1
|
Kuang Z, Huang H, Chen L, Shang Y, Huang S, Liu J, Chen J, Xie X, Chen M, Wu L, Gao H, Zhao H, Li Y, Wu Q. Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter pylori in the Gastric Microbiome. Antibiotics (Basel) 2024; 13:975. [PMID: 39452241 PMCID: PMC11505316 DOI: 10.3390/antibiotics13100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The issue of Helicobacter pylori (H. pylori) resistance to clarithromycin (CLR) has consistently posed challenges for clinical treatment. Hence, a rapid susceptibility testing (AST) method urgently needs to be developed. Methods: In the present study, 35 isolates of H. pylori were isolated from 203 gastritis patients of the Guangzhou cohort, and the antimicrobial resistance phenotypes were associated with their genomes to analyze the relevant mutations. Based on these mutations, a rapid detection system utilizing high-resolution melting (HRM) curve analysis was designed and verified by the Shenzhen cohort, which consisted of 38 H. pylori strains. Results: Genomic analysis identified the mutation of the 2143 allele from A to G (A2143G) of 23S rRNA as the most relevant mutation with CLR resistance (p < 0.01). In the HRM system, the wild-type H. pylori showed a melting temperature (Tm) of 79.28 ± 0.01 °C, while the mutant type exhibited a Tm of 79.96 ± 0.01 °C. These differences enabled a rapid distinction between two types of H. pylori (p < 0.01). Verification examinations showed that this system could detect target DNA as low as 0.005 ng/μL in samples without being affected by other gastric microorganisms. The method also showed a good performance in the Shenzhen validation cohort, with 81.58% accuracy, and 100% specificity. Conclusions: We have developed an HRM system that can accurately and quickly detect CLR resistance in H. pylori. This method can be directly used for the detection of gastric microbiota samples and provides a new benchmark for the simple detection of H. pylori resistance.
Collapse
Affiliation(s)
- Zupeng Kuang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Huishu Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Yanyan Shang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Shixuan Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Jun Liu
- Department of Gastroenterology, The Songgang People’s Hospital of Baoan District in Shenzhen, Shenzhen 518105, China;
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| |
Collapse
|
2
|
Kang T, Choi YJ, Kim J, Park HJ, Jang WJ. Whole genome sequence and comparative genomic analysis of novel Rickettsia koreansis strain CNH17-7 isolated from human. Eur J Clin Microbiol Infect Dis 2024; 43:1909-1918. [PMID: 39031268 DOI: 10.1007/s10096-024-04876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To determine the genomic feature of novel spotted fever-causing Rickettsia koreansis strain CNH17-7, which is different from R. japonica that is a causative agent for Japanese spotted fever (JSF), and to perform its comparative genomic analysis. METHODS Whole genome sequencing (WGS) was performed on R. koreansis strain CNH17-7 by using the Illumina Miseq system. After WGS, assembly and annotation were done by SPAdes. Then, its genomic features were compared with 19 different Rickettsia species. Based on the average nucleotide identity (ANI) value, an unweighted pair group method with an arithmetic mean (UPGMA) dendrogram was generated. Following the dendrogram analysis, pan-and core-genome analysis was performed. Then additional comparative analyses with two genetically closest Rickettsia species were conducted based on gene repertoire. RESULTS R. koreansis strain CNH17-7 has a chromosome consisting of 1,392,633 bp with GC content of 32.4%. The ANI-derived UPGMA showed that R. koreansis strain CNH17-7 is genetically close to R. japonica YH and R. heilongjiangensis 054 but is distinctively differentiated. The ANI value of R. koreansis strain CNH17-7 to R. japonica YH and R. heilongjiangensis 054 are 98.14% and 98.04% respectively, indicating R. koreansis strain CNH17-7 is sufficient to be classified as a new species. Other than ANI, R. koreansis strain CNH17-7 also contains novel CDS and its COG functional category proportion which is distinct compared to R. japonica YH and R. heilongjiangensis 054. CONCLUSION We have revealed genomic features of the novel R. koreansis strain CNH17-7. Hence, we propose R. koreansis strain CNH17-7 as new Rickettsia species.
Collapse
Affiliation(s)
- Taeuk Kang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeon-Joo Choi
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jeoungyeon Kim
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye-Jin Park
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Jong Jang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Turner D, Adriaenssens EM, Lehman SM, Moraru C, Kropinski AM. Bacteriophage Taxonomy: A Continually Evolving Discipline. Methods Mol Biol 2024; 2734:27-45. [PMID: 38066361 DOI: 10.1007/978-1-0716-3523-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
| | | | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cristina Moraru
- Department of The Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Val-Calvo J, Vázquez-Boland JA. Mycobacteriales taxonomy using network analysis-aided, context-uniform phylogenomic approach for non-subjective genus demarcation. mBio 2023; 14:e0220723. [PMID: 37796005 PMCID: PMC10653829 DOI: 10.1128/mbio.02207-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Laboratory, Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
6
|
Chen R, Li Y, Chen X, Chen J, Song J, Yang X, Ye L, Wu Z, Xie P, Zhong Q, Yang R, Wu J. dupA+H. pylori reduces diversity of gastric microbiome and increases risk of erosive gastritis. Front Cell Infect Microbiol 2023; 13:1103909. [PMID: 37009501 PMCID: PMC10063918 DOI: 10.3389/fcimb.2023.1103909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is believed to induce gastropathy; however, the exact pathogenic molecules involved in this process have not been elucidated. Duodenal ulcer promoting gene A (DupA) is a virulence factor with a controversial role in gastric inflammation and carcinogenesis. To explore and confirm the function of DupA in gastropathy from the perspective of the microbiome, we investigated the microbial characteristics of 48 gastritis patients through 16S rRNA amplicon sequencing. In addition, we isolated 21 H. pylori strains from these patients and confirmed the expression of dupA using PCR and qRT-PCR. Bioinformatics analysis identified diversity loss and compositional changes as the key features of precancerous lesions in the stomach, and H. pylori was a characteristic microbe present in the stomach of the gastritis patients. Co-occurrence analysis revealed that H. pylori infection inhibits growth of other gastric inhabiting microbes, which weakened the degradation of xenobiotics. Further analysis showed that dupA+ H. pylori were absent in precancerous lesions and were more likely to appear in erosive gastritis, whereas dupA− H. pylori was highly abundant in precancerous lesions. The presence of dupA in H. pylori caused less disturbance to the gastric microbiome, maintaining the relatively richness of gastric microbiome. Overall, our findings suggest that high dupA expression in H. pylori is correlated with a high risk of erosive gastritis and a lower level of disturbance to the gastric microbiome, indicating that DupA should be considered a risk factor of erosive gastritis rather than gastric cancer.
Collapse
Affiliation(s)
- Ruiyan Chen
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaodong Chen
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Song
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoqiao Yang
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lifang Ye
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zizhong Wu
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Peng Xie
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiong Zhong
- Department of Gastroenterology, Longnan Hospital of Traditional Chinese Medicine, Longnan, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiachuan Wu
- Digestive Endoscopy Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Jiachuan Wu,
| |
Collapse
|
7
|
Rai A, Suresh G, Ria B, L V, Pk S, Ipsita S, Sasikala C, Venkata Ramana C. Phylogenomic analysis of the genus Alcanivorax: proposal for division of this genus into the emended genus Alcanivorax and two novel genera Alloalcanivorax gen. nov. and Isoalcanivorax gen. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748586 DOI: 10.1099/ijsem.0.005672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The members of the genus Alcanivorax are key players in the removal of petroleum hydrocarbons from polluted marine environments. More than half of the species were described in the last decade using 16S rRNA gene phylogeny and genomic-based metrics. However, the 16S rRNA gene identity (<94 %) between some members of the genus Alcanivorax suggested their imprecise taxonomic status. In this study, we examined the taxonomic positions of Alcanivorax species using 16S rRNA phylogeny and further validated them using phylogenomic-related indexes such as digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), average amino acid identity (AAI), percentage of conserved proteins (POCP) and comparative genomic studies. ANI and dDDH values confirmed that all the Alcanivorax species were well described at the species level. The phylotaxogenomic analysis showed that Alcanivorax species formed three clades. The inter-clade values of AAI and POCP were less than 70 %. The pan-genome evaluation depicted that the members shared 1223 core genes and its number increased drastically when analysed clade-wise. Therefore, these results necessitate the transfer of clade II and clade III members into Isoalcanivorax gen. nov. and Alloalcanivorax gen. nov., respectively, along with the emended description of the genus Alcanivorax sensu stricto.
Collapse
Affiliation(s)
- Anusha Rai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Biswas Ria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Vighnesh L
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Sreya Pk
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Sahu Ipsita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad-500 085, India
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
8
|
Chen H, Li Y, Xie X, Chen M, Xue L, Wang J, Ye Q, Wu S, Yang R, Zhao H, Zhang J, Ding Y, Wu Q. Exploration of the Molecular Mechanisms Underlying the Anti-Photoaging Effect of Limosilactobacillus fermentum XJC60. Front Cell Infect Microbiol 2022; 12:838060. [PMID: 35573770 PMCID: PMC9104571 DOI: 10.3389/fcimb.2022.838060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Although lactic acid bacteria (LAB) were shown to be effective for preventing photoaging, the underlying molecular mechanisms have not been fully elucidated. Accordingly, we examined the anti-photoaging potential of 206 LAB isolates and discovered 32 strains with protective activities against UV-induced injury. All of these 32 LABs exhibited high levels of 2,2-diphenyl-picrylhydrazyl, as well as hydroxyl free radical scavenging ability (46.89–85.13% and 44.29–95.97%, respectively). Genome mining and metabonomic verification of the most effective strain, Limosilactobacillus fermentum XJC60, revealed that the anti-photoaging metabolite of LAB was nicotinamide (NAM; 18.50 mg/L in the cell-free serum of XJC60). Further analysis revealed that LAB-derived NAM could reduce reactive oxygen species levels by 70%, stabilize the mitochondrial membrane potential, and increase the NAD+/NADH ratio in UV-injured skin cells. Furthermore, LAB-derived NAM downregulated the transcript levels of matrix metalloproteinase (MMP)-1, MMP-3, interleukin (IL)-1β, IL-6, and IL-8 in skin cells. In vivo, XJC60 relieved imflammation and protected skin collagen fiber integrity in UV-injured Guinea pigs. Overall, our findings elucidate that LAB-derived NAM might protect skin from photoaging by stabilizing mitochondrial function, establishing a therotical foundation for the use of probiotics in the maintenance of skin health.
Collapse
Affiliation(s)
- Huizhen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| |
Collapse
|
9
|
Li Y, Huang Z, Shang Y, Xie X, Yang R, Chen H, Wang Z, Xue L, Pang R, Zhang J, Ding Y, Chen M, Wang J, Chen J, Wu Q. Exploration of the molecular mechanisms underlying the antibiotic resistance of Helicobacter pylori: A whole-genome sequencing-based study in Southern China. Helicobacter 2022; 27:e12879. [PMID: 35124867 DOI: 10.1111/hel.12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although antimicrobial resistance (AMR) in Helicobacter pylori is a global threat to human health and the underlying molecular mechanisms have been explored previously, only a few of them are fully elucidated. MATERIALS AND METHODS In the present study, we isolated 54 Helicobacter pylori strains from Southern China and assessed their susceptibility to five antibiotics using the agar dilution assay. Whole-genome sequencing was performed to screen the AMR genotypes of the Helicobacter pylori isolates. RESULTS Our study revealed a high prevalence of resistance to clarithromycin (CLR), levofloxacin (LVX), and metronidazole (MTZ) in the Chinese isolates, 55.56% of which showed multidrug-resistant phenotypes. We screened for the 94 types of previously reported AMR mutations in 12 genes, but only a few of them were related to the AMR phenotype. Furthermore, we discovered four new mutations in the 23S rRNA gene and one mutation in infB related to CLR resistance. Another three mutations in gyrA and one in gyrB were closely correlated with the AMR pattern against LVX. We also demonstrated that the mutations R16C/H in rdxA, V56I in rpsU, and D54A in sodB might contribute to resistance to MTZ, which were previously reported in laboratory experiments but not found in clinical strains. We examined the concordance between the genotype and phenotype of AMR and identified several potential molecular biomarkers for predicting CLR and LVX resistance. CONCLUSIONS Our study explored the molecular mechanisms underlying the antibiotic resistance of Helicobacter pylori isolates from Southern China. We propose further epidemiologic investigations in China.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Li Y, Gao J, Xue L, Shang Y, Cai W, Xie X, Jiang T, Chen H, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Determination of Antiviral Mechanism of Centenarian Gut-Derived Limosilactobacillus fermentum Against Norovirus. Front Nutr 2022; 9:812623. [PMID: 35419394 PMCID: PMC8997286 DOI: 10.3389/fnut.2022.812623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Although noroviruses are the causative agents of most non-bacterial foodborne disease outbreaks, effective antivirals are currently unavailable. Certain probiotic strains have been reported as active antivirals for norovirus infections, but their mechanisms have not been fully elucidated. Herein, we examined the antiviral potential of 122 lactic acid bacteria isolates against murine norovirus (MNV), a human norovirus surrogate. A centenarian gut-derived strain, Limosilactobacillus fermentum PV22, exhibited the strongest MNV antagonism and reduced the viral titer by 2.23 ± 0.38 (log-value) in 5 min with stable activity at 25°C (P < 0.01). Genome mining revealed that its antiviral activity can be attributed to the synthesis of γ-aminobutyric acid, and this finding was experimentally verified. Furthermore, we demonstrated the safety of the isolate and its high intestinal colonization ability. In conclusion, we discovered a centenarian gut-derived L. fermentum strain with strong anti-norovirus activity and identified its antiviral metabolite. Our results will offer new solutions for the prevention and treatment of food-related norovirus infections.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100093. [PMID: 35005658 PMCID: PMC8718834 DOI: 10.1016/j.crmicr.2021.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
Analysis of Escherichia coli taxonomy has expanded into a species-complex with the identification of divergent cryptic clades. A key question is the evolutionary trajectory of these clades and their relationship to isolates of clinical or veterinary importance. Since they have some environmental association, we screened a collection of E. coli isolated from a long-term spring barley field trial for their presence. While most isolates clustered into the enteric-clade, four of them clustered into Clade-V, and one in Clade-IV. The Clade -V isolates shared >96% intra-clade average nucleotide sequence identity but <91% with other clades. Although pan-genomics analysis confirmed their taxonomy as Clade -V (E. marmotae), retrospective phylogroup PCR did not discriminate them correctly. Differences in metabolic and adherence gene alleles occurred in the Clade -V isolates compared to E. coli sensu scricto. They also encoded the bacteriophage phage-associated cyto-lethal distending toxin (CDT) and antimicrobial resistance (AMR) genes, including an ESBL, blaOXA-453. Thus, the isolate collection encompassed a genetic diversity, and included cryptic clade isolates that encode potential virulence factors. The analysis has determined the phylogenetic relationship of cryptic clade isolates with E. coli sensu scricto and indicates a potential for horizontal transfer of virulence factors.
Collapse
|
12
|
Gupta RS. Microbial Taxonomy: How and Why Name Changes Occur and Their Significance for (Clinical) Microbiology. Clin Chem 2021; 68:134-137. [PMID: 34969111 DOI: 10.1093/clinchem/hvab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the "Roseobacter Clade" Into a Novel Family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109. [PMID: 34248901 PMCID: PMC8267831 DOI: 10.3389/fmicb.2021.683109] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The family Rhodobacteraceae consists of alphaproteobacteria that are metabolically, phenotypically, and ecologically diverse. It includes the roseobacter clade, an informal designation, representing one of the most abundant groups of marine bacteria. The rapid pace of discovery of novel roseobacters in the last three decades meant that the best practice for taxonomic classification, a polyphasic approach utilizing phenotypic, genotypic, and phylogenetic characteristics, was not always followed. Early efforts for classification relied heavily on 16S rRNA gene sequence similarity and resulted in numerous taxonomic inconsistencies, with several poly- and paraphyletic genera within this family. Next-generation sequencing technologies have allowed whole-genome sequences to be obtained for most type strains, making a revision of their taxonomy possible. In this study, we performed whole-genome phylogenetic and genotypic analyses combined with a meta-analysis of phenotypic data to review taxonomic classifications of 331 type strains (under 119 genera) within the Rhodobacteraceae family. Representatives of the roseobacter clade not only have different environmental adaptions from other Rhodobacteraceae isolates but were also found to be distinct based on genomic, phylogenetic, and in silico-predicted phenotypic data. As such, we propose to move this group of bacteria into a new family, Roseobacteraceae fam. nov. In total, reclassifications resulted to 327 species and 128 genera, suggesting that misidentification is more problematic at the genus than species level. By resolving taxonomic inconsistencies of type strains within this family, we have established a set of coherent criteria based on whole-genome-based analyses that will help guide future taxonomic efforts and prevent the propagation of errors.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University Singapore, Singapore, Singapore
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst Appl Microbiol 2021; 44:126223. [PMID: 34157595 DOI: 10.1016/j.syapm.2021.126223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Streptomyces thermoautotrophicus UBT1T has been suggested to merit generic status due to its phylogenetic placement and distinctive phenotypes among Actinomycetia. To evaluate whether 'S. thermoautotrophicus' represents a higher taxonomic rank, 'S. thermoautotrophicus' strains UBT1T and H1 were compared to Actinomycetia using 16S rRNA gene sequences and comparative genome analyses. The UBT1T and H1 genomes each contain at least two different 16S rRNA sequences, which are closely related to those of Acidothermus cellulolyticus (order Acidothermales). In multigene-based phylogenomic trees, UBT1T and H1 typically formed a sister group to the Streptosporangiales-Acidothermales clade. The Average Amino Acid Identity, Percentage of Conserved Proteins, and whole-genome Average Nucleotide Identity (Alignment Fraction) values were ≤58.5%, ≤48%, ≤75.5% (0.3) between 'S. thermoautotrophicus' and Streptosporangiales members, all below the respective thresholds for delineating genera. The values for genomics comparisons between strains UBT1T and H1 with Acidothermales, as well as members of the genus Streptomyces, were even lower. A review of the 'S. thermoautotrophicus' proteomic profiles and KEGG orthology demonstrated that UBT1T and H1 present pronounced differences, both tested and predicted, in phenotypic and chemotaxonomic characteristics compared to its sister clades and Streptomyces. The distinct phylogenetic position and the combination of genotypic and phenotypic characteristics justify the proposal of Carbonactinospora gen. nov., with the type species Carbonactinospora thermoautotrophica comb. nov. (type strain UBT1T, = DSM 100163T = KCTC 49540T) belonging to Carbonactinosporaceae fam. nov. within Actinomycetia.
Collapse
|
15
|
Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules 2021; 26:molecules26102977. [PMID: 34067778 PMCID: PMC8156983 DOI: 10.3390/molecules26102977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are highly regarded as a prominent source of natural products that have significant importance in many fields such as medicine, farming, environmental safety, and material production. Due to this, only tiny amounts of microorganisms can be cultivated under standard laboratory conditions, and the bulk of microorganisms in the ecosystems are still unidentified, which restricts our knowledge of uncultured microbial metabolism. However, they could hypothetically provide a large collection of innovative natural products. Culture-independent metagenomics study has the ability to address core questions in the potential of NP production by cloning and analysis of microbial DNA derived directly from environmental samples. Latest advancements in next generation sequencing and genetic engineering tools for genome assembly have broadened the scope of metagenomics to offer perspectives into the life of uncultured microorganisms. In this review, we cover the methods of metagenomic library construction, and heterologous expression for the exploration and development of the environmental metabolome and focus on the function-based metagenomics, sequencing-based metagenomics, and single-cell metagenomics of uncultured microorganisms.
Collapse
|
16
|
Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A, Whitman WB, de Souza EM, Lisboa BB, Vargas LK, Passaglia LMP. Genomic Metrics Applied to Rhizobiales ( Hyphomicrobiales): Species Reclassification, Identification of Unauthentic Genomes and False Type Strains. Front Microbiol 2021; 12:614957. [PMID: 33841347 PMCID: PMC8026895 DOI: 10.3389/fmicb.2021.614957] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Taxonomic decisions within the order Rhizobiales have relied heavily on the interpretations of highly conserved 16S rRNA sequences and DNA-DNA hybridizations (DDH). Currently, bacterial species are defined as including strains that present 95-96% of average nucleotide identity (ANI) and 70% of digital DDH (dDDH). Thus, ANI values from 520 genome sequences of type strains from species of Rhizobiales order were computed. From the resulting 270,400 comparisons, a ≥95% cut-off was used to extract high identity genome clusters through enumerating maximal cliques. Coupling this graph-based approach with dDDH from clusters of interest, it was found that: (i) there are synonymy between Aminobacter lissarensis and Aminobacter carboxidus, Aurantimonas manganoxydans and Aurantimonas coralicida, "Bartonella mastomydis," and Bartonella elizabethae, Chelativorans oligotrophicus, and Chelativorans multitrophicus, Rhizobium azibense, and Rhizobium gallicum, Rhizobium fabae, and Rhizobium pisi, and Rhodoplanes piscinae and Rhodoplanes serenus; (ii) Chelatobacter heintzii is not a synonym of Aminobacter aminovorans; (iii) "Bartonella vinsonii" subsp. arupensis and "B. vinsonii" subsp. berkhoffii represent members of different species; (iv) the genome accessions GCF_003024615.1 ("Mesorhizobium loti LMG 6,125T"), GCF_003024595.1 ("Mesorhizobium plurifarium LMG 11,892T"), GCF_003096615.1 ("Methylobacterium organophilum DSM 760T"), and GCF_000373025.1 ("R. gallicum R-602 spT") are not from the genuine type strains used for the respective species descriptions; and v) "Xanthobacter autotrophicus" Py2 and "Aminobacter aminovorans" KCTC 2,477T represent cases of misuse of the term "type strain". Aminobacter heintzii comb. nov. and the reclassification of Aminobacter ciceronei as A. heintzii is also proposed. To facilitate the downstream analysis of large ANI matrices, we introduce here ProKlust ("Prokaryotic Clusters"), an R package that uses a graph-based approach to obtain, filter, and visualize clusters on identity/similarity matrices, with settable cut-off points and the possibility of multiple matrices entries.
Collapse
Affiliation(s)
- Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Anelise Beneduzi
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruno Brito Lisboa
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
17
|
Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Cavassim MIA, Rashid MHO, Aserse AA, Perry BJ, Wang ET, Velázquez E, Andronov EE, Tampakaki A, Flores Félix JD, Rivas González R, Youseif SH, Lepetit M, Boivin S, Jorrin B, Kenicer GJ, Peix Á, Hynes MF, Ramírez-Bahena MH, Gulati A, Tian CF. Defining the Rhizobium leguminosarum Species Complex. Genes (Basel) 2021; 12:111. [PMID: 33477547 PMCID: PMC7831135 DOI: 10.3390/genes12010111] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Collapse
Affiliation(s)
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Afonin
- Laboratory for Genetics of Plant-Microbe Interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India;
| | - Marta Maluk
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Maria Izabel A. Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - M. Harun-or Rashid
- Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh;
| | - Aregu Amsalu Aserse
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad De México 11340, Mexico;
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Evgeny E. Andronov
- Department of Microbial Monitoring, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Anastasia Tampakaki
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;
| | - José David Flores Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Raúl Rivas González
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Sameh H. Youseif
- Department of Microbial Genetic Resources, National Gene Bank (NGB), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Marc Lepetit
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, 06903 Sophia Antipolis, France;
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR INRAE-IRD-CIRAD-UM2-SupAgro, Campus International de Baillarguet, TA-A82/J, CEDEX 05, 34398 Montpellier, France;
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK;
| | - Gregory J. Kenicer
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Martha Helena Ramírez-Bahena
- Departamento de Didáctica de las Matemáticas y de las Ciencias Experimentales. Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Arvind Gulati
- Microbial Prospection, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176 061, India;
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
18
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Tiwari PK, Singh AK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Pan-genome analysis of Exiguobacterium reveals species delineation and genomic similarity with Exiguobacterium profundum PHM 11. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:639-650. [PMID: 32996243 DOI: 10.1111/1758-2229.12890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The stint of the bacterial species is convoluting, but the new algorithms to calculate genome-to-genome distance (GGD) and DNA-DNA hybridization (DDH) for comparative genome analysis have rejuvenated the exploration of species and sub-species characterization. The present study reports the first whole genome sequence of Exiguobacterium profundum PHM11. PHM11 genome consist of ~ 2.92 Mb comprising 48 contigs, 47.93% G + C content. Functional annotations revealed a total of 3033 protein coding genes and 33 non-protein coding genes. Out of these, only 2316 could be characterized and others reported as hypothetical proteins. The comparative analysis of predicted proteome of PHM11 with five other Exiguobacterium sp. identified 3806 clusters, out of which the PHM11 shared a total of 2723 clusters having 1664 common clusters, 131 singletons and 928 distributed between five species. The pan-genome analysis of 70 different genomic sequences of Exigubacterium strains devoid of a species taxon was done on the basis of GGD and the DDH which identified eight genomes analogous to the PHM11 at species level and may be characterized as E. profundum. The ANI value and phylogenetic tree analysis also support the same. The results regarding pan-genome analysis provide a convincing insight for delineation of these eight strains to species.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Ruchi Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anjney Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Akhilendra Pratap Bharati
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Praveen Kumar Tiwari
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Alok Kumar Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Anchal Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, UP, 275103, India
| |
Collapse
|
19
|
Gonzalez JM, Puerta-Fernández E, Santana MM, Rekadwad B. On a Non-Discrete Concept of Prokaryotic Species. Microorganisms 2020; 8:microorganisms8111723. [PMID: 33158054 PMCID: PMC7692863 DOI: 10.3390/microorganisms8111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023] Open
Abstract
The taxonomic concept of species has received continuous attention. A microbial species as a discrete box contains a limited number of highly similar microorganisms assigned to that taxon, following a polyphasic approach. In the 21st Century, with the advancements of sequencing technologies and genomics, the existence of a huge prokaryotic diversity has become well known. At present, the prokaryotic species might no longer have to be understood as discrete values (such as 1 or 2, by homology to Natural numbers); rather, it is expected that some microorganisms could be potentially distributed (according to their genome features and phenotypes) in between others (such as decimal numbers between 1 and 2; real numbers). We propose a continuous species concept for microorganisms, which adapts to the current knowledge on the huge diversity, variability and heterogeneity existing among bacteria and archaea. Likely, this concept could be extended to eukaryotic microorganisms. The continuous species concept considers a species to be delimited by the distance between a range of variable features following a Gaussian-type distribution around a reference organism (i.e., its type strain). Some potential pros and cons of a continuous concept are commented on, offering novel perspectives on our understanding of the highly diversified prokaryotic world, thus promoting discussion and further investigation in the field.
Collapse
Affiliation(s)
- Juan M. Gonzalez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-462-4711
| | - Elena Puerta-Fernández
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain;
| | - Margarida M. Santana
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Bhagwan Rekadwad
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Maharashtra State, Pune 411007, India;
| |
Collapse
|
20
|
Zong Z. Genome-based Taxonomy for Bacteria: A Recent Advance. Trends Microbiol 2020; 28:871-874. [PMID: 32980201 DOI: 10.1016/j.tim.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Prokaryotic taxonomic assignments are shifting to genome-based algorithms. A recent study (Parks et al., 2020) has advanced genome-based taxonomy by constructing reference databases, computing average nucleotide identity and assigning tentative placeholder species names. However, prokaryotic taxonomy should be carefully curated and updated in a timely fashion; this requires coordinated efforts of prokaryotic taxonomists, genomicists, and database curators.
Collapse
Affiliation(s)
- Zhiyong Zong
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME, Holmes B, Steigerwalt AG, Villarma A, Sheth M, Batra D, Rowe LA, Burroughs M, Pryor JC, Bernardet JF, Hugo C, Kämpfer P, Newman JD, McQuiston JR. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432-4450. [PMID: 32735208 PMCID: PMC7660247 DOI: 10.1099/ijsem.0.003935] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis, Chryseobacterium caeni, Chryseobacterium hispanicum, Chryseobacterium hominis, Chryseobacterium hungaricum,, Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov.
Collapse
Affiliation(s)
- Ainsley C. Nicholson
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Christopher A. Gulvik
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Anne M. Whitney
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Ben W. Humrighouse
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Melissa E. Bell
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Barry Holmes
- National Collection of Type Cultures, Health Protection Agency, Colindale, London NW9 5EQ, UK
| | - Arnie G. Steigerwalt
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Aaron Villarma
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Lori A. Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Jessica C. Pryor
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Jean-François Bernardet
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, Domaine de Vilvert, Jouy-en-Josas, France
| | - Celia Hugo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Jeffrey D. Newman
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Biology Department, Lycoming College, Williamsport PA 17701, USA
| | - John R. McQuiston
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| |
Collapse
|
22
|
Genome Comparison Identifies Different Bacillus Species in a Bast Fibre-Retting Bacterial Consortium and Provides Insights into Pectin Degrading Genes. Sci Rep 2020; 10:8169. [PMID: 32424209 PMCID: PMC7235092 DOI: 10.1038/s41598-020-65228-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Retting of bast fibres requires removal of pectin, hemicellulose and other non-cellulosic materials from plant stem tissues by a complex microbial community. A microbial retting consortium with high-efficiency pectinolytic bacterial strains is effective in reducing retting-time and enhancing fibre quality. We report comprehensive genomic analyses of three bacterial strains (PJRB 1, 2 and 3) of the consortium and resolve their taxonomic status, genomic features, variations, and pan-genome dynamics. The genome sizes of the strains are ~3.8 Mb with 3729 to 4002 protein-coding genes. Detailed annotations of the protein-coding genes revealed different carbohydrate-degrading CAZy classes viz. PL1, PL9, GH28, CE8, and CE12. Phylogeny and structural features of pectate lyase proteins of PJRB strains divulge their functional uniqueness and evolutionary convergence with closely related Bacillus strains. Genome-wide prediction of genomic variations revealed 12461 to 67381 SNPs, and notably many unique SNPs were localized within the important pectin metabolism genes. The variations in the pectate lyase genes possibly contribute to their specialized pectinolytic function during the retting process. These findings encompass a strong foundation for fundamental and evolutionary studies on this unique microbial degradation of decaying plant material with immense industrial significance. These have preponderant implications in plant biomass research and food industry, and also posit application in the reclamation of water pollution from plant materials.
Collapse
|
23
|
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079-1086. [DOI: 10.1038/s41587-020-0501-8] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
|
24
|
Mora-Sánchez B, Pérez-Sánchez T, Balcázar JL. Phylogenetic analysis of intestinal microbiota reveals novel Mycoplasma phylotypes in salmonid species. Microb Pathog 2020; 145:104210. [PMID: 32315754 DOI: 10.1016/j.micpath.2020.104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
This study describes the bacterial community composition within the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) using high-throughput 16S rRNA gene sequence analysis. Sequences from intestinal samples from Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand and rainbow trout farmed in Turkey were also included for comparative purposes. The results revealed that the most abundant operational taxonomic units (OTUs) were affiliated to the genus Mycoplasma, but were not specifically associated with any known species. Comparative analysis of 16S rRNA gene sequences indicated that these OTUs represent potentially novel species within the genus Mycoplasma.
Collapse
Affiliation(s)
- Brenda Mora-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, 50013, Zaragoza, Spain; Department of Animal Health, Centro Veterinario de Diagnóstico e Investigación (CEVEDI), School of Veterinary Medicine, Universidad Nacional Autónoma de Nicaragua-León, Nicaragua
| | - Tania Pérez-Sánchez
- Navarran European Business Innovation Center (CEIN), 31110, Noáin (Navarra), Spain; Pentabiol S.L., 31191, Esquíroz (Navarra), Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain.
| |
Collapse
|
25
|
Diop A, El Karkouri K, Raoult D, Fournier PE. Genome sequence-based criteria for demarcation and definition of species in the genus Rickettsia. Int J Syst Evol Microbiol 2020; 70:1738-1750. [DOI: 10.1099/ijsem.0.003963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Over recent years, genomic information has increasingly been used for prokaryotic species definition and classification. Genome sequence-based alternatives to the gold standard DNA–DNA hybridization (DDH) relatedness have been developed, notably average nucleotide identity (ANI), which is one of the most useful measurements for species delineation in the genomic era. However, the strictly intracellar lifestyle, the few measurable phenotypic properties and the low level of genetic heterogeneity made the current standard genomic criteria for bacterial species definition inapplicable to
Rickettsia
species. We evaluated a range of whole genome sequence (WGS)-based taxonomic parameters to develop guidelines for the classification of
Rickettsia
isolates at genus and species levels. By comparing the degree of similarity of 74 WGSs from 31
Rickettsia
species and 61 WGSs from members of three closely related genera also belonging to the order
Rickettsiales
(
Orientia
, 11 genomes;
Ehrlichia
, 22 genomes; and
Anaplasma
, 28 genomes) using digital DDH (dDDh) and ANI by orthology (OrthoANI) parameters, we demonstrated that WGS-based taxonomic information, which is easy to obtain and use, can serve for reliable classification of isolates within the
Rickettsia
genus and species. To be classified as a member of the genus
Rickettsia
, a bacterial isolate should exhibit OrthoANI values with any
Rickettsia
species with a validly published name of ≥83.63 %. To be classified as a new
Rickettsia
species, an isolate should not exhibit more than any of the following degrees of genomic relatedness levels with the most closely related species: >92.30 and >99.19 % for the dDDH and OrthoANI values, respectively. When applied to four rickettsial isolates of uncertain status, the above-described thresholds enabled their classification as new species in one case. Thus, we propose WGS-based guidelines to efficiently delineate
Rickettsia
species, with OrthoANI and dDDH being the most accurate for classification at the genus and species levels, respectively.
Collapse
Affiliation(s)
- Awa Diop
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Khalid El Karkouri
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- UMR MEPHI, Aix-Marseille University, Institut pour la Recherche et le Développement, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
26
|
Sant'Anna FH, Reiter KC, Fátima Almeida PD, Pereira Passaglia LM. Systematic review of descriptions of novel bacterial species: evaluation of the twenty-first century taxonomy through text mining. Int J Syst Evol Microbiol 2020; 70:2925-2936. [PMID: 32100698 DOI: 10.1099/ijsem.0.004070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although described bacterial species increased in the twenty-first century, they correspond to a tiny fraction of the actual number of species living on our planet. The volume of textual data of these descriptions constitutes valuable information for revealing trends that in turn could support strategies for improvement of bacterial taxonomy. In this study, a text mining approach was used to generate bibliometric data to verify the state-of-art of bacterial taxonomy. Around 9700 abstracts of bacterial classification containing the expression 'sp. nov.' and published between 2001 and 2018 were downloaded from PubMed and analysed. Most articles were from PR China and the Republic of Korea, and published in the International Journal of Systematic and Evolutionary Microbiology. From about 10 800 species names detected, 93.33 % were considered valid according to the rules of the Bacterial Code, and they corresponded to 82.98 % of the total number of species validated between 2001 and 2018. Streptomyces, Bacillus and Paenibacillus each had more than 200 species described in the period. However, almost 40 % of all species were from the phylum Proteobacteria. Most bacteria were Gram-stain-negative, bacilli and isolated from soil. Thirteen species and one genus homonyms were found. With respect to methodologies of bacterial characterization, the use of terms related to 16S rRNA and polar lipids increased along these years, and terms related to genome metrics only began to appear from 2009 onward, although at a relatively lower frequency. Bacterial taxonomy is known as a conservative discipline, but it gradually changed in terms of players and practices. With the advent of the mandatory use of genomic analyses for species description, we are probably witnessing a turning point in the evolution of bacterial taxonomy.
Collapse
Affiliation(s)
- Fernando Hayashi Sant'Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Keli Cristine Reiter
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | | |
Collapse
|
27
|
Pot B, Salvetti E, Mattarelli P, Felis GE. The potential impact of the Lactobacillus name change: The results of an expert meeting organised by the Lactic Acid Bacteria Industrial Platform (LABIP). Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Doijad S, Chakraborty T. Genome-based analyses indicate that Serratia marcescens subsp. marcescens and Serratia marcescens subsp. sakuensis do not merit separation to subspecies status. Int J Syst Evol Microbiol 2019; 69:3924-3926. [DOI: 10.1099/ijsem.0.003706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Swapnil Doijad
- Institute of Medical Microbiology and German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology and German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| |
Collapse
|
29
|
Margos G, Fingerle V, Cutler S, Gofton A, Stevenson B, Estrada-Peña A. Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks Tick Borne Dis 2019; 11:101335. [PMID: 31836459 DOI: 10.1016/j.ttbdis.2019.101335] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/30/2023]
Abstract
In this paper we survey key issues in bacterial taxonomy and review the literature regarding the recent genus separation proposed for the genus Borrelia. We discuss how information on members of the genus Borrelia is increasing but detailed knowledge on the relevant features is available only for a small subset of species. The data accumulated here show that there is considerable overlap in ecology, clinical aspects and molecular features between clades that argue against splitting of the genus Borrelia.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Center for Borrelia, Veterinärstr. 2, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Center for Borrelia, Veterinärstr. 2, Oberschleissheim, Germany
| | - Sally Cutler
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Alexander Gofton
- Australian National Insect Collection, CSIRO, Black Mountain, Clunies Ross St, Acton, ACT, 2901, Australia
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, and Department of Entomology, University of Kentucky, Lexington, Kentucky, 40502, USA
| | - Agustín Estrada-Peña
- Department of Animal Pathology, Faculty of Veterinary Medicine, Miguel Servet, 177, 50013 Zaragoza, Spain
| |
Collapse
|
30
|
Margos G, Fingerle V, Oskam C, Stevenson B, Gofton A. Comment on: Gupta, 2019, distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos' et al. "The genus Borrelia reloaded" (PLoS One 13(12): e0208432). PLoS One 14(8):e0221397. Ticks Tick Borne Dis 2019; 11:101320. [PMID: 31722850 DOI: 10.1016/j.ttbdis.2019.101320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, National Reference Center for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, National Reference Center for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Charlotte Oskam
- Vector & Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Australia
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, and Department of Entomology, University of Kentucky, Lexington, KY 40502, USA
| | | |
Collapse
|
31
|
Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276-W282. [PMID: 30997504 PMCID: PMC6602446 DOI: 10.1093/nar/gkz282] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022] Open
Abstract
Understanding the evolutionary background of a bacterial isolate has applications for a wide range of research. However generating an accurate species phylogeny remains challenging. Reliance on 16S rDNA for species identification currently remains popular. Unfortunately, this widespread method suffers from low resolution at the species level due to high sequence conservation. Currently, there is now a wealth of genomic data that can be used to yield more accurate species designations via modern phylogenetic methods and multiple genetic loci. However, these often require extensive expertise and time. The Automated Multi-Locus Species Tree (autoMLST) was thus developed to provide a rapid 'one-click' pipeline to simplify this workflow at: https://automlst.ziemertlab.com. This server utilizes Multi-Locus Sequence Analysis (MLSA) to produce high-resolution species trees; this does not preform multi-locus sequence typing (MLST), a related classification method. The resulting phylogenetic tree also includes helpful annotations, such as species clade designations and secondary metabolite counts to aid natural product prospecting. Distinct from currently available web-interfaces, autoMLST can automate selection of reference genomes and out-group organisms based on one or more query genomes. This enables a wide range of researchers to perform rigorous phylogenetic analyses more rapidly compared to manual MLSA workflows.
Collapse
Affiliation(s)
- Mohammad Alanjary
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Katharina Steinke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Coil DA, Jospin G, Darling AE, Wallis C, Davis IJ, Harris S, Eisen JA, Holcombe LJ, O’Flynn C. Genomes from bacteria associated with the canine oral cavity: A test case for automated genome-based taxonomic assignment. PLoS One 2019; 14:e0214354. [PMID: 31181071 PMCID: PMC6557473 DOI: 10.1371/journal.pone.0214354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
Taxonomy for bacterial isolates is commonly assigned via sequence analysis. However, the most common sequence-based approaches (e.g. 16S rRNA gene-based phylogeny or whole genome comparisons) are still labor intensive and subjective to varying degrees. Here we present a set of 33 bacterial genomes, isolated from the canine oral cavity. Taxonomy of these isolates was first assigned by PCR amplification of the 16S rRNA gene, Sanger sequencing, and taxonomy assignment using BLAST. After genome sequencing, taxonomy was revisited through a manual process using a combination of average nucleotide identity (ANI), concatenated marker gene phylogenies, and 16S rRNA gene phylogenies. This taxonomy was then compared to the automated taxonomic assignment given by the recently proposed Genome Taxonomy Database (GTDB). We found the results of all three methods to be similar (25 out of the 33 had matching genera), but the GTDB approach required fewer subjective decisions, and required far less labor. The primary differences in the non-identical taxonomic assignments involved cases where GTDB has proposed taxonomic revisions.
Collapse
Affiliation(s)
- David A. Coil
- Genome Center, University of California, Davis, CA, United States of America
| | - Guillaume Jospin
- Genome Center, University of California, Davis, CA, United States of America
| | - Aaron E. Darling
- The Ithree Institute, University of Technology Sydney, Ultimo NSW, Australia
| | - Corrin Wallis
- The Waltham Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Ian J. Davis
- The Waltham Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Stephen Harris
- The Waltham Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, United States of America
- Evolution and Ecology, Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States of America
| | - Lucy J. Holcombe
- The Waltham Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Ciaran O’Flynn
- The Waltham Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Koutsandreas T, Ladoukakis E, Pilalis E, Zarafeta D, Kolisis FN, Skretas G, Chatziioannou AA. ANASTASIA: An Automated Metagenomic Analysis Pipeline for Novel Enzyme Discovery Exploiting Next Generation Sequencing Data. Front Genet 2019; 10:469. [PMID: 31178894 PMCID: PMC6543708 DOI: 10.3389/fgene.2019.00469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/01/2019] [Indexed: 01/27/2023] Open
Abstract
Metagenomic analysis of environmental samples provides deep insight into the enzymatic mixture of the corresponding niches, capable of revealing peptide sequences with novel functional properties exploiting the high performance of next-generation sequencing (NGS) technologies. At the same time due to their ever increasing complexity, there is a compelling need for ever larger computational configurations to ensure proper bioinformatic analysis, and fine annotation. With the aiming to address the challenges of such an endeavor, we have developed a novel web-based application named ANASTASIA (automated nucleotide aminoacid sequences translational plAtform for systemic interpretation and analysis). ANASTASIA provides a rich environment of bioinformatic tools, either publicly available or novel, proprietary algorithms, integrated within numerous automated algorithmic workflows, and which enables versatile data processing tasks for (meta)genomic sequence datasets. ANASTASIA was initially developed in the framework of the European FP7 project HotZyme, whose aim was to perform exhaustive analysis of metagenomes derived from thermal springs around the globe and to discover new enzymes of industrial interest. ANASTASIA has evolved to become a stable and extensible environment for diversified, metagenomic, functional analyses for a range of applications overarching industrial biotechnology to biomedicine, within the frames of the ELIXIR-GR project. As a showcase, we report the successful in silico mining of a novel thermostable esterase termed “EstDZ4” from a metagenomic sample collected from a hot spring located in Krisuvik, Iceland.
Collapse
Affiliation(s)
- Theodoros Koutsandreas
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| | - Efthymios Ladoukakis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Eleftherios Pilalis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Fragiskos N Kolisis
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aristotelis A Chatziioannou
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, Athens, Greece
| |
Collapse
|
34
|
Lawrence KE, Lam KC, Morgun A, Shulzhenko N, Löhr CV. Effect of temperature and time on the thanatomicrobiome of the cecum, ileum, kidney, and lung of domestic rabbits. J Vet Diagn Invest 2019; 31:155-163. [PMID: 30741115 DOI: 10.1177/1040638719828412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Knowledge of changes in the composition of microbial communities (microbiota) in tissues after death, over time, is critical to correctly interpret results of microbiologic testing from postmortem examinations. Limited information is available about postmortem changes of the microbiota and the associated microbial genes (microbiome) of internal organs in any species. We examined the effect of time and ambient temperature on the postmortem microbiome (thanatomicrobiome) of tissues typically sampled for microbiologic testing during autopsies. Twenty rabbits were euthanized and their bodies stored at 4°C or 20°C for 6 or 48 h. Ileum, cecum, kidney, and lung tissue were sampled. Bacterial DNA abundance was determined by RT-qPCR. Microbiome diversity was determined by 16S rRNA gene sequencing. By relative abundance of the microbiome composition, intestinal tissues were clearly separated from lungs and kidneys, which were similar to each other, over all times and temperatures. Only cecal thanatomicrobiomes had consistently high concentrations and consistent composition in all conditions. In lungs and kidneys, but not intestine, proteobacteria were highly abundant at specific times and temperatures. Thanatomicrobiome variation was not explained by minor subclinical lesions identified upon microscopic examination of tissues. Bacterial communities typically found in the intestine were not identified at extra-intestinal sites in the first 48 h at 4°C and only in small amounts at 20°C. However, changes in tissue-specific microbiomes during the postmortem interval should be considered when interpreting results of microbiologic testing.
Collapse
Affiliation(s)
- Kelsey E Lawrence
- Department of Biomedical Sciences, College of Veterinary Medicine (Lawrence, Shulzhenko, Löhr).,Department of Bioresource Research, College of Agriculture (Lam), Oregon State University, Corvallis, OR.,College of Pharmacy (Morgun), Oregon State University, Corvallis, OR.,Current addresses: Willamette Valley Animal Hospital, Tualatin, OR (Lawrence).,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (Lam)
| | - Khiem C Lam
- Department of Biomedical Sciences, College of Veterinary Medicine (Lawrence, Shulzhenko, Löhr).,Department of Bioresource Research, College of Agriculture (Lam), Oregon State University, Corvallis, OR.,College of Pharmacy (Morgun), Oregon State University, Corvallis, OR.,Current addresses: Willamette Valley Animal Hospital, Tualatin, OR (Lawrence).,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (Lam)
| | - Andrey Morgun
- Department of Biomedical Sciences, College of Veterinary Medicine (Lawrence, Shulzhenko, Löhr).,Department of Bioresource Research, College of Agriculture (Lam), Oregon State University, Corvallis, OR.,College of Pharmacy (Morgun), Oregon State University, Corvallis, OR.,Current addresses: Willamette Valley Animal Hospital, Tualatin, OR (Lawrence).,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (Lam)
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, College of Veterinary Medicine (Lawrence, Shulzhenko, Löhr).,Department of Bioresource Research, College of Agriculture (Lam), Oregon State University, Corvallis, OR.,College of Pharmacy (Morgun), Oregon State University, Corvallis, OR.,Current addresses: Willamette Valley Animal Hospital, Tualatin, OR (Lawrence).,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (Lam)
| | - Christiane V Löhr
- Department of Biomedical Sciences, College of Veterinary Medicine (Lawrence, Shulzhenko, Löhr).,Department of Bioresource Research, College of Agriculture (Lam), Oregon State University, Corvallis, OR.,College of Pharmacy (Morgun), Oregon State University, Corvallis, OR.,Current addresses: Willamette Valley Animal Hospital, Tualatin, OR (Lawrence).,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD (Lam)
| |
Collapse
|
35
|
Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic Analysis of the Gammaproteobacterial Methanotrophs (Order Methylococcales) Calls for the Reclassification of Members at the Genus and Species Levels. Front Microbiol 2018; 9:3162. [PMID: 30631317 PMCID: PMC6315193 DOI: 10.3389/fmicb.2018.03162] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
The order Methylococcales constitutes the methanotrophs – bacteria that can metabolize methane, a potent greenhouse gas, as their sole source of energy. These bacteria are significant players in the global carbon cycle and can produce value-added products from methane, such as biopolymers, biofuels, and single-cell proteins for animal feed, among others. Previous studies using single-gene phylogenies have shown inconsistencies in the currently established taxonomic structure of this group. This study aimed to determine and resolve these issues by using whole-genome sequence analyses. Phylogenomic analysis and the use of similarity indexes for genomic comparisons – average amino acid identity, digital DNA–DNA hybridization (dDDH), and average nucleotide identity (ANI) – were performed on 91 Methylococcales genomes. Results suggest the reclassification of members at the genus and species levels. Firstly, to resolve polyphyly of the genus Methylomicrobium, Methylomicrobium alcaliphilum, “Methylomicrobium buryatense,” Methylomicrobium japanense, Methylomicrobium kenyense, and Methylomicrobium pelagicum are reclassified to a newly proposed genus, Methylotuvimicrobium gen. nov.; they are therefore renamed to Methylotuvimicrobium alcaliphilum comb. nov., “Methylotuvimicrobium buryatense” comb. nov., Methylotuvimicrobium japanense comb. nov., Methylotuvimicrobium kenyense comb. nov., and Methylotuvimicrobium pelagicum comb. nov., respectively. Secondly, due to the phylogenetic affinity and phenotypic similarities of Methylosarcina lacus with Methylomicrobium agile and Methylomicrobium album, the reclassification of the former species to Methylomicrobium lacus comb. nov. is proposed. Thirdly, using established same-species delineation thresholds (70% dDDH and 95% ANI), Methylobacter whittenburyi is proposed to be a later heterotypic synonym of Methylobacter marinus (89% dDDH and 99% ANI). Also, the effectively but not validly published “Methylomonas denitrificans” was identified as Methylomonas methanica (92% dDDH and 100% ANI), indicating that the former is a later heterotypic synonym of the latter. Lastly, strains MC09, R-45363, and R-45371, currently identified as M. methanica, each represent a putative novel species of the genus Methylomonas (21–35% dDDH and 74–88% ANI against M. methanica) and were reclassified as Methylomonas sp. strains. It is imperative to resolve taxonomic inconsistencies within this group, first and foremost, to avoid confusion with ecological and evolutionary interpretations in subsequent studies.
Collapse
Affiliation(s)
- Fabini D Orata
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jan P Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Wu L, McCluskey K, Desmeth P, Liu S, Hideaki S, Yin Y, Moriya O, Itoh T, Kim CY, Lee JS, Zhou Y, Kawasaki H, Hazbón MH, Robert V, Boekhout T, Lima N, Evtushenko L, Boundy-Mills K, Bunk B, Moore ERB, Eurwilaichitr L, Ingsriswang S, Shah H, Yao S, Jin T, Huang J, Shi W, Sun Q, Fan G, Li W, Li X, Kurtböke I, Ma J. The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species. Gigascience 2018; 7:4951733. [PMID: 29718202 PMCID: PMC5941136 DOI: 10.1093/gigascience/giy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 11/23/2022] Open
Abstract
Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.
Collapse
Affiliation(s)
- Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,WFCC-MIRCEN World Data Center for Microorganisms, Beijing 100101, China
| | - Kevin McCluskey
- World Federation of Culture Collections (WFCC).,Fungal Genetics Stock Center, Kansas State University, Manhattan, KS 66506, USA
| | - Philippe Desmeth
- World Federation of Culture Collections (WFCC).,Belgian Coordinated Collections of Micro-organisms Program, Belgian Science Policy Office, Brussels 231 1050, Belgium
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,World Federation of Culture Collections (WFCC)
| | | | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ohkuma Moriya
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | - Cha Young Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing10010, China
| | - Hiroko Kawasaki
- NITE Biological Resource Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | | | - Vincent Robert
- Westerdijk Fungal Biodiversity Institue, Utrecht 3534CT, Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institue, Utrecht 3534CT, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Spui 21 1012 WX Amsterdam, Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Nelson Lima
- Micoteca da Universidade do Minho, Biological Engineering Centre, 4710-057 Braga, Portugal
| | - Lyudmila Evtushenko
- All-Russian Collection of Microorganisms, GK Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region 142290, Russia
| | - Kyria Boundy-Mills
- World Federation of Culture Collections (WFCC).,Phaff Yeast Culture Collection, Food Science and Technology Department, University of California Davis, 1 Shields Avenue, Davis, CA 95616-8598, USA
| | - Boyke Bunk
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, SE-41346 Gothenburg, Sweden
| | - Lily Eurwilaichitr
- World Federation of Culture Collections (WFCC).,Bioresources Technology Unit, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, Bangkok National Science and Technology Development Agency, 113, Thailand
| | - Supawadee Ingsriswang
- Bioresources Technology Unit, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, Bangkok National Science and Technology Development Agency, 113, Thailand
| | - Heena Shah
- National Collection of Type Cultures, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Su Yao
- China Center of Industrial Culture Collection, Beijing 100015, China
| | - Tao Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jinqun Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian Li
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ipek Kurtböke
- World Federation of Culture Collections (WFCC).,Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,WFCC-MIRCEN World Data Center for Microorganisms, Beijing 100101, China.,World Federation of Culture Collections (WFCC)
| |
Collapse
|
37
|
Okamoto N, Gawryluk RMR, Del Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. A Revised Taxonomy of Diplonemids Including the Eupelagonemidae n. fam. and a Type Species, Eupelagonema oceanica n. gen. & sp. J Eukaryot Microbiol 2018; 66:519-524. [PMID: 30080299 DOI: 10.1111/jeu.12679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/16/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Recent surveys of marine microbial diversity have identified a previously unrecognized lineage of diplonemid protists as being among the most diverse heterotrophic eukaryotes in global oceans. Despite their monophyly (and assumed importance), they lack a formal taxonomic description, and are informally known as deep-sea pelagic diplonemids (DSPDs) or marine diplonemids. Recently, we documented morphology and molecular sequences from several DSPDs, one of which is particularly widespread and abundant in environmental sequence data. To simplify the communication of future work on this important group, here we formally propose to erect the family Eupelagonemidae to encompass this clade, as well as a formal genus and species description for the apparently most abundant phylotype, Eupelagonema oceanica, for which morphological information and single-cell amplified genome data are currently available.
Collapse
Affiliation(s)
- Noriko Okamoto
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Boulevard, British Columbia, Canada
| | - Ryan M R Gawryluk
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Boulevard, British Columbia, Canada
| | - Javier Del Campo
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Boulevard, British Columbia, Canada
| | - Jürgen F H Strassert
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Boulevard, British Columbia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Faculty of Sciences, University of South Bohemia, Branišovská 31, 370 05, České Budějovice (Budweis), Czech Republic
| | - Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, United Kingdom
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, California, 95039, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, 93106, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Boulevard, British Columbia, Canada
| |
Collapse
|
38
|
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996-1004. [PMID: 30148503 DOI: 10.1038/nbt.4229] [Citation(s) in RCA: 1883] [Impact Index Per Article: 313.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.
Collapse
|
39
|
Cerezales M, Xanthopoulou K, Ertel J, Nemec A, Bustamante Z, Seifert H, Gallego L, Higgins PG. Identification of Acinetobacter seifertii isolated from Bolivian hospitals. J Med Microbiol 2018; 67:834-837. [DOI: 10.1099/jmm.0.000751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mónica Cerezales
- Faculty of Medicine and Nursing; Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n 48940 Bilbao, Spain
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Ertel
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Šrobárova 48, 100 42, Prague, Czech Republic
| | - Zulema Bustamante
- Faculty of Biochemistry and Pharmacy, Universidad Mayor de San Simón, Avenida Aniceto Arce s/n frente al parque La Torre Cochabamba, Bolivia
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lucia Gallego
- Faculty of Medicine and Nursing; Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n 48940 Bilbao, Spain
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelstrasse 19-21 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
40
|
Szeinbaum N, Kellum CE, Glass JB, Janda JM, DiChristina TJ. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990. Int J Syst Evol Microbiol 2018; 68:1356-1360. [PMID: 29504926 DOI: 10.1099/ijsem.0.002678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, experimental DNA-DNA hybridization (DDH) between Shewanellahaliotis JCM 14758T and Shewanellaalgae JCM 21037T had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis, revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758T and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758T, it can be confidently identified as S. algae.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cailin E Kellum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Michael Janda
- Public Health Laboratory at Kern County, Bakersfield, CA, USA
| | | |
Collapse
|
41
|
Bernatchez S, Anoop V, Saikali Z, Breton M. A microbial identification framework for risk assessment. Food Chem Toxicol 2018; 116:60-65. [PMID: 29458165 DOI: 10.1016/j.fct.2018.02.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Micro-organisms are increasingly used in a variety of products for commercial uses, including cleaning products. Such microbial-based cleaning products (MBCP) are represented as a more environmentally-friendly alternative to chemically based cleaning products. The identity of the micro-organisms formulated into these products is often considered confidential business information and is not revealed or it is only partly revealed (i.e., identification to the genus, not to the species). That paucity of information complicates the evaluation of the risk associated with their use. The accurate taxonomic identification of those micro-organisms is important so that a suitable risk assessment of the products can be conducted. To alleviate difficulties associated with adequate identification of micro-organisms in MBCP and other products containing micro-organisms, a microbial identification framework for risk assessment (MIFRA) has been elaborated. It serves to provide guidance on a polyphasic tiered approach, combining the data obtained from the use of various methods (i.e., polyphasic approach) combined with the sequential selection of the methods (i.e., tiered) to achieve a satisfactory identity of the micro-organism to an acceptable taxonomic level. The MIFRA is suitable in various risk assessment contexts for micro-organisms used in any commercial product.
Collapse
Affiliation(s)
- Stéphane Bernatchez
- Biotechnology Section, New Substances Control and Assessment Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Valar Anoop
- Biotechnology Section, New Substances Control and Assessment Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Zeina Saikali
- Regulatory Science and Policy, Biotechnology Section, Emerging Priorities Division, Environment Canada, Gatineau, Québec K1A 0H3, Canada
| | - Marie Breton
- Biotechnology Section, New Substances Control and Assessment Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
42
|
Abstract
While taxonomy is an often-unappreciated branch of science it serves very important roles. Bacteriophage taxonomy has evolved from a mainly morphology-based discipline, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the holistic approach that is taken today. The Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a comprehensive approach to classifying prokaryote viruses measuring overall DNA and protein identity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with NCBI and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, ON, Canada, N1G 2W1.
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1.
- Department of Pathobiology, University of Guelph, 6 Mayfield Ave, Guelph, ON, Canada, N1G 2W1.
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
43
|
Byrne SJ, Butler CA, Reynolds EC, Dashper SG. Taxonomy of Oral Bacteria. METHODS IN MICROBIOLOGY 2018. [DOI: 10.1016/bs.mim.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC. Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front Microbiol 2017; 8:2132. [PMID: 29184540 PMCID: PMC5694629 DOI: 10.3389/fmicb.2017.02132] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Felipe H Coutinho
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Bas E Dutilh
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jean Swings
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Center of Technology - CT2, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017; 35:676-683. [DOI: 10.1038/nbt.3886] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
Abstract
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.
Collapse
|
46
|
Abstract
An American Society for Microbiology (ASM) conference titled the Conference on Rapid Next-Generation Sequencing and Bioinformatic Pipelines for Enhanced Molecular Epidemiological Investigation of Pathogens provided a venue for discussing how technologies surrounding whole-genome sequencing (WGS) are advancing microbiology. Several applications in microbial taxonomy, microbial forensics, and genomics for public health pathogen surveillance were presented at the meeting and are reviewed. All of these studies document that WGS is revolutionizing applications in microbiology and that the impact of these technologies will be profound. ASM is providing support mechanisms to promote discussions of WGS techniques to foster applications and interpretations.
Collapse
Affiliation(s)
- Marc W Allard
- Food and Drug Administration, College Park, Maryland, USAEmory University
| |
Collapse
|