel, Switzerland
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, University Children’s Hospital Basel, Department for Clinical Research, University of Basel, 4056 Basel, Switzerland; (N.V.); (N.F.)
- Department of Pediatrics, The Royal Children’s Hospital Melbourne, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Paediatrics and Paediatric Infectious Diseases, Children’s Hospital, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
- Correspondence: ; Tel.: +41-61-704-1212
| |
Collapse
|
23
|
Dahiya B, Kamra E, Alam D, Chauhan M, Mehta PK. Insight into diagnosis of female genital tuberculosis. Expert Rev Mol Diagn 2021; 22:625-642. [PMID: 34882522 DOI: 10.1080/14737159.2022.2016395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Female genital tuberculosis (TB) is a common manifestation of extrapulmonary TB (EPTB) with varied clinical presentations, i.e. infertility, pelvic pain and menstrual irregularities. Diagnosis of female genital TB is challenging predominantly due to paucibacillary nature of specimens and inconclusive results obtained by most of the routine laboratory tests. AREAS COVERED This review has briefly summarized the epidemiology, clinical features and transmission of female genital TB. Commonly used laboratory tests include bacteriological examination (smear/culture), tuberculin skin testing, interferon-γ release assays, imaging, laparoscopy/hysteroscopy and histopathological/cytological observations. Further, utility of nucleic acid amplification tests (NAATs), like loop-mediated isothermal amplification, PCR, multiplex-PCR, nested PCR, real-time PCR and GeneXpert® could significantly improve the detection of female genital TB. EXPERT OPINION Currently, there is no single test available for the efficient diagnosis of female genital TB, rather a combination of tests is being employed, which yields moderate diagnostic accuracy. The latest modalities developed for diagnosing pulmonary TB and other clinical EPTB forms, i.e. aptamer-linked immobilized sorbent assay, immuno-PCR (I-PCR), analysis of circulating cell-free DNA by NAATs, and identification of Mycobacterium tuberculosis biomarkers within extracellular vesicles of bodily fluids by I-PCR/nanoparticle-based I-PCR, may also be exploited to further improve the diagnosis of female genital TB.
Collapse
Affiliation(s)
- Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Ekta Kamra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Danish Alam
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Meenakshi Chauhan
- Dept. of Obstetrics and Gynecology, Pt. B.D. Sharma University of Health Sciences, Rohtak-124001, Haryana, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
24
|
Oreskovic A, Waalkes A, Holmes EA, Rosenthal CA, Wilson DPK, Shapiro AE, Drain PK, Lutz BR, Salipante SJ. Characterizing the molecular composition and diagnostic potential of Mycobacterium tuberculosis urinary cell-free DNA using next-generation sequencing. Int J Infect Dis 2021; 112:330-337. [PMID: 34562627 PMCID: PMC8627387 DOI: 10.1016/j.ijid.2021.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Urine cell-free DNA (cfDNA) is an attractive target for diagnosing pulmonary Mycobacterium tuberculosis (MTB) infection, but has not been thoroughly characterized as a biomarker. METHODS This study was performed to investigate the size and composition of urine cfDNA from tuberculosis (TB) patients with minimal bias using next-generation sequencing (NGS). A combination of DNA extraction and single-stranded sequence library preparation methods demonstrated to recover short, highly degraded cfDNA fragments was employed. Urine cfDNA from 10 HIV-positive patients with pulmonary TB and two MTB-negative controls was examined. RESULTS MTB-derived cfDNA was identifiable by NGS from all MTB-positive patients and was absent from negative controls. MTB cfDNA was significantly shorter than human cfDNA, with median fragment lengths of ≤19-52 bp and 42-92 bp, respectively. MTB cfDNA abundance increased exponentially with decreased fragment length, having a peak fragment length of ≤19 bp in most samples. In addition, we identified a larger fraction of short human genomic cfDNA, ranging from 29 to 53 bp, than previously reported. Urine cfDNA fragments spanned the MTB genome with relative uniformity, but nucleic acids derived from multicopy elements were proportionately over-represented. CONCLUSIONS TB urine cfDNA is a potentially powerful biomarker but is highly fragmented, necessitating special procedures to maximize its recovery and detection.
Collapse
Affiliation(s)
- Amy Oreskovic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Holmes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher A Rosenthal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Douglas P K Wilson
- Umkhuseli Innovation and Research Management, Pietermaritzburg, South Africa; Edendale Hospital, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Adrienne E Shapiro
- Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Paul K Drain
- Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Barry R Lutz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA.
| |
Collapse
|
25
|
Progress toward Developing Sensitive Non-Sputum-Based Tuberculosis Diagnostic Tests: the Promise of Urine Cell-Free DNA. J Clin Microbiol 2021; 59:e0070621. [PMID: 33980646 DOI: 10.1128/jcm.00706-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly accurate, non-sputum-based test for tuberculosis (TB) detection is a key priority for the field of TB diagnostics. A recent study in the Journal of Clinical Microbiology by Oreskovic and colleagues (J Clin Microbiol 59:e00074-21, 2021, https://doi.org/10.1128/JCM.00074-21) reports the performance of an optimized urine cell-free DNA (cfDNA) test using sequence-specific purification combined with short-target PCR to improve the accuracy of TB detection. Their retrospective clinical study utilized frozen urine samples (n = 73) from study participants diagnosed with active pulmonary TB in South Africa and compared results to non-TB patients in South Africa and the United States in an early-phase validation study. Overall, this cfDNA technique detected TB with a sensitivity of 83.7% (95% CI: 71.0 to 91.5) and specificity of 100% (95% CI: 86.2 to 100), which meet the World Health Organization's published performance criteria. Sensitivity was 73.3% in people without HIV (95% CI: 48.1 to 89.1) and 76% in people with smear-negative TB (95% CI: 56.5 to 88.5). In this commentary, we discuss the results of this optimized urine TB cfDNA assay within the larger context of TB diagnostics and pose additional questions for further research.
Collapse
|
26
|
Yu G, Shen Y, Ye B, Shi Y. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: A systematic review and meta-analysis. PLoS One 2021; 16:e0253658. [PMID: 34161399 PMCID: PMC8221493 DOI: 10.1371/journal.pone.0253658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diagnosis of tuberculosis (TB) is still difficult. The purpose of our study was to evaluate the diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA (cfDNA) for diagnosing of TB. METHODS We searched relevant databases for studies that used cfDNA to diagnose TB. We evaluated the accuracy of cfDNA compared with the composite reference standard (CRS) and culture. True positive, false positive, false negative, and true negative values for cfDNA were obtained first, then the estimated pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic odds ratio (DOR), and the area under the summary receiver operating characteristic (SROC) curve (AUC) of cfDNA for diagnosing TB were calculated with 95% confidence intervals (CIs). Heterogeneity was determined using the I2 statistic. When the heterogeneity was obvious, the source of heterogeneity was further discussed. RESULTS We included 14 independent studies comparing cfDNA with the CRS, and 4 studies compared with culture. The pooled sensitivity, specificity, PPV, NPV, DOR, and AUC of the SROC were 68%, 98%,99%, 62%, 83, and 0.97 as compared with the CRS, respectively. The pooled sensitivity, specificity, PPV, NPV, DOR, and AUC of the SROC were 48%, 91%, 92%, 60%, 5, and 0.88 as compared with culture, respectively. The heterogeneity between studies was significant. CONCLUSIONS The accuracy of cfDNA testing for TB diagnosis was good compared with CRS and culture. cfDNA can be used for rapid early diagnosis of TB.
Collapse
Affiliation(s)
- Guocan Yu
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Shen
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Ye
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Shi
- Zhejiang Tuberculosis Diagnosis and Treatment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|