1
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Mohamed N, Valdez RR, Fandiño C, Baudrit M, Falci DR, Murillo JDC. In vitro activity of ceftaroline against bacterial isolates causing skin and soft tissue and respiratory tract infections collected in Latin American countries, ATLAS program 2016-2020. J Glob Antimicrob Resist 2024; 36:4-12. [PMID: 38016592 DOI: 10.1016/j.jgar.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVES Ceftaroline, a broad-spectrum cephalosporin, has activity against Gram-positive and several Gram-negative bacteria (GNB). This study aimed to evaluate the antimicrobial activity of ceftaroline and comparators against isolates causing skin and soft tissue infections (SSTIs) and respiratory tract infections (RTIs) collected in Latin America (LATAM) in 2016-2020 as part of the Antimicrobial Testing Leadership and Surveillance program (ATLAS). METHODS Minimum inhibitory concentrations were determined using both Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. RESULTS Ceftaroline demonstrated potent activity against methicillin-susceptible Staphylococcus aureus (CLSI/EUCAST: MIC90 0.25 mg/L; susceptibility 100%), whereas activity against methicillin-resistant S. aureus varied for SSTIs (MIC90 1 mg/L; susceptibility 92.5%) and RTIs isolates (MIC90 2 mg/L; susceptibility 72.9%) isolates. For Streptococcus pneumoniae, particularly penicillin-resistant isolates commonly causing respiratory infections, high ceftaroline activity (MIC90 0.25 mg/L; susceptibility 100%/98.4%) was noted. All isolates of β-hemolytic streptococci were susceptible to ceftaroline (S. agalactiae: MIC90 0.03 mg/L [SSTIs]; MIC90 0.015 mg/L (RTIs); susceptibility 100%; S. pyogenes: MIC90 0.008 mg/L; susceptibility 100%). Ceftaroline was highly active against Haemophilus influenzae, including β-lactamase positive isolates (MIC90 0.06 mg/L; susceptibility 100%/85.7%). Ceftaroline demonstrated high activity against non-ESBL-producing GNB (E. coli: MIC90 0.5 mg/L, susceptibility 91.9%; K. pneumoniae: MIC90 0.25 mg/L, susceptibility 95.1%; K. oxytoca, MIC90 0.5 mg/L; susceptibility 95.7%). CONCLUSION Ceftaroline was active against the recent collection of bacterial pathogens commonly causing SSTIs and RTIs in LATAM. Local and regional surveillance of antimicrobial resistance patterns are crucial to understand evolving resistance and guide treatment management.
Collapse
Affiliation(s)
| | | | | | | | - Diego R Falci
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, RS, Brazil
| | - Jorge Damián Chaverri Murillo
- Infectious Diseases Department, Hospital Dr. Rafael Ángel Calderón Guardia, San José, Costa Rica; School of Medicine, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
3
|
Lynch JP, Zhanel GG. Escalation of antimicrobial resistance among MRSA part 2: focus on infections and treatment. Expert Rev Anti Infect Ther 2023; 21:115-126. [PMID: 36469648 DOI: 10.1080/14787210.2023.2154654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION MRSA is associated with causing a variety of infections including skin and skin structure infections, catheter and device-related (e.g. central venous catheter, prosthetic heart valve) infections, infectious endocarditis, blood stream infections, bone, and joint infections (e.g. osteomyelitis, prosthetic joint, surgical site), central nervous system infections (e.g. meningitis, brain/spinal cord abscess, ventriculitis, hydrocephalus), respiratory tract infections (e.g. hospital-acquired pneumonia, ventilator-associated pneumonia), urinary tract infections, and gastrointestinal infections. The emergence and spread of multidrug resistant (MDR) MRSA clones has limited therapeutic options. Older agents such as vancomycin, linezolid and daptomycin and a variety of newer MRSA antimicrobials and combination therapy are available to treat serious MRSA infections. AREAS COVERED The authors discuss infections caused by MRSA as well as common older and newer antimicrobials and combination therapy for MRSA infections. A literature search of MRSA was performed via PubMed (up to September 2022), using the keywords: antimicrobial resistance; β-lactams; multidrug resistance, Staphylococcus aureus, vancomycin; glycolipopeptides. EXPERT OPINION Innovation, discovery, and development of new and novel classes of antimicrobial agents are critical to expand effective therapeutic options. The authors encourage the judicious use of antimicrobials in accordance with antimicrobial stewardship programs along with infection-control measures to minimize the spread of MRSA.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, the David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Professor-Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Abdizadeh N, Haeili M, Kafil HS, Ahmadi A, Feizabadi MM. Evaluation of in vitro activity of ceftaroline on methicillin resistant Staphylococcus aureus blood isolates from Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:442-448. [PMID: 34557271 PMCID: PMC8421581 DOI: 10.18502/ijm.v13i4.6967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Ceftaroline (CPT) is a novel cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Despite its recent introduction, CPT resistance in MRSA has been described worldwide. We aimed in the current study to evaluate the in vitro activity of CPT against 91 clinical MRSA and 3 MSSA isolates. Materials and Methods: Susceptibility of isolates to CPT was tested using E-test and disk diffusion (DD) method. The nucleotide sequence of the mecA gene and molecular types of isolates with reduced susceptibility to CPT were further studied to identify resistance conferring mutations in PBP2a and the genetic relatedness of the isolates respectively. Results: Overall, 92.5% of isolates were found to be CPT susceptible (MICs≤1mg/l) and 7 MRSA isolates were characterized with MIC=2mg/l and categorized as susceptible dose dependent. Compared to E-test, DD revealed a categorical agreement rate of 93.6% and the obtained rates for minor, major /very major error were found to be 6.3% and 0% respectively. The MRSA isolates with increased CPT MICs (n=7), belonged to spa types t030 (n=6) and t13927 (n=1) and all carried N146K substitution in PBP2a allosteric domain, except for one isolate which harbored a wild-type PBP2a. Conclusion: While resistance to CPT was not detected we found increased CPT MICs in 7.69% of MRSA isolates. Reduced susceptibility to CPT in the absence of mecA mutations is indicative of contribution of secondary chromosomal mutations in resistance development.
Collapse
Affiliation(s)
- Negin Abdizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ahmadi
- Pharmaceutical Nanotechnology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Huang YT, Kuo YW, Teng LJ, Liao CH, Hsueh PR. Comparison of Etest and broth microdilution for evaluating the susceptibility of Staphylococcus aureus and Streptococcus pneumoniae to ceftaroline and of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa to ceftazidime/avibactam. J Glob Antimicrob Resist 2021; 26:301-307. [PMID: 34303027 DOI: 10.1016/j.jgar.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Decreased susceptibility to ceftazidime/avibactam (CZA) and ceftaroline (CPT) has been reported during antimicrobial resistance surveillance and therapy. Conventional laboratories are unable to provide timely susceptibility testing for CZA and CPT because these antimicrobial agents are not incorporated in automated susceptibility testing systems. METHODS We evaluated Etest and the Sensititre broth microdilution (BMD) method for testing CZA against carbapenem-resistant Gram-negative bacilli and CPT against important Gram-positive cocci bloodstream isolates. Genotypes of carbapenemases in Enterobacterales were also determined using the Xpert® Carba-R assay. RESULTS Etest showed ≥90% agreement with Sensititre BMD for carbapenem-resistant Klebsiella pneumoniae (CRKP) (n = 187), carbapenem-resistant Escherichia coli (CREC) (n = 28) and Streptococcus pneumoniae (n = 35); however, the very major error rate exceeded 3%. Agreement between Etest and Sensititre BMD was <90% for carbapenem-resistant Pseudomonas aeruginosa (CRPA) (n = 81), methicillin-susceptible Staphylococcus aureus (MSSA) (n = 92) and methicillin-resistant S. aureus (MRSA) (n = 170). Both agents remained potent with a high susceptibility rate by Sensititre BMD as follows: CZA against CRKP (95.0%), CREC (89.3%) and CRPA (84.5%); and CPT against MSSA (100.0%), MRSA (95.3%) and S. pneumoniae (94.3%). CZA was active against blaKPC-carrying CRKP (98.5% susceptible), and resistance in the majority of CZA-resistant Enterobacterales isolates (6 of 10 CRKP and 2 of 3 CREC) was due to the presence of a metallo-β-lactamase gene. CONCLUSION Our results suggest that interpretation of susceptibility results obtained by Etest for both agents should be undertaken cautiously and remains challenging.
Collapse
Affiliation(s)
- Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yao-Wen Kuo
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Jene Teng
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsing Liao
- College of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Morroni G, Fioriti S, Salari F, Brenciani A, Brescini L, Mingoia M, Giovanetti E, Pocognoli A, Giacometti A, Molinelli E, Offidani A, Simonetti O, Cirioni O. Characterization and Clonal Diffusion of Ceftaroline Non-Susceptible MRSA in Two Hospitals in Central Italy. Antibiotics (Basel) 2021; 10:antibiotics10081026. [PMID: 34439075 PMCID: PMC8388857 DOI: 10.3390/antibiotics10081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Ceftaroline represents a novel fifth-generation cephalosporin to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Methods: Ceftaroline susceptibility of 239 MRSA isolates was assessed by disk diffusion and a MIC test strip following both EUCAST and CLSI guidelines. Non-susceptible isolates were epidemiologically characterized by pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing, and further investigated by PCR and whole genome sequencing to detect penicillin-binding protein (PBP) mutations as well as antibiotic resistance and virulence genes. Results: Fourteen isolates out of two hundred and thirty-nine (5.8%) were non-susceptible to ceftaroline (MIC > 1 mg/L), with differences between the EUCAST and CLSI interpretations. The characterized isolates belonged to seven different pulsotypes and three different clones (ST228/CC5-t041-SCCmecI, ST22/CC22-t18014-SCCmecIV, and ST22/CC22-t022-SCCmecIV), confirming a clonal diffusion of ceftaroline non-susceptible strains. Mutations in PBPs involved PBP2a for ST228-t041-SCCmecI strains and all the other PBPs for ST22-t18014-SCCmecIV and ST22-t022-SCCmecIV clones. All isolates harbored antibiotic resistance and virulence genes with a clonal distribution. Conclusion: Our study demonstrated that ceftaroline non-susceptibile isolates belonged not only to ST228 strains (the most widespread clone in Italy) but also to ST22, confirming the increasing role of these clones in hospital infections.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Federica Salari
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | | | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| | - Elisa Molinelli
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
| | - Oriana Simonetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0715963494
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (F.S.); (A.B.); (L.B.); (M.M.); (A.G.); (O.C.)
| |
Collapse
|