1
|
Ma W, He C, Shen C, Zhang G, Pan J, Tang Y, Wang J, Gao T. Bead-based spontaneous Raman codes for multiplex immunoassay. Anal Chim Acta 2024; 1316:342813. [PMID: 38969419 DOI: 10.1016/j.aca.2024.342813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024]
Abstract
In the immunoassay process, for fulfilling the need to identify multiple analytes in a small amount of complex sample matrix, it is desirable to develop highly efficient and specific multiplex suspension array technology. Raman coding strategy offers an attractive solution to code the suspension arrays by simply combing narrow spectral bands with stable signal intensities through solid-phase synthesis on the resin beads. Based on this strategy, we report the bead-based spontaneous Raman codes for multiplex immunoassay. The study resulted in superior selectivity of the Raman-encoded beads for binding with single and multiple analytes, respectively. With the use of mixed types of Raman-encoded immunoassay beads, multiple targets in small amounts of samples were identified rapidly and accurately. By confirming the feasibility of bead-based spontaneous Raman codes for multiplex immunoassay, we anticipate this novel technology to be widely applied in the near future.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Caili He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Chengyue Shen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Guihao Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jun Pan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jinzhi Wang
- Department of Chemistry, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
2
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Zhu Y, Xia B, Xu H, Liu Z, Wang R, Cai Q, Zhao P, Qi Z. Rapid detection of human adenovirus subgroup B using recombinase polymerase amplification assay. Virus Genes 2024; 60:18-24. [PMID: 38175387 DOI: 10.1007/s11262-023-02044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Human adenovirus subgroup B (HAdV B) is one of the major pathogens of human respiratory virus infections, which has considerable transmission and morbidity in a variety of populations. Therefore, rapid and specific detection of HAdV B in clinical samples is essential for diagnosis. This study aimed to develop a product for rapid nucleic acid detection of HAdV B using recombinase polymerase amplification assay (RPA) and validate the performance of this method by using clinical samples. Results showed that this method achieved a lower limit of detection (LOD) of 10 copies/μL and had no cross-reactivity with other adenovirus subgroups or respiratory pathogens. In addition to high sensitivity, it can be completed within 30 min at 40 °C. There is no need to perform nucleic acid extraction on clinical samples. Taking qPCR as the gold standard, the RPA assay possessed a high concordance (Cohen's kappa, 0.896; 95% CI 0.808-0.984; P < 0.001), with a sensitivity of 87.80% and a specificity of 100.00%. The RPA assay developed in this study provided a simple and highly specific method, making it an important tool for rapid adenovirus nucleic acid detection and facilitating large-scale population screening in resource-limited settings.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Binghui Xia
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Haizhou Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zengxin Liu
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ru Wang
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ping Zhao
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
4
|
Rahman MM, Nooruzzaman M, Kabiraj CK, Mumu TT, Das PM, Chowdhury EH, Islam MR. Surveillance on respiratory diseases reveals enzootic circulation of both H5 and H9 avian influenza viruses in small-scale commercial layer farms of Bangladesh. Zoonoses Public Health 2021; 68:896-907. [PMID: 34219385 DOI: 10.1111/zph.12879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 01/27/2023]
Abstract
Poultry production in Bangladesh has been experiencing H5N1 highly pathogenic avian influenza (HPAI) and H9N2 low pathogenic avian influenza (LPAI) for the last 14 years. Vaccination of chickens against H5 HPAI is in practice since the end of 2012. Subsequently, the official reporting of HPAI outbreaks gradually decreased. However, the true extent of circulation of avian influenza virus (AIV) in commercial poultry production is not clear. To explore this, we conducted active surveillance in 422 small-scale commercial layer farms in 20 villages of Mymensingh and Tangail districts of Bangladesh during 2017 and 2018 for the presence of diseases with respiratory signs. A total of 88 farms with respiratory disease problems were identified and investigated during the surveillance. In addition, 22 small-scale commercial layer farms in the neighbouring areas with respiratory disease problem were also investigated on request from the farmers. Pooled samples of oropharyngeal swabs from live birds or respiratory tissues from dead birds of the farm suffering from respiratory disease problem were tested for molecular detection of avian influenza virus (AIV), Newcastle disease virus (NDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum and Avibacterium paragallinarum. A total of 110 farms (88 in the surveillance site and 22 in the neighbouring region) were investigated, and one or more respiratory pathogens were detected from 89 farms. AIV was detected in 57 farms often concurrently with other pathogens. Among these 57 farms, H5, H9, both H5 and H9 or non-H5 and non-H9 AIV were detected in 28, 9, 13 or 7 farms, respectively. Birds of most of the H5 AIV-positive farms did not present typical clinical signs or high mortality. Twenty such farms were observed longitudinally, which had only 1.05%-5.50% mortality but a marked drop in egg production. This widespread circulation of H5 AIV along with H9 AIV and other pathogens in small-scale commercial layer farms, often with low mortality, reaffirms the enzootic circulation of AIV in Bangladesh, which may escape syndromic surveillance focused on unusual mortality only. To reduce public health risks, strengthening of the control programme with comprehensive vaccination, enhanced biosecurity, improved surveillance and outbreak response is suggested.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Congriev Kumar Kabiraj
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanjin Tamanna Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Priya Mohan Das
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
6
|
Shi Y, Li C, Yang G, Xia X, Mao X, Fang Y, Zhang AM, Song Y. A rapid and accurate method for the detection of four aminoglycoside modifying enzyme drug resistance gene in clinical strains of Escherichia coli by a multiplex polymerase chain reaction. PeerJ 2020; 8:e8944. [PMID: 32309051 PMCID: PMC7153551 DOI: 10.7717/peerj.8944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/18/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Antibiotics are highly effective drugs used in the treatment of infectious diseases. Aminoglycoside antibiotics are one of the most common antibiotics in the treatment of bacterial infections. However, the development of drug resistance against those medicines is becoming a serious concern. AIM This study aimed to develop an efficient, rapid, accurate, and sensitive detection method that is applicable for routine clinical use. METHODS Escherichia coli was used as a model organism to develop a rapid, accurate, and reliable multiplex polymerase chain reaction (M-PCR) for the detection of four aminoglycoside modifying enzyme (AME) resistance genes Aac(6')-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3')-Ia. M-PCR was used to detect the distribution of AME resistance genes in 237 clinical strains of E. coli. The results were verified by simplex polymerase chain reaction (S-PCR). RESULTS Results of M-PCR and S-PCR showed that the detection rates of Aac(6')-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3')-Ia were 32.7%, 59.2%, 23.5%, and 16.8%, respectively, in 237 clinical strains of E. coli. Compared with the traditional methods for detection and identification, the rapid and accurate M-PCR detection method was established to detect AME drug resistance genes. This technique can be used for the clinical detection as well as the surveillance and monitoring of the spread of those specific antibiotic resistance genes.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Chao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Guangying Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Xiaoqin Mao
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yue Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
7
|
Biotic concerns in generating molecular diagnosis matrixes for 4 avian viruses with emphasis on Marek's disease virus. J Virol Methods 2019; 274:113708. [PMID: 31351169 PMCID: PMC7119753 DOI: 10.1016/j.jviromet.2019.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/18/2023]
Abstract
The great advance in the field of diagnosis of avian viruses is reflecting the highly sophisticated molecular assays of the human and general virology in providing highly sensitive and fast methods of diagnosis. The present review will discuss the biotic factors and the complexities that became evident with the evolution of the novel molecular diagnostic assays with emphasis on 4 avian viruses, chicken anemia, infectious laryngotracheitis, turkey meningoencephalitis, but mainly on Marek's disease virus. To create a biologically meaningful diagnosis, attention should be dedicated to various biotic factors and not only of the diagnostic assay. Included among the important factors are, (a) the sample examined and the sampling strategy, (b) the outcomes of the pathogen amplification ex vivo, (c) the sampling time and its reflection on the disease diagnosis, (d) the impact of simultaneous multiple virus-infections regarding the ability to demonstrate all pathogens and inter- and intra-interactions between the pathogens. A concerted consideration of the relevant factors and the use of advanced molecular diagnostic assay would yield biologically significant diagnosis in real-time that would beneficiate the poultry industry.
Collapse
|
8
|
Xiao Q, Yan L, Yao L, Lei J, Bi Z, Hu J, Chen Y, Fang A, Li H, Li Y, Yan Y, Zhou J. Development of oligonucleotide microarray for accurate and simultaneous detection of avian respiratory viral diseases. BMC Vet Res 2019; 15:253. [PMID: 31324180 PMCID: PMC6642548 DOI: 10.1186/s12917-019-1985-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV), infectious bronchitis virus (IBV), and Newcastle disease virus (NDV) are important avian pathogens that can cause enormous economic loss on the poultry industry. Different respiratory etiological agents may induce similar clinical signs that make differential diagnosis difficult. Importantly, AIV brings about severe threat to human public health. Therefore, a novel method that can distinguish these viruses quickly and simultaneously is urgently needed. RESULTS In this study, an oligonucleotide microarray system was developed. AIV, including H5, H7, and H9 subtypes; NDV; and IBV were simultaneously detected and differentiated on a microarray. Three probes specific for AIV, NDV, and IBV, as well as three other probes for differentiating H5, H7, and H9 of AIV, were first designed and jet-printed to predetermined locations of initiator-integrated poly(dimethylsiloxane) for the synchronous detection of the six pathogens. The marked multiplex reverse transcription polymerase chain reaction (PCR) products were hybridized with the specific probes, and the results of hybridization were read directly with the naked eyes. No cross-reaction was observed with 10 other subtypes of AIV and infectious bursal disease virus, indicating that the oligonucleotide microarray assay was highly specific. The sensitivity of the method was at least 100 times higher than that of the conventional PCR, and the detection limit of NDV, AIV, H5, H7, and H9 can reach 0.1 EID50 (50% egg infective dose), except that of IBV, which was 1 EID50 per reaction. In the validation of 93 field samples, AIV, IBV, and NDV were detected in 53 (56.99%) samples by oligonucleotide microarray and virus isolation and in 50 (53.76%) samples by conventional PCR. CONCLUSIONS We have successfully developed an approach to differentiate AIV, NDV, IBV, H5, H7, and H9 subtypes of AIV using oligonucleotide microarray. The microarray is an accurate, high-throughput, and relatively simple method for the rapid detection of avian respiratory viral diseases. It can be used for the epidemiological surveillance and diagnosis of AIV, IBV, and NDV.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianhua Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuqing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - An Fang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
9
|
Xiao Q, Bi Z, Yao L, Lei J, Yan Y, Zhou J, Yan L. Novel protein microarray for the detection of avian influenza virus antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. Avian Pathol 2019; 48:528-536. [PMID: 31232095 DOI: 10.1080/03079457.2019.1634791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Avian influenza virus (AIV) can cause serious zoonotic disease, thereby threatening the poultry industry and human health. An efficient and rapid detection approach is crucial to prevent and control the spread of avian influenza. In this study, a novel protein microarray was developed. Haemagglutinin proteins of H5 and H7 subtypes and nucleoprotein (NP) were purified and spotted onto the initiator-integrated poly-(dimethylsiloxane) as antigens. Monoclonal antibodies with inhibition effect were screened and utilized for the synchronous detection of three avian influenza antibodies in different species. In the protein microarray, the cut-off values were 40%, 50% and 30% inhibition for H5 antibody detection; 50%, 50% and 20% for NP antibody detection; 40%, 50% and 40% for H7 antibody detection in chicken, peacock and duck sera, respectively. The 95 serum samples were detected by microarray, and results were compared with the findings of AIV antibody test enzyme-linked immunosorbent assay (ELISA) or haemagglutination inhibition (HI) test. NP antibody detection in the microarray showed 100% (55/55) agreement ratio in chicken using ELISA. Compared with HI, H5 antibody detection in the microarray showed 100% (95/95) agreement ratio in chicken, peacock and duck, whilst those of H7 displayed 98.18% (54/55) agreement in chicken, 100% (20/20) in peacock and 90% (18/20) in duck. In conclusion, this novel protein microarray is a high-throughput and specific method for the detection of AIV antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. It can be applied to the serological diagnosis and epidemiological investigation of AIV. RESEARCH HIGHLIGHTS A novel protein microarray method has been developed. The microarray can detect AIV antibodies and distinguish between H5 and H7 subtypes. The study lays the foundation for simultaneous identification of multiple pathogens.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|
10
|
High-throughput Luminex xMAP assay for simultaneous detection of antibodies against rabbit hemorrhagic disease virus, Sendai virus and rabbit rotavirus. Arch Virol 2019; 164:1639-1646. [PMID: 30982935 PMCID: PMC7087182 DOI: 10.1007/s00705-019-04226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/01/2019] [Indexed: 11/17/2022]
Abstract
Rabbits are widely used as models in biological research, and the pathogen status of rabbits used in studies can directly affect the results of experiments. Serological surveillance is the common monitoring method used in laboratory animals. A rapid, sensitive, and cost-effective high-throughput Luminex xMAP assay could be an attractive alternative to labor-intensive enzyme-linked immunosorbent assay (ELISA) methods. In this study, recombinant proteins from rabbit hemorrhagic disease virus and rabbit rotavirus and whole viral lysates of Sendai virus were used as coating antigens in an xMAP assay for the simultaneous detection of antibodies against these pathogens. The xMAP assay showed high specificity, with no cross-reaction with other pathogens. The coefficient of variation for intra-assay and inter-assay comparisons was less than 3% and 4%, respectively, indicating good repeatability and stability of the assay. The xMAP assay exhibited similar limits of detection for rabbit hemorrhagic virus and Sendai virus and was less sensitive for the detection of rabbit rotavirus when compared with commercial ELISA kits. A total of 52 clinical samples were tested simultaneously using both the xMAP assay and ELISA kits. The results obtained using these two methods were 100% coincident. In summary, the novel xMAP assay offers an alternative choice for rapid and sensitive high-throughput detection of antibodies in rabbit serum and can be used as a daily monitoring tool for laboratory animals.
Collapse
|
11
|
The development of a multiplex serological assay for avian influenza based on Luminex technology. Methods 2019; 158:54-60. [DOI: 10.1016/j.ymeth.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023] Open
|
12
|
Aouini R, Laamiri N, Ghram A. Viral interference between low pathogenic avian influenza H9N2 and avian infectious bronchitis viruses in vitro and in ovo. J Virol Methods 2018; 259:92-99. [PMID: 29940196 PMCID: PMC7119724 DOI: 10.1016/j.jviromet.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay. RESULTS Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus. CONCLUSION It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.
Collapse
Affiliation(s)
- Rim Aouini
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Nacira Laamiri
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia; University of Carthage, Faculty of Sciences of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, Tunis, Belvedere, 1002, Tunisia.
| |
Collapse
|
13
|
Wu M, Cong F, Zhu Y, Lian Y, Chen M, Huang R, Guo P. Multiplex Detection of Five Canine Viral Pathogens for Dogs as Laboratory Animals by the Luminex xTAG Assay. Front Microbiol 2018; 9:1783. [PMID: 30174654 PMCID: PMC6107692 DOI: 10.3389/fmicb.2018.01783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/16/2018] [Indexed: 01/07/2023] Open
Abstract
More and more dogs have been used as a disease model for medical research and drug safety evaluation. Therefore, it is important to make sure that the dogs and their living houses are special pathogen free. In this study, the development and evaluation of a Luminex xTAG assay for simultaneous detection of five canine viruses was carried out, including canine distemper virus, canine parvovirus, canine parainfluenza virus, canine adenovirus, and rabies virus. Assay specificity was accomplished by targeting conserved genomic regions for each virus. Hybridization between multiplexed PCR products and the labeled fluorescence microspheres was detected in a high throughput format using a Luminex fluorescence reader. The Luminex xTAG assay showed high sensitivity with limits of detection for the five viruses was 100 copies/μL. Specificity of the xTAG assay showed no amplification of canine coronavirus, pseudorabies virus and canine influenza virus indicating that the xTAG assay was specific. Seventy-five clinical samples were tested to evaluate the xTAG assay. The results showed 100% coincidence with the conventional PCR method. This is the first report of a specific and sensitive multiplex Luminex xTAG assay for simultaneous detection of five major canine viral pathogens. This assay will be a useful tool for quality control and environmental monitoring for dogs used as laboratory animals, may even be applied in laboratory epidemiological investigations.
Collapse
Affiliation(s)
- Miaoli Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China.,Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuexiao Lian
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Meili Chen
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Pengju Guo
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| |
Collapse
|
14
|
Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7278459. [PMID: 30175140 PMCID: PMC6098882 DOI: 10.1155/2018/7278459] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
Collapse
|
15
|
Dou Y, Li Y, Ma C, Zhu H, Du J, Liu H, Liu Q, Chen R, Tan Y. Rapid diagnosis of human adenovirus B, C and E in the respiratory tract using multiplex quantitative polymerase chain reaction. Mol Med Rep 2018; 18:2889-2897. [PMID: 30015894 PMCID: PMC6102718 DOI: 10.3892/mmr.2018.9253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Human adenovirus (HAdV) is increasingly recognized as a major cause of human respiratory tract viral infections. Its outbreaks and epidemics in various populations resulted in considerable morbidity and mortality. Therefore, a rapid and specific assay for HAdV in clinical samples is of crucial importance to diagnosing HAdV infections. The present study aimed to develop and evaluate a multiplex quantitative polymerase chain reaction (qPCR) assay for the rapid detection and accurate quantification of HAdV B, C and E. The lower limit of detection for this assay was two genomic copies per reaction, and quantitative linearity ranged from 2 to 2×106 copies per reaction of the input viral DNA. Furthermore, 3,160 throat swab samples that tested HAdV negative by the immunofluorescence assay were collected and retested using the multiplex qPCR assay. The results showed that 2,906 samples were HAdV negative and the other 254 samples were HAdV positive. The HAdV species identified included B (184 samples), C (51 samples), and E (39 samples). Among the three HAdV species, HAdV B and E were detected from 8 samples, and HAdV C and E were detected from other 12 samples. The overall results demonstrated that the sensitivity and specificity of the proposed assay were 100% (254/254) and 99.6% (2894/2906), respectively. From the perspective of routine clinical diagnosis, this assay represented a rapid (≤1.5 h) and economic strategy, and had the potential to be used for the rapid and accurate diagnosis of human respiratory infections caused by HAdV B, C and E.
Collapse
Affiliation(s)
- Yuhong Dou
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Yuxia Li
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Caifeng Ma
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Huijun Zhu
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Jikun Du
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Helu Liu
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Qiong Liu
- Department of Clinical Laboratory, Shenzhen Shajing Hospital Affiliated of Guangzhou Medical University, Shenzhen, Guangdong 518104, P.R. China
| | - Rui Chen
- Department of Clinical Laboratory, The Second People's Hospital of Futian District, Shenzhen, Guangdong 518049, P.R. China
| | - Ying Tan
- Department of Biology, South University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
16
|
Laamiri N, Aouini R, Marnissi B, Ghram A, Hmila I. A multiplex real-time RT-PCR for simultaneous detection of four most common avian respiratory viruses. Virology 2017; 515:29-37. [PMID: 29223788 DOI: 10.1016/j.virol.2017.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Abstract
A one-step multiplex real-time reverse transcription-PCR (rRT-PCR) assay was developed for simultaneous detection and quantification of four avian respiratory viruses: avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV) and infectious laryngotracheitis virus (ILTV). In comparison with the singleplex rRT-PCR, the specificity, the sensitivity and the reproducibility of the new assay were evaluated and validated using 70 clinical samples. The optimal cutoff point, the corresponding limit of quantification (LoQ) and the limit of detection (LoD) were statistical established based on receiver operating characteristic (ROC) curve analysis. The results showed that the multiplex assay presents higher sensitivity and specificity. Correlation coefficients (R2) and amplification efficiencies (E) of all singleplex and multiplex rRT-PCR reactions are within the acceptable range. The 95% LoDs of multiplex assay were in the range [3-19] copies genomic/ µl, and its corresponding cutoff cycles were in the range [34.16-36.59]. No competitive inhibition for the detection of the four targets and no specific amplification or cross reactivity with other tested viruses was observed. Excellent results were attained in the inter-assay and intra-assay reproducibility evaluation. All identified samples by the multiplex rRT-PCR assay proved to be 100% concordant with the results of the singleplex assays. The results achieved showed that the multiplex assay is very suitable as a routine laboratory test for rapid and specific detection and quantification of co-infections in field samples.
Collapse
Affiliation(s)
- Nacira Laamiri
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia.; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia.
| | - Rim Aouini
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia.; University of Carthage, Faculty of Sciences Bizerte, 7021 Zarzouna Bizerte, Tunisia
| | - Boutheina Marnissi
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia
| | - Abdeljelil Ghram
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia
| | - Issam Hmila
- University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia
| |
Collapse
|
17
|
Chen L, Sun F, Yang X, Jin Y, Shi M, Wang L, Shi Y, Zhan C, Wang Q. Correlation between RNA-Seq and microarrays results using TCGA data. Gene 2017; 628:200-204. [PMID: 28734892 DOI: 10.1016/j.gene.2017.07.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023]
Abstract
RNA sequencing (RNA-Seq) and microarray are two of the most commonly used high-throughput technologies for transcriptome profiling; however, they both have their own inherent strengths and limitations. This research aims to analyze the correlation between microarrays and RNA-Seq detection of transcripts in the same tissue sample to explore the reproducibility between the techniques. Using data of RNA-Seq v2 and three different microarrays provided by The Cancer Genome Atlas, 11,120 genes of 111 lung squamous cell carcinoma samples were simultaneously detected by the four methods. Then we analyzed the Pearson correlation between microarrays and RNA-Seq. Finally, in the six comparison results, 9984 (89.8%) genes, irrespective of which two methods were used, simultaneously showed the existence of correlation, whereas only 83 (0.1%) genes proved to have no significant correlation in either comparison. In addition, the comparisons between 3266 (29.3%) genes showed high correlation (R≥0.8) in all six comparisons, only for 1643 (14.8%) genes correlation were not as high in either comparison. Meanwhile, transcripts with extreme high or low expression levels were more highly discrepant across the methods. In conclusion, we found that, for most transcripts, the results obtained by RNA-Seq and microarrays were highly reproducible.
Collapse
Affiliation(s)
- Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|