1
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Wang Z, Zhou Y, Guo G, Li Q, Yu Y, Zhang W. Promising potential of machine learning-assisted MALDI-TOF MS as an effective detector for Streptococcus suis serotype 2 and virulence thereof. Appl Environ Microbiol 2023; 89:e0128423. [PMID: 37861326 PMCID: PMC10686076 DOI: 10.1128/aem.01284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE To the best of our knowledge, this study reveals a strong correlation between mass spectra pattern and virulence phenotype among S. suis for the first time. In order to make the findings applicable and to excavate the intrinsic information in the spectra, the classifiers based on the machine learning algorithms were established, and RF (Random Forest)-based models have achieved an accuracy of over 90%. Overall, this study will pave the way for virulent SS2 (Streptococcus suis serotype 2) rapid detection, and the important findings on the association between genotype and mass spectrum may provide a new idea for the genotype-dependent detection of specific pathogens.
Collapse
Affiliation(s)
- Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- The Sanya Institute of Nanjing Agriculture University, Sanya, China
| |
Collapse
|
3
|
Lu Y, Yang H, Bai J, He Q, Deng R. CRISPR-Cas based molecular diagnostics for foodborne pathogens. Crit Rev Food Sci Nutr 2022; 64:5269-5289. [PMID: 36476134 DOI: 10.1080/10408398.2022.2153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Foodborne pathogenic infection has brought multifaceted issues to human life, leading to an urgent demand for advanced detection technologies. CRISPR/Cas-based biosensors have the potential to address various challenges that exist in conventional assays such as insensitivity, long turnaround time and complex pretreatments. In this perspective, we review the relevant strategies of CRISPR/Cas-assisted diagnostics on foodborne pathogens, focusing on biosensing platforms for foodborne pathogens based on fluorescence, colorimetric, (electro)chemiluminescence, electrochemical, and surface-enhanced Raman scattering detection. It summarizes their detection principles by the clarification of foodborne pathogenic bacteria, fungi, and viruses. Finally, we discuss the current challenges or technical barriers of these methods against broad application, and put forward alternative solutions to improve CRISPR/Cas potential for food safety.
Collapse
Affiliation(s)
- Yunhao Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Jinrong Bai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P.R. China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
4
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial‐resistant Escherichia coli in dogs and cats, horses, swine, poultry, cattle, sheep and goats. EFSA J 2022; 20:e07311. [PMID: 35582363 PMCID: PMC9087955 DOI: 10.2903/j.efsa.2022.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Escherichia coli (E. coli) was identified among the most relevant antimicrobial‐resistant (AMR) bacteria in the EU for dogs and cats, horses, swine, poultry, cattle, sheep and goats in previous scientific opinions. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR E. coli can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33–66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2, 3 and 4 (Categories A, B, C and D; 0–5%, 5–10%, 10–33% and 10–33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Section 5 (Category E, 33–66% probability of meeting the criteria). The animal species to be listed for AMR E. coli according to Article 8 criteria include mammals, birds, reptiles and fish.
Collapse
|
5
|
Sorgenfrei M, Hürlimann LM, Remy MM, Keller PM, Seeger MA. Biomolecules capturing live bacteria from clinical samples. Trends Biochem Sci 2022; 47:673-688. [PMID: 35487808 DOI: 10.1016/j.tibs.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.
Collapse
Affiliation(s)
- Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Mélissa M Remy
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Sun Y, Li J, Zhu L, Jiang L. Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: a state of the art review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Bessonov K, Laing C, Robertson J, Yong I, Ziebell K, Gannon VPJ, Nichani A, Arya G, Nash JHE, Christianson S. ECTyper: in silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb Genom 2021; 7. [PMID: 34860150 PMCID: PMC8767331 DOI: 10.1099/mgen.0.000728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results. To address these specific requirements, we developed ECTyper (https://github.com/phac-nml/ecoli_serotyping) for performing both speciation within Escherichia and Shigella, and in silico serotype prediction. We compared the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic serotype information. We found that all tools were highly concordant, with 92-97 % for O-antigens and 98-100 % for H-antigens, and ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable drop in concordance, with 75-91 % for O-antigens and 62-90 % for H-antigens, and ECTyper and SerotypeFinder being the most concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Chad Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Irene Yong
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Anil Nichani
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Gitanjali Arya
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| | - Sara Christianson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Lian F, Wang D, Yao S, Ge L, Wang Y, Zhao Y, Zhao J, Song X, Zhao C, Li J, Liu Y, Jin M, Xu K. A detection method of Escherichia coli O157:H7 based on immunomagnetic separation and aptamers-gold nanoparticle probe quenching Rhodamine B's fluorescence: Escherichia coli O157:H7 detection method based on IMS and Apt-AuNPs probe quenching Rho B' s fluorescence. Food Sci Biotechnol 2021; 30:1129-1138. [PMID: 34471566 PMCID: PMC8364604 DOI: 10.1007/s10068-021-00947-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
This research aimed to detect Escherichia coli O157:H7 in milk based on immunomagnetic probe separation technology and quenching effect of gold nanoparticles to Rhodamine B. Streptavidin-modified magnetic beads (MBs) were combined with biotin-modified antibodies to capture E. coli O157:H7 specifically. Gold nanoparticle (AuNPs) was incubated with sulfhydryl-modified aptamers (SH-Aptamers) to obtain the Aptamers-AuNPs probe. After magnetic beads captured target bacteria and formed a sandwich structure with the gold nanoprobe, Rhodamine B was added into complex to obtain fluorescent signal changes. Our results demonstrated that the established method could detect E. coli O157:H7 in the range of 101-107 CFU/mL, and the limit of detection (LOD) was 0.35 CFU/mL in TBST buffer (pH = 7.4). In milk simulation samples, the LOD of this method was 1.03 CFU/mL. Our research provides a promising approach on the detection of E. coli O157:H7.
Collapse
Affiliation(s)
- Fengnan Lian
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Dan Wang
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Shuo Yao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Lirui Ge
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yue Wang
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yuyi Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Jinbin Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Xiuling Song
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Chao Zhao
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Jinhua Li
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Yajuan Liu
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Minghua Jin
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| | - Kun Xu
- School of Public Health, Jilin University, 130021 Changchun, China
- Jilin Engineering Research Center of Public Health Detection, 130021 Changchun, China
| |
Collapse
|
9
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
10
|
Avilés-Gaxiola S, Gutiérrez-Grijalva EP, León-Felix J, Angulo-Escalante MA, Heredia JB. Peptides in Colorectal Cancer: Current State of Knowledge. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:467-476. [PMID: 32964320 DOI: 10.1007/s11130-020-00856-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
Colorectal cancer (CRC) is the second most deadly and the third most commonly diagnosed cancer in the world. CRC treatment is mainly based on surgery, chemotherapy, and even though the probability of complications after surgery is very low, chemo drugs affect the patient's quality of life. Multiple studies have shown a strong correlation between diet and the onset and progression of CRC. Thus, the consumption of dietary nutraceuticals for its treatment and prevention has been suggested as a promising option. Peptides have increasingly become of interest in human health due to their antioxidant, antihypertensive, and anticancer potential. In recent years, there have been extensive reports on peptides with anti-tumor activity, and some studies suggest that peptides modulate cell proliferation, evasion of cell death, and metastasis in malignant cells. Plant-derived peptides such as soybean, bean, and rice have received main attention. In this review, we show evidence of several mechanisms through which bioactive peptides exert anti-tumor activity over in vitro and in vivo CRC models. We also report the current status of major production techniques, as well as limitations and future perspectives. Graphical Abstract.
Collapse
Affiliation(s)
- Sara Avilés-Gaxiola
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Erick P Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Josefina León-Felix
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Miguel A Angulo-Escalante
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
11
|
Bai H, Bu S, Liu W, Wang C, Li Z, Hao Z, Wan J, Han Y. An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. Analyst 2020; 145:7340-7348. [PMID: 32930195 DOI: 10.1039/d0an01258k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7. The stable cocoon-like DNA nanostructures synthesized by the rolling circle amplification reaction were loaded with hemin as electrochemical signal tags to amplify the signals. The single-stranded DNA capture probes were modified on the surface of a Au electrode via a Au-S bond. The E. coli O157:H7 specific aptamer and capture probe formed double-stranded DNA structures on the Au electrode. The aptamer preferentially bound to E. coli O157:H7, causing the dissociation of some aptamer-capture probes and releasing some capture probes. Subsequently, the free capture probes hybridized with the DNA nanostructures through the cDNA sequence. Under optimal conditions, the change in the electrochemical signal was proportional to the logarithm of E. coli O157:H7 concentration, from 10 to 106 CFU mL-1, and the detection limit was estimated to be 10 CFU mL-1. The electrochemical aptasensor could be readily used to detect various pathogenic bacteria and to provide a new method of early diagnosis of pathogenic microorganisms.
Collapse
Affiliation(s)
- Huasong Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Grenga L, Pible O, Armengaud J. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:9-17. [DOI: 10.1016/j.clinms.2019.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
|
13
|
Mass Spectrometry to Study the Bacterial Proteome from a Single Colony. Methods Mol Biol 2019. [PMID: 30929210 DOI: 10.1007/978-1-4939-9199-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mass spectrometry (MS) has been widely used in recent years for bacterial identification and typing. Single bacterial colonies are regarded as pure cultures of bacteria grown from single cells. In this chapter, we describe a method for identifying bacteria at the species level with 100% accuracy using the proteomes of bacterial cultures from single colonies. In this chapter, six reference strains of gram-negative and gram-positive bacteria are analyzed, producing results of high reproducibility, as examples of bacterial identification through the application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a custom database. Details on sample preparation and identification of Streptococcus pneumoniae are also described.
Collapse
|
14
|
Mass spectrometry-based Shiga toxin identification: A clinical validation. J Proteomics 2019; 198:145-150. [PMID: 30716422 DOI: 10.1016/j.jprot.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/20/2022]
Abstract
After we published our preliminary study on the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and curated E. coli toxin databases on the identification of E. coli Shiga toxins (Stxs) in the Journal of Proteomics in year 2018, we were encouraged to further refine the method and test clinical isolates. In this study, different concentrations of mitomycin C (MMC) and ciprofloxacin (CF), two common antibiotic/chemotherapy agents capable of stimulating Stx production, were first tested and compared on three reference strains and eight clinical isolates to observe the toxin induction and subsequent identification. Notably, no differences were observed between the two agents other than the concentrations applied. Seventeen more clinical isolates were then tested using fixed MMC and CF concentrations and sample amount. This study confirms that the majority of stx2-positive E. coli strains can be stimulated to produce sufficient toxin for confident identification. This does not occur with stx1-positive E. coli isolates, however, despite the fact that both Stxs can be identified for several isolates without MMC or CF stimulation. BIOLOGICAL SIGNIFICANCE: Stxs, especially Stx2, are very important causes of severe food-borne disease, even death. This study confirms that receptor analogue-based affinity enrichment of Stxs, after MMC or CF treatment of E. coli, is useful for fast and accurate Stx2 identification through LC-MS/MS.
Collapse
|
15
|
Whole genome shotgun sequencing revealed highly polymorphic genome regions and genes in Escherichia coli O157:H7 isolates collected from a single feedlot. PLoS One 2018; 13:e0202775. [PMID: 30153286 PMCID: PMC6112667 DOI: 10.1371/journal.pone.0202775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli serotype O157:H7 continues to pose a serious health threat to human beings. Cattle, a major reservoir of the pathogen, harbor E. coli O157:H7 in their gastrointestinal tract and shed variable concentrations of E. coli O157:H7 into the environment. Genetic characterization of cattle-shed E. coli O157 strains is of interest to the livestock industry, food business, and public health community. The present study applied whole genome shotgun sequencing (WGS) and single nucleotide variant (SNV) calling to characterize 279 cattle-shed E. coli O157:H7 strains isolated from a single feedlot located in southwestern region of the US. More than 4,000 SNVs were identified among the strains and the resultant phylogenomic tree revealed three major groups. Using the Sakai strain genome as reference, more than 2,000 SNVs were annotated and a detailed SNV map generated. Results clearly revealed highly polymorphic loci along the E. coli O157:H7 genome that aligned with the prophage regions and highly variant genes involved in processing bacterial genetic information. The WGS data were further profiled against a comprehensive virulence factor database (VFDB) for virulence gene identification. Among the total 285 virulence genes identified, only 132 were present in all the strains. There were six virulence genes unique to single isolates. Our findings suggested that the genome variations of the E. coli O157:H7 were mainly attributable to dynamics of certain phages, and the bacterial strains have variable virulence gene profiles, even though they came from a single cattle population, which may explain the differences in pathogenicity, host prevalence, and transmissibility by E. coli O157:H7.
Collapse
|
16
|
Grégory D, Chaudet H, Lagier JC, Raoult D. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota. Expert Rev Proteomics 2018; 15:217-229. [PMID: 29336192 DOI: 10.1080/14789450.2018.1429271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Describing the human hut gut microbiota is one the most exciting challenges of the 21st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.
Collapse
Affiliation(s)
- Dubourg Grégory
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Hervé Chaudet
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Jean-Christophe Lagier
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Didier Raoult
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| |
Collapse
|
17
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
18
|
Shell WS, Sayed ML, Allah FMG, Gamal FEM, Khedr AA, Samy AA, Ali AHM. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates. Vet World 2017; 10:1083-1093. [PMID: 29062198 PMCID: PMC5639107 DOI: 10.14202/vetworld.2017.1083-1093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/10/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: Identification of pathogenic clinical bacterial isolates is mainly dependent on
phenotypic and genotypic characteristics of the microorganisms. These conventional
methods are costive, time-consuming, and need special skills and training. An
alternative, mass spectral (proteomics) analysis method for identification of
clinical bacterial isolates has been recognized as a rapid, reliable, and
economical method for identification. This study was aimed to evaluate and compare
the performance, sensitivity and reliability of traditional bacteriology,
phenotypic methods and matrix-assisted laser desorption-ionization-time-of-flight
mass spectrometry (MALDI-TOF MS) in the identification of clinical
Escherichia coli and Salmonella isolates
recovered from chickens. Materials and Methods: A total of 110 samples (cloacal, liver, spleen, and/or gall bladder) were
collected from apparently healthy and diseased chickens showing clinical signs as
white chalky diarrhea, pasty vent, and decrease egg production as well as freshly
dead chickens which showing postmortem lesions as enlarged liver with congestion
and enlarged gall bladder from different poultry farms. Results: Depending on colonial characteristics and morphological characteristics,
E. coli and Salmonella isolates were
recovered and detected in only 42 and 35 samples, respectively. Biochemical
identification using API 20E identification system revealed that the suspected
E. coli isolates were 33 out of 42 of colonial and
morphological identified E. coli isolates where
Salmonella isolates were represented by 26 out of 35 of
colonial and morphological identified Salmonella isolates.
Serological identification of isolates revealed that the most predominant
E. coli serotypes were O1 and O78 while the most predominant
Salmonella serotype of Salmonella was
Salmonella Pullorum. All E. coli and
Salmonella isolates were examined using MALDI-TOF MS. In
agreement with traditional identification, MADI-TOF MS identified all clinical
bacterial samples with valid scores as E. coli and
Salmonella isolates except two E. coli
isolates recovered from apparently healthy and diseased birds, respectively, with
recovery rate of 93.9% and 2 Salmonella isolates recovered
from apparently healthy and dead birds, respectively, with recovery rate of
92.3%. Conclusion: Our study demonstrated that Bruker MALDI-TOF MS Biotyper is a reliable rapid and
economic tool for the identification of Gram-negative bacteria especially
E. coli and Salmonella which could be used as
an alternative diagnostic tool for routine identification and differentiation of
clinical isolates in the bacteriological laboratory. MALDI-TOF MS need more
validation and verification and more study on the performance of direct colony and
extraction methods to detect the most sensitive one and also need using more
samples to detect sensitivity, reliability, and performance of this type of
bacterial identification.
Collapse
Affiliation(s)
- Waleed S Shell
- Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt
| | - Mahmoud Lotfy Sayed
- Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt
| | - Fatma Mohamed Gad Allah
- Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt
| | | | - Afaf Ahmed Khedr
- Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt
| | - A A Samy
- Department of Microbiology and Immunology, National Research Center, Cairo, Egypt
| | - Abdel Hakam M Ali
- Central Laboratory for Evaluation of Veterinary Biologics Abbasaia, Agriculture Research Center, Cairo, Egypt
| |
Collapse
|
19
|
Sloan A, Wang G, Cheng K. Traditional approaches versus mass spectrometry in bacterial identification and typing. Clin Chim Acta 2017; 473:180-185. [PMID: 28866114 DOI: 10.1016/j.cca.2017.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Biochemical methods such as metabolite testing and serotyping are traditionally used in clinical microbiology laboratories to identify and categorize microorganisms. Due to the large variety of bacteria, identifying representative metabolites is tedious, while raising high-quality antisera or antibodies unique to specific biomarkers used in serotyping is very challenging, sometimes even impossible. Although serotyping is a certified approach for differentiating bacteria such as E. coli and Salmonella at the subspecies level, the method is tedious, laborious, and not practical during an infectious disease outbreak. Mass spectrometry (MS) platforms, especially matrix assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS), have recently become popular in the field of bacterial identification due to their fast speed and low cost. In the past few years, we have used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches to solve various problems hindering serotyping and have overcome some insufficiencies of the MALDI-TOF-MS platform. The current article aims to review the characteristics, advantages, and disadvantages of MS-based platforms over traditional approaches in bacterial identification and categorization.
Collapse
Affiliation(s)
- Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Sandalakis V, Goniotakis I, Vranakis I, Chochlakis D, Psaroulaki A. Use of MALDI-TOF mass spectrometry in the battle against bacterial infectious diseases: recent achievements and future perspectives. Expert Rev Proteomics 2017; 14:253-267. [PMID: 28092721 DOI: 10.1080/14789450.2017.1282825] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advancements in microbial identification occur increasingly faster as more laboratories explore, refine and extend the use of mass spectrometry in the field of microbiology. Areas covered: This review covers the latest knowledge found in the literature for quick identification of various classes of bacterial pathogens known to cause human infection by the use of MALDI-TOF MS technology. Except for identification of bacterial strains, more researchers try to 'battle time' in favor of the patient. These novel approaches to identify bacteria directly from clinical samples and even determine antibiotic resistance are extensively revised and discussed. Expert commentary: Mass spectrometry is the future of bacterial identification and creates a new era in modern microbiology. Its incorporation in routine practice seems to be not too far, providing a valuable alternative, especially in terms of time, to conventional techniques. If the technology further advances, quick bacterial identification and probable identification of common antibiotic resistance might guide patient decision-making regarding bacterial infectious diseases in the near future.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Ioannis Goniotakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Iosif Vranakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Dimosthenis Chochlakis
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| | - Anna Psaroulaki
- a Laboratory of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, School of Medicine , University of Crete , Heraklion , Greece
| |
Collapse
|
21
|
Sauget M, Valot B, Bertrand X, Hocquet D. Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria? Trends Microbiol 2017; 25:447-455. [PMID: 28094091 DOI: 10.1016/j.tim.2016.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Bacterial typing is crucial to tackle the spread of bacterial pathogens but current methods are time-consuming and costly. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been recently integrated into the microbiology laboratory workflow for a quick and low-cost microbial species identification. Independent research groups have successfully redirected the original function of this technology from their primary purpose to discriminate subgroups within pathogen species. However, identical bacterial subgroups could be identified by unrelated peaks by independent methods, thus limiting their robustness and exportability. We propose several guidelines that could improve the performance of MALDI-TOF MS-based typing methods for use as a first-line epidemiological tool.
Collapse
Affiliation(s)
- Marlène Sauget
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France.
| | - Benoît Valot
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
22
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
23
|
Magalhães P, Pinto L, Gonçalves A, Araújo JE, Santos HM, Capelo JL, Saénz Y, de Toro M, Torres C, Chambon C, Hébraud M, Poeta P, Igrejas G. Could transformation mechanisms of acetylase-harboring pMdT1 plasmid be evaluated through proteomic tools in Escherichia coli? J Proteomics 2016; 145:103-111. [PMID: 27072110 DOI: 10.1016/j.jprot.2016.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Escherichia coli is a commensal microorganism of the gastrointestinal tract of animals and humans and it is an excellent model organism for the study of antibiotic resistance mechanisms. The resistance transmission and other characteristics of bacteria are based on different types of gene transfer occurring throughout the bacterial evolution. One of which is horizontal gene transfer that allows us to understand the ability of bacteria to acquire new genes. One dimensional and two dimensional electrophoresis (2-DE) techniques were performed in order to identify and characterize the proteome of two E. coli strains: Electromax DH10B, a transformation-ready strain; and TF-Se20, the Electromax DH10B that contains the aac(6')-Ib-cr4-harboring pMdT1 plasmid. After 2-DE and subsequent analysis by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), it was possible to identify 76 distinct proteins on the TF-Se20 strain, whereas 71 had a known function. From Electromax DH10B strain, 72 different proteins were identified of which 71 were associated with a biological process. The protein of interest, aminoglycoside N-(6')-acetyltransferase type 1, was identified by MALDI-TOF MS. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was performed to determine its sequence. Seventy six percent of the acetylase sequence was reconstructed only in the TF-Se20 strain, representing the single protein associated to antibiotic resistance. MALDI-TOF MS and LC-MS/MS approaches allowed us to determine the total proteome of both strains, as well as the acetylase sequence. Both of them enhance the ability to obtain more accurate information about the mechanisms of antimicrobial resistance. The pMdT1 plasmid brings a new perspective in understanding the metabolic processes that lead to antibiotic resistance. BIOLOGICAL SIGNIFICANCE This study highlights the importance of proteomics and bioinformatics in understanding mechanisms of gene transfer and antibiotic resistance. These two approaches allow to compare the protein expression in different samples, as well as different biological processes related to each protein.
Collapse
Affiliation(s)
- Pedro Magalhães
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Luís Pinto
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alexandre Gonçalves
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Eduardo Araújo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - Hugo M Santos
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica, Portugal
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; ProteoMass Scientific Society, Faculty of Sciences and Technology, Caparica, Portugal
| | - Yolanda Saénz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - María de Toro
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Universidad de Cantabria/CSIC, Santander, Spain
| | - Carmen Torres
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain; Department of Food and Agriculture, Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Christophe Chambon
- Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), France
| | - Michel Hébraud
- Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), France; Institut National de la Recherche Agronomique, Centre Auvergne-Rhône-Alpes, UR454 Microbiologie, France
| | - Patrícia Poeta
- UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal; Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal.
| |
Collapse
|
24
|
Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl 2016; 10:982-993. [PMID: 27400768 DOI: 10.1002/prca.201600038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Within the past few years identification of bacteria by MALDI-TOF MS has become a standard technique in bacteriological laboratories for good reasons. MALDI-TOF MS identification is rapid, robust, automatable, and the per-sample costs are low. Yet, the spectra are very informative and the reliable identification of bacterial species is usually possible. Recently, new MS-based approaches for the identification of bacteria are emerging that are based on the detailed analysis of the bacterial proteome by high-resolution MS. These "proteotyping" approaches are highly discriminative and outperform MALDI-TOF MS-based identification in terms of specificity, but require a laborious proteomic workflow and far more expertise and sophisticated instrumentation than identification on basis of MALDI-TOF MS spectra, which can be obtained with relative simple and uncostly linear MALDI-TOF mass spectrometers. Thus MALDI-TOF MS identification of bacteria remains an attractive option for routine diagnostics. Additionally, MALDI-TOF MS identification protocols have been extended and improved in many respects making linear MALDI-TOF MS a versatile tool that can be useful beyond the identification of a bacterial species, e.g. for the characterization of leucocytes and arthropod vectors of infectious diseases. This review focuses on such improvements and extensions of the typical MALDI-TOF MS workflow in the field of infectious diseases.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health Südufer, Greifswald-Insel Riems, Germany.
| |
Collapse
|
25
|
Phenotypic H-Antigen Typing by Mass Spectrometry Combined with Genetic Typing of H Antigens, O Antigens, and Toxins by Whole-Genome Sequencing Enhances Identification of Escherichia coli Isolates. J Clin Microbiol 2016; 54:2162-8. [PMID: 27307455 PMCID: PMC4963523 DOI: 10.1128/jcm.00422-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing.
Collapse
|
26
|
Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front Microbiol 2016; 7:644. [PMID: 27199968 PMCID: PMC4853403 DOI: 10.3389/fmicb.2016.00644] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.
Collapse
Affiliation(s)
- Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University ParkPA, USA
| | - Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - David S. Needleman
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Gian Marco Baranzoni
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, USA
| | - Peter Feng
- Division of Microbiology, U.S. Food and Drug Administration, College ParkMD, USA
| |
Collapse
|
27
|
Cheng K, She YM, Chui H, Domish L, Sloan A, Hernandez D, McCorrister S, Ma J, Xu B, Reimer A, Knox JD, Wang G. Mass Spectrometry-Based Escherichia coli H Antigen/Flagella Typing: Validation and Comparison with Traditional Serotyping. Clin Chem 2016; 62:839-47. [PMID: 27052506 DOI: 10.1373/clinchem.2015.244236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Escherichia coli H antigen typing with antisera, a useful method for flagella clinical identification and classification, is a time-consuming process because of the need to induce flagella growth and the occurrence of undetermined strains. We developed an alternative rapid and analytically sensitive mass spectrometry (MS) method, termed MS-based H antigen typing (MS-H), and applied it at the protein sequence level for H antigen typing. We also performed a comparison with traditional serotyping on reference strains and clinical isolates. METHODS On the basis of international guidelines, the analytical selectivity and sensitivity, imprecision, correlation, repeatability, and reproducibility of the MS-H platform was evaluated using reference strains. Comparison of MS-H typing and serotyping was performed using 302 clinical isolates from 5 Canadian provinces, and discrepant results between the 2 platforms were resolved through whole genome sequencing. RESULTS Repeated tests on reference strain EDL933 demonstrated a lower limit of the measuring interval at the subsingle colony (16.97 μg or 1.465 × 10(7) cells) level and close correlation (r(2) > 0.99) between cell culture biomass and sequence coverage. The CV was <10.0% among multiple repeats with 4 reference strains. Intra- and interlaboratory tests demonstrated that the MS-H method was robust and reproducible under various sample preparation and instrumentation conditions. Using discrepancy analysis via whole genome sequencing, performed on isolates with discrepant results, MS-H accurately identified 12.3% more isolates than conventional serotyping. CONCLUSIONS MS-H typing of E. coli is useful for fast and accurate flagella typing and could be very useful during E. coli outbreaks.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada;
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Huixia Chui
- Henan Centre of Disease Control and Prevention, Henan Province, China
| | - Larissa Domish
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Drexler Hernandez
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stuart McCorrister
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bianli Xu
- Henan Centre of Disease Control and Prevention, Henan Province, China
| | - Aleisha Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - J David Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Baltrus DA. Divorcing Strain Classification from Species Names. Trends Microbiol 2016; 24:431-439. [PMID: 26947794 DOI: 10.1016/j.tim.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 02/01/2023]
Abstract
Confusion about strain classification and nomenclature permeates modern microbiology. Although taxonomists have traditionally acted as gatekeepers of order, the numbers of, and speed at which, new strains are identified has outpaced the opportunity for professional classification for many lineages. Furthermore, the growth of bioinformatics and database-fueled investigations have placed metadata curation in the hands of researchers with little taxonomic experience. Here I describe practical challenges facing modern microbial taxonomy, provide an overview of complexities of classification for environmentally ubiquitous taxa like Pseudomonas syringae, and emphasize that classification can be independent of nomenclature. A move toward implementation of relational classification schemes based on inherent properties of whole genomes could provide sorely needed continuity in how strains are referenced across manuscripts and data sets.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
29
|
Cheng K, Chui H, Domish L, Hernandez D, Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 2016; 10:346-57. [PMID: 26751976 PMCID: PMC5067657 DOI: 10.1002/prca.201500086] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS‐based diagnosis methods for bacteria identification and typing have been created, not only on well‐accepted MALDI‐TOF‐MS‐based fingerprint matches, but also on solving the insufficiencies of MALDI‐TOF‐MS‐based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS‐based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huixia Chui
- Henan Centre of Disease Control and Prevention, Henan Province, P. R. China
| | - Larissa Domish
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Drexler Hernandez
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|