1
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
2
|
Wang X, Feng L, Li M, Dong W, Luo X, Shang D. Membrane-active and DNA binding related double-action antimycobacterial mechanism of antimicrobial peptide W3R6 and its synthetic analogs. Biochim Biophys Acta Gen Subj 2023:130415. [PMID: 37336295 DOI: 10.1016/j.bbagen.2023.130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengmiao Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Xueyue Luo
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
3
|
Jain B, Kulkarni S. Development of DNA Bio-chip for Detection of Mutations of rpoB, embB and inhA Genes in Drug-Resistant Mycobacterium Tuberculosis. Indian J Clin Biochem 2023; 38:242-250. [PMID: 37025431 PMCID: PMC10070561 DOI: 10.1007/s12291-022-01044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Drug-resistant (DR) tuberculosis (TB) is a global threat to health security and TB control programs. Since conventional drug susceptibility testing (DST) takes several weeks, we have developed a molecular method for the rapid identification of DR strains of Mycobacterium Tuberculosis (M.tb) utilizing DNA bio-chips. DNA bio-chips were prepared by immobilizing oligonucleotides (probes) on highly microporous polycarbonate track-etched membranes (PC-TEM) as novel support. Bio-chip was designed to contain 15 specific probes to detect mutations in three genes (rpoB, embB, and inhA). A sensitive and specific chemiluminescence based bio-chip assay was developed based on multiplex PCR followed by hybridization on bio-chip. Fifty culture isolates were used to evaluate the ability of in-house developed bio-chip to detect the mutations. Bio-chip analysis shows that 37.7% of samples show wild type sequences, 53.3% of samples were monoresistance showing resistance to either rifampicin (RMP), isoniazid (INH), or ethambutol (EMB). 4.4% of samples were polydrug resistant showing mutations in both the rpoB gene and embB gene while 4.4% of samples were multidrug-resistant (MDR), harboring mutations in the rpoB and inhA genes. The results were compared with DST and sequencing. Compared to sequencing, bio-chip assay shows a sensitivity of 96.5% and specificity of 100% for RMP resistance. For EMB and INH, the results were in complete agreement with sequencing. This study demonstrates the first-time use of PC-TEMs for developing DNA bio-chip for the detection of mutations associated with drug resistance in M.tb. Developed DNA bio-chip accurately detected different mutations present in culture isolates and thus provides detailed and reliable data for clinical diagnosis.
Collapse
Affiliation(s)
- Bharti Jain
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Yan M, Zhao Z, Wu T, Liu T, Xu G, Xu H, Ying B. Highly Sensitive Detection of Complicated Mutations of Drug Resistance in Mycobacterium tuberculosis Using a Simple, Accurate, Rapid, and Low-Cost Tailored-Design Competitive Wild-Type Blocking Assay. SMALL METHODS 2023; 7:e2201322. [PMID: 36683186 DOI: 10.1002/smtd.202201322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Establishing simple, rapid, and highly sensitive molecular assays is crucial for timely diagnosis and effective treatment of drug-resistant tuberculosis. However, current genotypic drug susceptibility testing (DST) still encounters enormous challenges including lower sensitivity than phenotypic DST and insufficient accuracy. Herein, a simple, low-cost, multiplex real-time polymerase chain reaction-based assay is established to achieve highly sensitive detection of low-abundant mutants through competitive wild-type blocking (COWTB). Analytical performance of the COWTB assay can achieve 1% or even 0.1% mutants under background of 10 000 wild-type genomes/test. Furthermore, clinical practice feasibility is evaluated to identify resistance to rifampicin (RIF), isoniazid (INH), and streptomycin (SM) on 92 actual clinical samples, its sensitivity is 93.8% for RIF and 100% for INH and SM, and specificity is 100% each for RIF, INH, and SM when using DNA sequencing as the reference standard. In comparison, the sensitivity of reverse dot blotting assay commonly used in clinics is 93.8%, 90.0%, and 84.6%, and the specificity is 96.1%, 98.6%, and 100% for RIF, INH, and SM, respectively. Importantly, the COWTB assay can also be applicable for other drug-resistant mutations and pave a promising detection strategy to fill the gap between phenotypic and genotypic DST for detecting low-abundant drug-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Mengqiu Yan
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Wu
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest Minzu University), Yinchuan, 750002, P. R. China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
5
|
Saikaew S, Thongprachum A, Pongsararuk R, Thanraka A, Kunyanone N, Chaiyasirinroje B, Luangsook P, Butr-Indr B, Phunpae P, Wattananandkul U. Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand. Antibiotics (Basel) 2022; 11:antibiotics11121733. [PMID: 36551389 PMCID: PMC9774302 DOI: 10.3390/antibiotics11121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The epidemiology and genotypes of multidrug-resistant tuberculosis (MDR-TB), a global public health threat, remain limited. The genotypic distribution and factors associated with MDR-TB in upper northern Thailand between 2015 and 2019 were investigated. The DNA sequencing of rpoB, katG, and inhA promoter of 51 multidrug-resistant Mycobacterium tuberculosis isolates revealed nine patterns of the rpoB gene mutation distributed in seven provinces. The S531L mutation was the most common mutation in all provinces. The rpoB mutation in Chiang Rai, Chiang Mai, and Lampang was highly diverse compared to other areas. Here, the mutation profiles that have yet to be reported in northern Thailand (H526P, Q513P, and H526C) were detected in Chiang Rai province. The S315T katG mutation was the most common genotype associated with INH resistance, especially in Chiang Mai and Lampang. Further analysis of data from 110 TB patients (42 MDR-TB and 68 drug-susceptible TB) revealed that <60 years of age was a significant factor associated with MDR-TB (OR = 0.316, 95% CI 0.128−0.784, p = 0.011) and ≥60 years of age was a significant factor associated with the S315T katG-mutation (OR = 8.867, 95% CI 0.981−80.177, p = 0.047). This study highlighted the necessity for continuous surveillance and risk factor monitoring for effective control of MDR-TB.
Collapse
Affiliation(s)
- Sukanya Saikaew
- Faculty of Public Health, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aksara Thongprachum
- Faculty of Public Health, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Rodjana Pongsararuk
- Office of Disease Prevention and Control, 1 (ODPC 1) Chiang Mai, Department of Disease Control, Ministry of Public Health Thailand, Chiang Mai 50000, Thailand
| | - Aungkana Thanraka
- Department of Medical Technology, Chiangrai Prachanukroh Hospital, Chiang Rai 57000, Thailand
| | - Naowarat Kunyanone
- Department of Medical Technology, Chiangrai Prachanukroh Hospital, Chiang Rai 57000, Thailand
| | | | - Praphan Luangsook
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Epidemiology Research Group of Infectious Disease (ERGID), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-93-5068 (ext. 15)
| |
Collapse
|
6
|
Wang Z, Guo T, Jiang T, Zhao Z, Zu X, li L, Zhang Q, Hou Y, Song K, Xue Y. Regional distribution of Mycobacterium tuberculosis infection and resistance to rifampicin and isoniazid as determined by high-resolution melt analysis. BMC Infect Dis 2022; 22:812. [PMCID: PMC9620668 DOI: 10.1186/s12879-022-07792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Identifying the transmission mode and resistance mechanism of Mycobacterium tuberculosis (MTB) is key to prevent disease transmission. However, there is a lack of regional data. Therefore, the aim of this study was to identify risk factors associated with the transmission of MTB and regional patterns of resistance to isoniazid (INH) and rifampicin (RFP), as well as the prevalence of multidrug-resistant tuberculosis (MDR-TB). Methods High-resolution melt (HRM) analysis was conducted using sputum, alveolar lavage fluid, and pleural fluid samples collected from 17,515 patients with suspected or confirmed MTB infection in the downtown area and nine counties of Luoyang City from 2019 to 2021. Results Of the 17,515 patients, 82.6% resided in rural areas, and 96.0% appeared for an initial screening. The HRM positivity rate was 16.8%, with a higher rate in males than females (18.0% vs. 14.1%, p < 0.001). As expected, a positive sputum smear was correlated with a positive result for HRM analysis. By age, the highest rates of MTB infection occurred in males (22.9%) aged 26–30 years and females (28.1%) aged 21–25. The rates of resistance to RFP and INH and the incidence of MDR were higher in males than females (20.5% vs. 16.1%, p < 0.001, 15.9% vs. 12.0%, p < 0.001 and 12.9% vs. 10.2%, p < 0.001, respectively). The HRM positivity rate was much higher in previously treated patients than those newly diagnosed for MTB infection. Notably, males at the initial screening had significantly higher rates of HRM positive, INH resistance, RFP resistance, and MDR-TB than females (all, p < 0.05), but not those previously treated for MTB infection. The HRM positivity and drug resistance rates were much higher in the urban vs. rural population. By multivariate analyses, previous treatment, age < 51 years, residing in an urban area, and male sex were significantly and positively associated with drug resistance after adjusting for smear results and year of testing. Conclusion Males were at higher risks for MTB infection and drug resistance, while a younger age was associated with MTB infection, resistance to INH and RFP, and MDR-TB. Further comprehensive monitoring of resistance patterns is needed to control the spread of MTB infection and manage drug resistance locally.
Collapse
Affiliation(s)
- Zhenzhen Wang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China ,grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Tengfei Guo
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Tao Jiang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Zhanqin Zhao
- grid.453074.10000 0000 9797 0900Animal Science and Technology, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Xiangyang Zu
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Long li
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Qing Zhang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Yi Hou
- Luoyang City CDC, Luo Yang, 471000 China
| | - Kena Song
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Yun Xue
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| |
Collapse
|
7
|
Detection of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis Clinical Isolates from Sputum Samples by High-Resolution Melting Analysis. Curr Microbiol 2022; 79:257. [PMID: 35852629 DOI: 10.1007/s00284-022-02960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The effective management of multidrug-resistant tuberculosis (MDR-TB) and the need for rapid and accurate screening of rifampin (RIF) and isoniazid (INH)-resistant Mycobacterium tuberculosis (Mtb) isolates are the most fundamental and difficult challenges facing the global TB control. The present study aimed to compare the diagnostic accuracy of high-resolution melting-curve analysis (HRMA) in comparison to multiplex allele-specific PCR (MAS-PCR) and xpert MTB/RIF as well as the conventional drug-susceptibility test (DST) and gene sequencing for the detection of INH and RIF resistance in the Mtb isolates. In the present study, a total of 431 Mtb isolates including 11 MDR (%2.55), 7 INH resistance (%1.62), two RIF resistance (%0.46), and 411 sensitive isolates were phenotypically confirmed. HRMA assay identified katG gene mutations and the mabA-inhA promoter region in 15 of 18 INH-resistant samples and rpoB gene mutations were successfully evaluated in 11 out of 13 RIF-resistant samples. The sensitivity and specificity of the HRMA method were 83.3% and 98.8% for INH and 84.6% and 99% for RIF, respectively. The most common mutation in RIF-resistance-determining region (RRDR) occurred at codon 531 (TCG → TTG)(84.6%) and then at codon 513 (CAA → GTA)(7.6%) and 526 (CAC → TAC) (7.6%), which resulted in the amino-acid changes. Also, 88.8% of INH-resistant samples had mutations in the katG gene and the mabA-inhA promoter region, of which the highest mutation occurred at codon 315 (AGC → ACC) of the katG gene. In conclusion, all these results indicated that the sensitivity and specificity of the HRM method were increased when the katG gene and the mabA-inhA promoter region were used as a target.
Collapse
|
8
|
Xie NG, Zhang K, Song P, Li R, Luo J, Zhang DY. High-Throughput Variant Detection Using a Color-Mixing Strategy. J Mol Diagn 2022; 24:878-892. [PMID: 35718091 PMCID: PMC9379672 DOI: 10.1016/j.jmoldx.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Many diseases are related to multiple genetic alterations along a single gene. Probing for highly multiple (>10) variants in a single quantitative PCR tube is not possible because of a limited number of fluorescence channels and one variant per channel, so many more tubes are needed. Herein, a novel color-mixing strategy that uses fluorescence combinations as digital color codes to probe multiple variants simultaneously was experimentally validated. The color-mixing strategy relies on a simple intratube assay that can probe for 15 variants as part of an intertube assay that can probe for an exponentially increased number of variants. This strategy is achieved by using multiplex double-stranded toehold probes modified with fluorophores and quenchers; the probes are designed to be quenched or luminous after binding to wild-type or variant templates. The color-mixing strategy was used to probe for 21 pathogenic variants in thalassemia and to distinguish between heterozygous and homozygous variants in six tubes, with a specificity of 99% and a sensitivity of 94%. To support tuberculosis diagnosis, the same strategy was applied to simultaneously probe in Mycobacterium tuberculosis for rifampicin-resistance mutations occurring within one 81-bp region and one 48-bp region in the rpoB gene, plus five isoniazid-resistance mutations in the inhA and katG genes.
Collapse
Affiliation(s)
- Nina Guanyi Xie
- Department of Bioengineering, Rice University, Houston, Texas
| | - Kerou Zhang
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, Texas
| | | | | | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
9
|
Identification of S315T mutation in katG gene using probe-free exclusive mismatch primers for a rapid diagnosis of isoniazid-resistant Mycobacterium tuberculosis by real-time loop-mediated isothermal amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Kasinrerk W, Tayapiwatana C, Butr-Indr B. The Regulation of ManLAM-Related Gene Expression in Mycobacterium tuberculosis with Different Drug Resistance Profiles Following Isoniazid Treatment. Infect Drug Resist 2022; 15:399-412. [PMID: 35153492 PMCID: PMC8828085 DOI: 10.2147/idr.s346869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) remains a global health concern because of the development of drug resistance. The adaptability of MTB in response to a variety of environmental stresses is a crucial strategy that supports their survival and evades host defense mechanisms. Stress regulates gene expression, particularly virulence genes, leading to the development of drug tolerance. Mannose-capped lipoarabinomannan (ManLAM) is a critical component of the cell wall, functions as a virulence factor and influences host defense mechanisms. Purpose This study focuses on the effect of isoniazid (INH) stress on the regulation of ManLAM-related genes, to improve our understanding of virulence and drug resistance development in MTB. Materials and Methods MTB with distinct drug resistance profiles were used for gene expression analysis. Multiplex-real time PCR assay was performed to monitor stress-related genes (hspX, tgs1, and sigE). The expression levels of ManLAM-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC) were quantified by qRT-PCR. Sequence analysis of drug resistance-associated genes (inhA, katG, and rpoB) and ManLAM-related genes were performed to establish a correlation between genetic variation and gene expression. Results INH treatment activates the stress response mechanism in MTB, resulting in a distinct gene expression pattern between drug resistance and drug-sensitive TB. In response to INH, hspX was up-regulated in RIF-R and MDR. tgs1 was strongly up-regulated in MDR, whereas sigE was dramatically up-regulated in the drug-sensitive TB. Interestingly, ManLAM-related genes were most up-regulated in drug resistance, notably MDR (pimB, mptA, dprE1, and embC), implying a role for drug resistance and adaptability of MTB via ManLAM modulation. Conclusion This study establishes a relationship between the antibiotic stress response mechanism and the expression of ManLAM-related genes in MTB samples with diverse drug resistance profiles. The novel gene expression pattern in this work is valuable knowledge that can be applied for TB monitoring and treatment in the future.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Correspondence: Bordin Butr-Indr, Tel +66 53945086 ext. 15, Fax +66 53217143, Email ;
| |
Collapse
|
11
|
Micheni LN, Kassaza K, Kinyi H, Ntulume I, Bazira J. Rifampicin and isoniazid drug resistance among patients diagnosed with pulmonary tuberculosis in southwestern Uganda. PLoS One 2021; 16:e0259221. [PMID: 34714879 PMCID: PMC8555815 DOI: 10.1371/journal.pone.0259221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has become a major threat to the control of tuberculosis globally. Uganda is among the countries with a relatively high prevalence of tuberculosis despite significant control efforts. In this study, the drug resistance of Mycobacterium tuberculosis to rifampicin (RIF) and isoniazid (INH) was investigated among patients diagnosed with pulmonary tuberculosis in Southwestern Uganda. A total of 283 sputum samples (266 from newly diagnosed and 17 from previously treated patients), collected between May 2018 and April 2019 at four different TB diagnostic centres, were assessed for RIF and INH resistance using high-resolution melt curve analysis. The overall prevalence of monoresistance to INH and RIF was 8.5% and 11% respectively, while the prevalence of MDR-TB was 6.7%. Bivariate analysis showed that patients aged 25 to 44 years were at a higher risk of developing MDR-TB (cOR 0.253). Furthermore, among the newly diagnosed patients, the prevalence of monoresistance to INH, RIF and MDR-TB was 8.6%, 10.2% and 6.4% respectively; while among the previously treated cases, these prevalence rates were 5.9%, 23.5% and 11.8%. These rates are higher than those reported previously indicating a rise in MTB drug resistance and may call for measures used to prevent a further rise in drug resistance. There is also a need to conduct frequent drug resistance surveys, to monitor and curtail the development and spread of drug-resistant TB.
Collapse
Affiliation(s)
- Lisa Nkatha Micheni
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kennedy Kassaza
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Hellen Kinyi
- Department of Biochemistry, School of Medicine, Kabale University, Kabale, Uganda
| | - Ibrahim Ntulume
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Joel Bazira
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- * E-mail:
| |
Collapse
|
12
|
Keikha M, Karbalaei M. High resolution melting assay as a reliable method for diagnosing drug-resistant TB cases: a systematic review and meta-analysis. BMC Infect Dis 2021; 21:989. [PMID: 34551717 PMCID: PMC8456628 DOI: 10.1186/s12879-021-06708-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is one of the most contagious infectious diseases worldwide. Currently, drug-resistant Mycobacterium tuberculosis (Mtb) isolates are considered as one of the main challenges in the global TB control strategy. Rapid detection of resistant strains effectively reduces morbidity and mortality of world's population. Although both culture and conventional antibiotic susceptibility testing are time-consuming, recent studies have shown that high resolution melting (HRM) assay can be used to determine the types of antibiotic resistance. In the present meta-analysis, we evaluated the discriminative power of HRM in detecting all drug-resistance cases of TB. METHODS A systematic search was performed using databases such as Cochrane Library, Scopus, PubMed, Web of Science, and Google Scholar. Related studies on the effect of HRM in the diagnosis of drug-resistant (DR) TB cases were retrieved by April 2021. We used Meta-Disc software to evaluate the pooled diagnostic sensitivity and specificity of HRM for the detection of each type of drug-resistant cases. Finally, diagnostic value of HRM was characterized by summary receiver operating characteristic (SROC) curve and the area under the curve (AUC) method. RESULTS Overall 47 studies (4,732 Mtb isolates) met our criteria and were included in the present meta-analysis. Sensitivity, specificity, and AUC of HRM were measured for antibiotics such as isoniazid (93%, 98%, 0.987), rifampin (94%, 97%, 0963), ethambutol (82%, 87%, 0.728), streptomycin (82%, 95%, 0.957), pyrazinamide (72%, 84%, 0.845), fluoroquinolones (86%, 99%, 0.997), MDR-TB (90%, 98%, 0.989), and pan-drug-resistant TB (89%, 95%, 0.973). CONCLUSIONS The HRM assay has high accuracy for the identification of drug-resistant TB, particularly firs-line anti-TB drugs. Therefore, this method is considered as an alternative option for the rapid diagnosis of DR-TB cases. However, due to heterogeneity of included studies, the results of HRM assays should be interpreted based on conventional drug susceptibility testing.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
13
|
Low-Level Rifampin Resistance and rpoB Mutations in Mycobacterium tuberculosis: an Analysis of Whole-Genome Sequencing and Drug Susceptibility Test Data in New York. J Clin Microbiol 2021; 59:JCM.01885-20. [PMID: 32999007 DOI: 10.1128/jcm.01885-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations that do not confer high levels of RIF resistance, as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here, we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 2.5-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 μg/ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.
Collapse
|
14
|
Rapid identification of Mycobacterium species isolated from clinical specimens of city Jahrom by real time PCR. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Anukool U, Phunpae P, Tharinjaroen CS, Butr-Indr B, Saikaew S, Netirat N, Intorasoot S, Suthachai V, Tragoolpua K, Chaiprasert A. Genotypic Distribution and a Potential Diagnostic Assay of Multidrug-Resistant Tuberculosis in Northern Thailand. Infect Drug Resist 2020; 13:3375-3382. [PMID: 33061484 PMCID: PMC7533241 DOI: 10.2147/idr.s263082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Knowledge of the prevalence and distribution of multidrug-resistant tuberculosis (MDR-TB) genotypes in northern Thailand is still limited. An accurate, rapid, and cost-effective diagnostic of MDR-TB is crucial to improve treatment and control of increased MDR-TB. Materials and Methods The molecular diagnostic assays named “RIF-RD” and “INH-RD” were designed to detect rifampicin (RIF) and isoniazid (INH) resistance based on real-time PCR and high-resolution melting curve analysis. Applying the ∆Tm cutoff values, the RIF-RD and INH-RD were evaluated against the standard drug susceptibility testing (DST) using 107 and 103 clinical Mycobacterium tuberculosis (Mtb) isolates from northern Thailand. DNA sequence analysis of partial rpoB, katG, and inhA promoter of 73 Mtb isolates, which included 30 MDR-TB, was performed to elucidate the mutations involved with RIF and INH resistance. Results When compared with the phenotypic DST, RIF-RD targeting rpoB showed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 83.9, 98.6, 96.9, and 92.0%, respectively. The multiplex reaction of the INH-RD targeted both katG and inhA promoter showed high sensitivity, specificity, PPV, and NPV of 97.1, 94.2, 89.2, and 98.5%, respectively. Six patterns of rpoB mutation, predominately at codons 531 (50%) and 526 (40%) along with a rare S522L (3.33%) and D516V (3.33%), were detected. A single pattern of katG mutation (S315T) (63.3%) and four patterns of inhA promoter mutation, predominately −15 (C>T), were found. Approximately, 17% of MDR-TB strains possessed double mutations within the katG and inhA promoter. Conclusion Up to 86.7% and 96.7% of MDR-TB could be accurately detected by RIF-RD and INH-RD, emphasizing its usefulness as a low unit price assay for rapid screening of MDR-TB, with confirmation of INH resistance in low and middle-income countries. The MDR-TB genotypes provided will be beneficial for TB control and the development of drug-resistant TB diagnostic technology in the future.
Collapse
Affiliation(s)
- Usanee Anukool
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Chayada Sitthidet Tharinjaroen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Faculty of Public Health Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Nathiprada Netirat
- Office of Disease Prevention and Control, 1 (ODPC 1) Chiang Mai, Department of Disease Control, Ministry of Public Health Thailand, Muang District, Chiang Mai 50000, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Vorasak Suthachai
- Office of Disease Prevention and Control, 1 (ODPC 1) Chiang Mai, Department of Disease Control, Ministry of Public Health Thailand, Muang District, Chiang Mai 50000, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development Affairs, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
16
|
Shanmugakani RK, Srinivasan B, Glesby MJ, Westblade LF, Cárdenas WB, Raj T, Erickson D, Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. LAB ON A CHIP 2020; 20:2607-2625. [PMID: 32644060 PMCID: PMC7428068 DOI: 10.1039/d0lc00034e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial resistance (AMR) is a fundamental global concern analogous to climate change threatening both public health and global development progress. Infections caused by antimicrobial-resistant pathogens pose serious threats to healthcare and human capital. If the increasing rate of AMR is left uncontrolled, it is estimated that it will lead to 10 million deaths annually by 2050. This global epidemic of AMR necessitates radical interdisciplinary solutions to better detect antimicrobial susceptibility and manage infections. Rapid diagnostics that can identify antimicrobial-resistant pathogens to assist clinicians and health workers in initiating appropriate treatment are critical for antimicrobial stewardship. In this review, we summarize different technologies applied for the development of rapid diagnostics for AMR and antimicrobial susceptibility testing (AST). We briefly describe the single-cell technologies that were developed to hasten the AST of infectious pathogens. Then, the different types of genotypic and phenotypic techniques and the commercially available rapid diagnostics for AMR are discussed in detail. We conclude by addressing the potential of current rapid diagnostic systems being developed as point-of-care (POC) diagnostic tools and the challenges to adapt them at the POC level. Overall, this review provides an insight into the current status of rapid and POC diagnostic systems for AMR.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Balaji Srinivasan
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas, Ecuador
| | - Tony Raj
- St. John’s Research Institute, Bangalore, Karnataka, India
| | - David Erickson
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Arefzadeh S, Azimi T, Nasiri M, Nikpor Z, Dabiri H, Doustdar F, Goudarzi H, Allahyartorkaman M. High-resolution melt curve analysis for rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a single-centre study in Iran. New Microbes New Infect 2020; 35:100665. [PMID: 32257224 PMCID: PMC7125345 DOI: 10.1016/j.nmni.2020.100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/05/2020] [Indexed: 11/29/2022] Open
Abstract
This study aimed to compare the diagnostic accuracy of high-resolution melting (HRM) analysis in comparison with Xpert MTB/RIF as well as conventional drug susceptibility testing (DST) for the detection of rifampicin (RIF) resistance in Mycobacterium tuberculosis in Iran. A comparative cross-sectional study was carried out from April 2017 to September 2018. A total of 80 culture-positive clinical samples selected during the study period were analysed for detection of RIF-resistant TB by conventional DST, Xpert MTB/RIF, and sequencing. Sensitivity and specificity of the HRM calculated according to DST was our reference standard test in this study. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of HRM assay were found to be 100%, 89.33%, 38.46%, and 100% respectively. The analysis demonstrated that the diagnostic accuracy of HRM tests is insufficient to replace Xpert MTB/RIF and conventional DST. HRM tests have the advantage of time to result and may be used in combination with culture. Further work to improve molecular tests would benefit from standardized reference standards and the methodology.
Collapse
Affiliation(s)
- S. Arefzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - T. Azimi
- Department of Pathobiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M.J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z. Nikpor
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H. Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F. Doustdar
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H. Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Allahyartorkaman
- Regional Tuberculosis Reference laboratory, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mbano IM, Mandizvo T, Rogich J, Kunota TTR, Mackenzie JS, Pillay M, Balagaddé FK. Light Forge: A Microfluidic DNA Melting-based Tuberculosis Test. J Appl Lab Med 2020; 5:440-453. [PMID: 32445364 PMCID: PMC7192548 DOI: 10.1093/jalm/jfaa019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is a well-documented lack of rapid, low-cost tuberculosis (TB) drug resistance diagnostics in low-income settings across the globe. It is these areas that are plagued with a disproportionately high disease burden and in greatest need of these diagnostics. METHODS In this study, we compared the performance of Light Forge, a microfluidic high-resolution melting analysis (HRMA) prototype for rapid low-cost detection of TB drug resistance with a commercial HRMA device, a predictive "nearest-neighbor" thermodynamic model, DNA sequencing, and phenotypic drug susceptibility testing (DST). The initial development and assessment of the Light Forge assay was performed with 7 phenotypically drug resistant strains of Mycobacterium tuberculosis (M.tb) that had their rpoB gene subsequently sequenced to confirm resistance to Rifampin. These isolates of M.tb were then compared against a drug-susceptible standard, H37Rv. Seven strains of M.tb were isolated from clinical specimens and individually analyzed to characterize the unique melting profile of each strain. RESULTS Light Forge was able to detect drug-resistance linked mutations with 100% concordance to the sequencing, phenotypic DST and the "nearest neighbor" thermodynamic model. Researchers were then blinded to the resistance profile of the seven M.tb strains. In this experiment, Light Forge correctly classified 7 out of 9 strains as either drug resistant or drug susceptible. CONCLUSIONS Light Forge represents a promising prototype for a fast, low-cost diagnostic alternative for detection of drug resistant strains of TB in resource constrained settings.
Collapse
Affiliation(s)
- Ian M Mbano
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Tawanda Mandizvo
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jerome Rogich
- University of Massachusetts Medical School, Worcester, MA
| | - Tafara T R Kunota
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jared S Mackenzie
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Frederick K Balagaddé
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
19
|
Cancino-Muñoz I, Gil-Brusola A, Torres-Puente M, Mariner-Llicer C, Dogba J, Akinseye V, Adesokan K, Kwaghe A, Ejeh F, Cadmus S, Comas I. Development and application of affordable SNP typing approaches to genotype Mycobacterium tuberculosis complex strains in low and high burden countries. Sci Rep 2019; 9:15343. [PMID: 31653874 PMCID: PMC6814786 DOI: 10.1038/s41598-019-51326-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises the species that causes tuberculosis (TB) which affects 10 million people every year. A robust classification of species, lineages, and sub-lineages is important to explore associations with drug resistance, epidemiological patterns or clinical outcomes. We present a rapid and easy-to-follow methodology to classify clinical TB samples into the main MTBC clades. Approaches are based on the identification of lineage and sub-lineage diagnostic SNP using a real-time PCR high resolution melting assay and classic Sanger sequencing from low-concentrated, low quality DNA. Thus, suitable for implementation in middle and low-income countries. Once we validated our molecular procedures, we characterized a total of 491 biological samples from human and cattle hosts, representing countries with different TB burden. Overall, we managed to genotype ~95% of all samples despite coming from unpurified and low-concentrated DNA. Our approach also allowed us to detect zoonotic cases in eight human samples from Nigeria. To conclude, the molecular techniques we have developed, are accurate, discriminative and reproducible. Furthermore, it costs less than other classic typing methods, resulting in an affordable alternative method in TB laboratories.
Collapse
Affiliation(s)
- Irving Cancino-Muñoz
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- FISABIO Public Health, Genomics and Health Unit, Valencia, Spain
| | - Ana Gil-Brusola
- Hospital Universitari I Politècnic La Fe, Microbiology Department, Valencia, Spain
| | | | | | - John Dogba
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
- University of Ibadan, Centre for Control and Prevention of Zoonosis, Ibadan, Nigeria
| | - Victor Akinseye
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
| | - Kehinde Adesokan
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
| | - Ayi Kwaghe
- Federal Ministry of Agriculture and Rural Development, Department of Veterinary and Pest Control Services, Garki, Nigeria
| | - Francis Ejeh
- University of Maiduguri, Department of Veterinary Microbiology, Maiduguri, Nigeria
| | - Simeon Cadmus
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
- University of Ibadan, Centre for Control and Prevention of Zoonosis, Ibadan, Nigeria
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
20
|
Parlapani FF, Syropoulou F, Tsiartsafis A, Ekonomou S, Madesis P, Exadactylos A, Boziaris IS. HRM analysis as a tool to facilitate identification of bacteria from mussels during storage at 4 °C. Food Microbiol 2019; 85:103304. [PMID: 31500716 DOI: 10.1016/j.fm.2019.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022]
Abstract
High-resolution melting (HRM) analysis followed by sequencing was applied for determination of bacteria grown on plates isolated from farmed mussels (Mytilus galloprovincialis) during their storage at 4 °C. The V3-V4 region of the 16S rRNA gene from the isolates was amplified using 16S universal primers. Melting curves (peaks) and high resolution melting curves (shape) of the amplicons and sequencing analysis were used for differentiation and identification of the isolated bacteria, respectively. The majority of the isolates (a sum of 101 colonies, from five time intervals: day 0, 2, 4, 6 and 8) from non-selective solid medium plates were classified in four bacterial groups based on the melting curves (peaks) and HRM curves (shape) of the amplicons, while three isolates presented distinct HRM curve profiles (single). Afterwards, sequencing analysis showed that the isolates with a) the same melting peak temperature and b) HRM curves that were >95% similar grouped into the same bacterial species. Therefore, based on this methodology, the cultivable microbial population of chill-stored mussels was initially dominated by Psychrobacter alimentarius against others, such as Psychrobacter pulmonis, Psychrobacter celer and Klebsiella pneumoniae. P. alimentarius was also the dominant microorganism at the time of the sensory rejection (day 8). Concluding, HRM analysis could be used as a useful tool for the rapid differentiation of the bacteria isolated from mussels during storage, at species level, and then identification is feasible by the sequencing of one only representative of each bacterial species, thus reducing the cost of required sequencing.
Collapse
Affiliation(s)
- F F Parlapani
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece.
| | - F Syropoulou
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - A Tsiartsafis
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - S Ekonomou
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - P Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), 57001, Thessaloniki, Greece
| | - A Exadactylos
- Lab of Hydrobiology-Ichthyology, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - I S Boziaris
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| |
Collapse
|
21
|
Wu X, Lu W, Shao Y, Song H, Li G, Li Y, Zhu L, Chen C. pncA gene mutations in reporting pyrazinamide resistance among the MDR-TB suspects. INFECTION GENETICS AND EVOLUTION 2018; 72:147-150. [PMID: 30447296 DOI: 10.1016/j.meegid.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
Mutations in pncA gene contributing to PZA resistance was not clearly elucidated in China. To reveal the correlated mutations of pncA gene on pyrazinamide (PZA) resistance. 148 Mycobacterium tuberculosis clinical isolates were included from multi-drug resistant tuberculosis suspects. The MGIT 960 test and microscopic observation drug susceptibility (MODS) assay were adopted for PZA phenotype drug susceptibility test. 120 isolates with consistent MGIT 960 and MODS results were selected for pncA gene sequencing. 68 samples (56.7%) were resistant to PZA while leaving 52 PZA susceptible samples. Out of the 68 PZA resistant isolates, 49 (72.1%) harbored mutations of pncA, and 4 (7.7%) of the 52 PZA susceptible samples harbored mutations of pncA as well. Compared to the phenotype drug resistant pattern of PZA, the mutations of pncA gene reached a sensitivity of 0.72 to report PZA resistance and a specificity of 0.92 to predict PZA susceptibility. Those mutations, Gln10Pro, Asp12Ala, Tyr41Stop, Gly97Asp, Val128Gly and FSC131(ins) exceeding 5% of the total PZA resistant isolates of each, might be helpful but not adequate in PZA molecular susceptibility test design and development.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Medicine School of Southeast University, Nanjing, Jiangsu, China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Yan Shao
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Honghuan Song
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Yan Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China; Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|
22
|
Sirous M, Khosravi AD, Tabandeh MR, Salmanzadeh S, Ahmadkhosravi N, Amini S. Molecular detection of rifampin, isoniazid, and ofloxacin resistance in Iranian isolates of Mycobacterium tuberculosis by high-resolution melting analysis. Infect Drug Resist 2018; 11:1819-1829. [PMID: 30425535 PMCID: PMC6202043 DOI: 10.2147/idr.s178831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background The emergence of drug resistance among Mycobacterium tuberculosis (MTB) strains is a serious health concern worldwide. The development of rapid molecular diagnostic methods in recent years has a significant impact on the early detection of resistance to major anti-TB drugs in MTB isolates, which helps in employing appropriate treatment regimen and prevents the spread of drug-resistant strains. This study was designed to evaluate the efficacy of real-time PCR and high-resolution melting (HRM) curve analysis for the determination of resistance to rifampin (RIF), isoniazid (INH), and ofloxacin (OFX) in MTB isolates and to investigate their resistance-related mutations. Methods HRM analysis was performed to screen 52 (32 drug-resistant and 20 fully susceptible) MTB clinical isolates for mutations in rpoB, katG, mab-inhA, and gyrA genes. The HRM results were then confirmed by DNA sequencing. Results In total, 32 phenotypically resistant isolates, comprising 18 RIF-, 16 INH-, and five OFX- resistant strains, were investigated. HRM analysis successfully identified 15 out of 18 mutations in rpoB, 14 out of 16 mutations in katG and mab-inhA, and four out of five mutations in gyrA conferring resistance to RIF, INH, and OFX, respectively. The obtained sensitivity and specificity, respectively, for HRM in comparison with phenotypic susceptibility testing were found to be 83.3% and 100% for RIF, 87.5% and 100% for INH, and 80% and 100% for OFX. In five resistant strains (12.8%), no mutation was detected by using HRM and DNA sequencing. Conclusion HRM assay is a rapid, accurate, and cost-effective method possessing high sensitivity and specificity for the determination of antibiotic resistance among MTB clinical isolates and screening of their associated mutations. This method can generate results in a shorter period of time than taken by the phenotypic susceptibility testing and also allows for timely treatment and prevention of the emergence of possible MDR strains.
Collapse
Affiliation(s)
- Mehrandokht Sirous
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, .,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shokrollah Salmanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Nazanin Ahmadkhosravi
- Khuzestan Tuberculosis Regional Reference Laboratory, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sirus Amini
- Tehran Tuberculosis Regional Reference Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Wang Y, Xu H, Li Y, Gao H, Zhang Z, Liu Y, Lu J, Dai E. Genotypicdiversity of drug-resistant Mycobacterium tuberculosis isolates from Hebei, China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3744-3752. [PMID: 31949758 PMCID: PMC6962832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 06/10/2023]
Abstract
Drug-resistant tuberculosis (DR-TB), particularly multidrug-resistant tuberculosis (MDR-TB), has been identified as a major challenge for effective TB control. For rapid detection and proper treatment, molecular assays based on the identification of mutations in genes associated with drug resistance have been established to determine drug resistance. However, there is as yet little information about drug resistance-associated mutations of clinical Mycobacterium tuberculosis isolates from Hebei. In this study, four genetic loci katG, inhA, oxyR-ahpC intergenic region and rpoB were sequenced among 276 DR-TB isolates from Hebei to understand the association between specific mutations, drug resistance phenotypes and spoligotyping genotypes. Altogether, 83.8% of INH resistant isolates harbored at least one mutation of katG, inhA, and oxyR-ahpC intergenic region and 78.4% of RIF resistant isolates harbored one or more mutations in rpoB. The predominant mutation patterns of rpoB and katG in Hebei was Ser531Leu and Ser315Thr, respectively. Additionally, 91.2% of MDR isolates harbored at least one mutation in these four targeted fragments. Compared with the phenotypic data, the sensitivity and specificity of co-testing of katG, inhA promoter and oxyR-ahpC intergenic region for INH resistance were 83.8% and 96.8%, respectively and the rpoB exhibited a sensitivity of 78.4% and a specificity of 95.3% for RIF resistance. Furthermore, there was no association between drug resistance-conferring mutations and spoligotypes. This finding will be useful for the establishment of rapid molecular diagnostic methods in Hebei province, China.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Hong Xu
- Department of Laboratory Medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang Obstetrics and Gynecology HospitalShijiazhuang, Hebei, China
| | - Yanan Li
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yuzhen Liu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Jianhua Lu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuang, Hebei, China
| |
Collapse
|
24
|
Simultaneous detections of genetic fragment and single nucleotide mutation with a three-tiered output for tuberculosis diagnosis. Anal Chim Acta 2017; 1007:1-9. [PMID: 29405982 DOI: 10.1016/j.aca.2017.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB) remains one of the major infectious diseases worldwide. The pathogenic bacterium, Mycobacterium tuberculosis (M.tb), continuously evolves strains carrying drug-resistance genes, thus posing a growing challenge to TB prevention and treatment. We report a diagnostic system that uses a molecular beacon probe and an assistant strand as the core to simultaneously interact with an M.tb-specific fragment (in IS6110) and a single nucleotide substitution (SNS)-encoded segment (in rpoB) associated with drug resistance. A single fluorescent output in three-tiered levels was produced for combinatorial interpretations based on formation of a four-way DNA junction (4WJ). The SNS caused the 4WJ to partially dissociate, thus resulting in medium-level fluorescence. By contrast, high- and low-level fluorescence, represented the complete complementary complex and absence of either targeted fragments, respectively. Manipulating the length of the analyte-binding arm realized the medium output. The thermodynamics and kinetics of 4WJ construction were investigated to maximize the tiered-output performance. Biocatalytic amplification driven by the Klenow Fragment and Nt.AlwI was incorporated into the method to enhance the signal 64-fold and ensure long-term stability of the three-tiered output. The detection accuracy of the sensing system was verified using unpurified amplicons with templates of extracted DNA and boiled bacterial solutions. The tiered-output mechanism was usable at bacterial loads ranging from 4 × 100 to 4 × 103 CFU per reaction. The interference caused by nontuberculous mycobacteria was minimal. The results demonstrated the integrity of the sensing method as an alternative strategy for rapid screening of M.tb and detecting rifampin-resistance.
Collapse
|
25
|
Agamy GR, Wafy SM, Ahmed AO, Bakar LM. Real-time polymerase chain reaction as an alternative method for diagnosis of multidrug-resistant tuberculosis: can it stand alone in this concern. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2017. [DOI: 10.4103/1687-8426.217631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Rezaei F, Haeili M, Fooladi AI, Feizabadi MM. High Resolution Melting Curve Analysis for Rapid Detection of Streptomycin and Ethambutol Resistance in Mycobacterium tuberculosis. MAEDICA 2017; 12:246-257. [PMID: 29610587 PMCID: PMC5879581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Development of molecular techniques for rapid detection of drug resistant tuberculosis allows for the prompt initiation of appropriate anti-TB treatment. We aimed to assess high-resolution melting (HRM) analysis for the detection of rpsL, rrs and embB mutations to identify streptomycin and ethambutol resistance in Mycobacterium tuberculosis. MATERIAL AND METHODS A total of 76 clinical isolates of M. tuberculosis including 25 SM-R, 21 EB-R and 30 drug susceptible - determined by the proportion method of drug susceptibility testing (DST) - were analyzed by HRM analysis, and the results were confirmed using DNA sequencing. RESULTS The sensitivity and specificity of the HRMA compared to phenotypic DST were 88% and 100.0%, respectively for the detection of streptomycin resistance (SM-R), and 90.4% and 96.6%, respectively for ethambutol resistance (EB-R). Three SM-R and two EB-R isolates had no mutations in the studied regions of rpsL, rrs and embB genes determined by DNA sequencing and therefore were not identified as resistant by HRM assay. Interestingly, one phenotypic EM-S isolate was found by sequencing to have a mutation at codon 423 (Met->Ilu) of embB gene and was clustered as resistant by HRM as well. CONCLUSIONS The sensitivity and specificity of HRM curve assay was consistent with DNA sequencing, which is the gold standard method for genotypic DST. This assay can be utilized as a screening method for detection of drug-resistant tuberculosis, offering the advantages of a high throughput, single step, cost effectiveness, and rapid work flow method.
Collapse
Affiliation(s)
- Faranak Rezaei
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Abbasali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Khosravi AD, Hashemzadeh M, Hashemi Shahraki A, Teimoori A. Differential Identification of Mycobacterial Species Using High-Resolution Melting Analysis. Front Microbiol 2017; 8:2045. [PMID: 29109708 PMCID: PMC5660063 DOI: 10.3389/fmicb.2017.02045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023] Open
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) is increasing wordwide. Due to the difference in treatment of NTM infections and tuberculosis, rapid species identification of mycobacterial clinical isolates is necessary for the effective management of mycobacterial diseases treatment and their control strategy. In this study, a cost-effective technique, real-time PCR coupled with high-resolution melting (HRM) analysis, was developed for the differentiation of Mycobacterial species using a novel rpoBC sequence. A total of 107 mycobacterial isolates (nine references and 98 clinical isolates) were subjected to differentiation using rpoBC locus sequence in a real-time PCR-HRM assay scheme. From 98 Mycobacterium clinical isolates, 88 species (89.7%), were identified at the species level by rpoBC locus sequence analysis as a gold standard method. M. simiae was the most frequently encountered species (41 isolates), followed by M. fortuitum (20 isolates), M. tuberculosis (15 isolates), M. kansassi (10 isolates), M. abscessus group (5 isolates), M. avium (5 isolates), and M. chelonae and M. intracellulare one isolate each. The HRM analysis generated six unique specific groups representing M. tuberculosis complex, M. kansasii, M. simiae, M. fortuitum, M. abscessus–M. chelonae group, and M. avium complex. In conclusion, this study showed that the rpoBC-based real-time PCR followed by HRM analysis could differentiate the majority of mycobacterial species that are commonly encountered in clinical specimens.
Collapse
Affiliation(s)
- Azar D Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ali Teimoori
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Bentaleb EM, El Messaoudi MD, Abid M, Messaoudi M, Yetisen AK, Sefrioui H, Amzazi S, Ait Benhassou H. Plasmid-based high-resolution melting analysis for accurate detection of rpoB mutations in Mycobacterium tuberculosis isolates from Moroccan patients. BMC Infect Dis 2017; 17:548. [PMID: 28784099 PMCID: PMC5547500 DOI: 10.1186/s12879-017-2666-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
Background Rapid diagnosis of drug resistance in tuberculosis (TB) is pivotal for the timely initiation of effective antibiotic treatment to prevent the spread of drug-resistant strains. The development of low-cost, rapid and robust methods for drug-resistant TB detection is highly desirable for resource-limited settings. Methods We report the use of an in house plasmid-based quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis for the detection of mutations related to rifampicin-resistant Mycobacterium tuberculosis (MTB) in clinical isolates from Moroccan patients. Five recombinant plasmids containing predominant mutations (S531L, S531W, H526Y and D516V) and the wild-type sequence of the Rifampicin Resistance-Determining Region (RRDR) have been used as controls to screen 45 rifampicin-resistant and 22 rifampicin-susceptible MTB isolates. Results The sensitivity and the specificity of the qPCR-HRM analysis were 88.8% and 100% respectively as compared to rifampicin Drug Susceptibility Testing (DST). The results of qPCR-HRM and DNA sequencing had a concordance of 100%. Conclusion Our qPCR-HRM assay is a sensitive, accurate and cost-effective assay for the high-throughput screening of mutation-based drug resistance in TB reference laboratories.
Collapse
Affiliation(s)
- El Mehdi Bentaleb
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco.,Laboratory of Biochemistry and Immunology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | | - Mohammed Abid
- Laboratory of Mycobacteria Genetics, Pasteur Institute of Morocco, Tangier, Morocco
| | - Malika Messaoudi
- Laboratory of Tuberculosis, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Ali K Yetisen
- Harvard-MIT Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco
| | - Saaïd Amzazi
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hassan Ait Benhassou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Avenue Mohamed El Jazouli - Madinat Al Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
29
|
Banu S, Pholwat S, Foongladda S, Chinli R, Boonlert D, Ferdous SS, Rahman SMM, Rahman A, Ahmed S, Houpt ER. Performance of TaqMan array card to detect TB drug resistance on direct specimens. PLoS One 2017; 12:e0177167. [PMID: 28472124 PMCID: PMC5417650 DOI: 10.1371/journal.pone.0177167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Culture based phenotypic drug susceptibility testing (DST) for Mycobacterium tuberculosis (TB) is time consuming therefore rapid genotypic methods are increasingly being utilized. We previously developed and evaluated on TB isolates a rapid genotypic TaqMan array card (TAC) that detects mutations in several resistance-associated genes using dozens of primer pairs, probes, and high resolution melt analysis, with >96% accuracy versus Sanger sequencing. In this study we examined the performance of TAC on sputum, comparing results between 71 paired sputum and TB isolates of which 62 were MDR-TB. We also adapted the TAC to include wild-type probes and broadened coverage for rpoB and gyrA mutations. TAC was 89% successful at detecting wild-type or mutations within inhA, katG, rpoB, eis, gyrA, rplC, and pncA on smear positive sputa and 33% successful on smear negative sputa. The overall accuracy of these detections as compared to the TAC results of the paired isolate was 95% ± 7 (average sensitivity 98% ± 3; specificity 92% ± 14). Accuracy of sputum TAC results versus phenotypic DST for isoniazid, rifampin, ofloxacin/moxifloxacin, and pyrazinamide was 85% ± 12. This was similar to that of the isolate TAC results (accuracy 88% ± 13), thus inaccuracies primarily reflected intrinsic genotypic-phenotypic discordance. The TAC is a rapid, modular, comprehensive, and accurate TB DST for the major first and second line TB drugs and could be used for supplemental testing of GeneXpert resistant smear positive sputum.
Collapse
Affiliation(s)
- Sayera Banu
- Mycobacteriology Laboratory, Infectious Diseases Division, International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rattapha Chinli
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Duangjai Boonlert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sara Sabrina Ferdous
- Mycobacteriology Laboratory, Infectious Diseases Division, International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - S. M. Mazidur Rahman
- Mycobacteriology Laboratory, Infectious Diseases Division, International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Arfatur Rahman
- Mycobacteriology Laboratory, Infectious Diseases Division, International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Shahriar Ahmed
- Mycobacteriology Laboratory, Infectious Diseases Division, International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Direct Detection of Rifampin and Isoniazid Resistance in Sputum Samples from Tuberculosis Patients by High-Resolution Melt Curve Analysis. J Clin Microbiol 2017; 55:1755-1766. [PMID: 28330890 DOI: 10.1128/jcm.02104-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/17/2017] [Indexed: 01/22/2023] Open
Abstract
Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases.
Collapse
|
31
|
Rapid Detection of Common HIV-1 Drug Resistance Mutations by Use of High-Resolution Melting Analysis and Unlabeled Probes. J Clin Microbiol 2016; 55:122-133. [PMID: 27795333 DOI: 10.1128/jcm.01291-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
HIV rapidly accumulates resistance mutations following exposure to subtherapeutic concentrations of antiretroviral drugs that reduces treatment efficacy. High-resolution melting analysis (HRMA) has been used to successfully identify single nucleotide polymorphisms (SNPs) and to genotype viral and bacterial species. Here, we tested the ability of HRMA incorporating short unlabeled probes to accurately assign drug susceptibilities at the 103, 181, and 184 codons of the HIV-1 reverse transcriptase gene. The analytical sensitivities of the HRMA assays were 5% of mixed species for K103N and Y181C and 20% for M184V. When applied to 153 HIV-1 patient specimens previously genotyped by Sanger population sequencing, HRMA correctly assigned drug sensitivity or resistance profiles to 80% of the samples at codon 103 (K103K/N) (Cohen's kappa coefficient [κ] > 0.6; P < 0.05), 90% at 181 (Y181Y/C) (κ > 0.74, P < 0.05), and 80% at 184 (M184M/V) (κ > 0.62; P < 0.05). The frequency of incorrect genotypes was very low (≤1 to 2%) for each assay, which in most cases was due to the higher sensitivity of the HRMA assay. Specimens for which drug resistance profiles could not be assigned (9 to 20%) often had polymorphisms in probe binding regions. Thus, HRMA is a rapid, inexpensive, and sensitive method for the determination of drug sensitivities caused by major HIV-1 drug resistance mutations and, after further development to minimize the melting effects of nontargeted polymorphisms, may be suitable for surveillance purposes.
Collapse
|
32
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
33
|
Rao P, Chawla K, Shenoy VP, Mukhopadhyay C. Role of real-time PCR for detection of tuberculosis and drug resistance directly from clinical samples. Indian J Tuberc 2016; 63:149-153. [PMID: 27865235 DOI: 10.1016/j.ijtb.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/16/2016] [Accepted: 08/02/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Only a few studies done earlier in India reveal the utility of real-time PCR in detecting drug resistance in cases of pulmonary tuberculosis. OBJECTIVES The study was carried out to standardise real-time PCR (Quantitative real-time PCR, qPCR) targeting 16s RNA for the rapid detection of tuberculosis and its drug resistance from suspected TB patients. MATERIALS AND METHODS Sputum samples from 100 clinically suspected tuberculosis patients, after processing were subjected to microscopy, MGIT culture and qPCR. qPCR targeted 16sRNA for detecting Mycobacterium tuberculosis complex, KatG and rpoB genes for detection of resistance to isoniazid and rifampicin respectively. 1% proportionate method and Line probe assay (Hain Lifesciences, Nehren, Germany) were used to confirm the MDR isolates. RESULTS The study showed positivity of microscopy, culture and qPCR for M. tuberculosis as 37%, 44% and 46% respectively. Sensitivity of 100% and specificity of 96.5% in the detection of M. tuberculosis was observed for qPCR in comparison to culture. MDRTB was detected in 14 cases whereas monoresistance to rifampicin and isoniazid was detected in 1 and 3 samples respectively. CONCLUSION Real-time PCR targeting 16sRNA, KatG and rpoB is a sensitive, specific, rapid and reliable technique to detect pulmonary tuberculosis and its MDR status directly from the sputum samples.
Collapse
Affiliation(s)
- Parashuram Rao
- Research Fellow, Department of Microbiology, Kasturba Medical College, Manipal, Manipal University, Karnataka 576104, India
| | - Kiran Chawla
- Professor and Head, Department of Microbiology, Kasturba Medical College, Manipal, Manipal University, Karnataka 576104, India.
| | - Vishnu Prasad Shenoy
- Associate Professor, Department of Microbiology, Kasturba Medical College, Manipal, Manipal University, Karnataka 576104, India
| | - Chiranjay Mukhopadhyay
- Professor, Department of Microbiology, Kasturba Medical College, Manipal, Manipal University, Karnataka 576104, India
| |
Collapse
|
34
|
Galarza M, Fasabi M, Levano KS, Castillo E, Barreda N, Rodriguez M, Guio H. High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infect Dis 2016; 16:260. [PMID: 27278526 PMCID: PMC4899911 DOI: 10.1186/s12879-016-1615-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/03/2016] [Indexed: 12/30/2022] Open
Abstract
Background The emergence of multidrug-resistant strains is a major health problem especially for countries with high TB incidence such as Peru. In this study, we evaluated High Resolution Melting (HRM) assay in Peruvian isolates for the detection of mutations within rpoB, katG genes and promoter region inhA to determine isoniazid and rifampicin resistance in Mycobacterium tuberculosis (Mtb). Methods DNA samples extracted from a total of 167 clinical isolates of Mtb, 89 drug-sensitive and 78 multidrug-resistant, were blindly analyzed by HRM analysis and verified by DNA sequencing. Results The HRM analysis generated patterns that were specific to distinguish between sensitive and resistance isolates. The sensitivity and specificity of the HRM assays in comparison with drug susceptibility testing (DST) for detection of rifampicin resistance were 98.7 % and 97.5 %, and for isoniazid resistance were 98.7 % and 100 %. Conclusion This study suggests that HRM Analysis could help with rapid diagnosis of MDR-TB cases in Peru.
Collapse
Affiliation(s)
- Marco Galarza
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
| | - Manuel Fasabi
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
| | - Kelly S Levano
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru
| | - Edith Castillo
- Laboratorio de Referencia Regional de Tuberculosis y Microbiología, DIRESA Callao, Lima, Peru
| | - Nadia Barreda
- Laboratorio de Referencia Regional de Tuberculosis y Microbiología, DIRESA Callao, Lima, Peru
| | - Mitzi Rodriguez
- Laboratorio de Referencia Regional de Tuberculosis y Microbiología, DIRESA Callao, Lima, Peru
| | - Heinner Guio
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima, Peru.
| |
Collapse
|
35
|
Peng J, Yu X, Cui Z, Xue W, Luo Z, Wen Z, Liu M, Jiang D, Zheng H, Wu H, Zhang S, Li Y. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis. Front Microbiol 2016; 7:618. [PMID: 27199947 PMCID: PMC4850356 DOI: 10.3389/fmicb.2016.00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF) and isoniazid (INH). Methods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR) assay, 10 probes labeled with four kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC, and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST), DNA sequencing and MF-qRT-PCR assay. Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6 and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9 and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2 and 100% for RIF-resistance and 97.9 and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 M. tuberculosis complexes (MTC) from 34 Non-tuberculous mycobacteria (NTM) isolates with 100% accuracy rate. Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable, and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates.
Collapse
Affiliation(s)
- Jingfu Peng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Xiaoli Yu
- Department of Biotechnology, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Medical School, Shanghai Pulmonary Hospital, Tongji University Shanghai, China
| | - Wenfei Xue
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Ziyi Luo
- The Third People's Hospital of Shenzhen Shenzhen, China
| | - Zilu Wen
- Department of Biotechnology, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Minghua Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Danqing Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Heping Zheng
- Haoding Technology Limited Company Shenzhen, China
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Shulin Zhang
- Department of Immunology and Medical Microbiology, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| |
Collapse
|
36
|
Darban-Sarokhalil D, Nasiri MJ, Fooladi AAI, Heidarieh P, Feizabadi MM. Rapid Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis using TaqMan Allelic Discrimination. Osong Public Health Res Perspect 2016; 7:127-30. [PMID: 27169012 PMCID: PMC4850365 DOI: 10.1016/j.phrp.2016.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/27/2015] [Accepted: 01/06/2016] [Indexed: 11/04/2022] Open
Abstract
Objectives Multidrug-resistant tuberculosis (MDR-TB) is a global problem that many countries are challenged with. Rapid and accurate detection of MDR-TB is critical for appropriate treatment and controlling of TB. The aim of the present study was to evaluate the TaqMan allelic discrimination without minor groove binder (MGB) as a rapid, efficient, and low-cost method for detection of drug resistant strains of Mycobacterium tuberculosis. Methods A total of 112 M. tuberculosis isolates from cases with diagnosed TB were subjected to drug susceptibility testing (DST), using the proportion method. Resistant isolates were tested for characterization of mutations in the rpoB and KatG genes by TaqMan genotyping. Results Of 112 M. tuberculosis isolates for which DST was performed, three, one, and two isolates were MDR, rifampin (RIF) resistant, and isoniazid (INH) resistant, respectively. According to the threshold cycle (Ct) and curve pattern of mutants, TaqMan probes detect all of the mutations in the analyzed genes (katG 315, AGC→ACC, rpoB 531, TCG→TTG, and rpoB 531, TCG→TGG). Conclusion The present study suggests that drug-resistant strains of M. tuberculosis can be detected by pattern’s curve or Ct with TaqMan probes without MGB in real-time polymerase chain reaction (PCR).
Collapse
Affiliation(s)
- Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad J Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas A I Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvin Heidarieh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad M Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr 2016; 2:MGM2-0014-2013. [PMID: 26104204 DOI: 10.1128/microbiolspec.mgm2-0014-2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoniazid (INH) is the cornerstone of tuberculosis (TB) chemotherapy, used for both treatment and prophylaxis of TB. The antimycobacterial activity of INH was discovered in 1952, and almost as soon as its activity was published, the first INH-resistant Mycobacterium tuberculosis strains were reported. INH and its structural analog and second-line anti-TB drug ethionamide (ETH) are pro-drugs. INH is activated by the catalase-peroxidase KatG, while ETH is activated by the monooxygenase EthA. The resulting active species reacts with NAD+ to form an INH-NAD or ETH-NAD adduct, which inhibits the enoyl ACP reductase InhA, leading to mycolic acid biosynthesis inhibition and mycobacterial cell death. The major mechanism of INH resistance is mutation in katG, encoding the activator of INH. One specific KatG variant, S315T, is found in 94% of INH-resistant clinical isolates. The second mechanism of INH resistance is a mutation in the promoter region of inhA (c-15t), which results in inhA overexpression and leads to titration of the drug. Mutations in the inhA open reading frame and promoter region are also the major mechanism of resistance to ETH, found more often in ETH-resistant clinical isolates than mutations in the activator of ETH. Other mechanisms of resistance to INH and ETH include expression changes of the drugs' activators, redox alteration, drug inactivation, and efflux pump activation. In this article, we describe each known mechanism of resistance to INH and ETH and its importance in M. tuberculosis clinical isolates.
Collapse
|
38
|
Kardan Yamchi J, Haeili M, Gizaw Feyisa S, Kazemian H, Hashemi Shahraki A, Zahednamazi F, Imani Fooladi AA, Feizabadi MM. Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis from Iran. INFECTION GENETICS AND EVOLUTION 2015; 36:23-26. [PMID: 26325681 DOI: 10.1016/j.meegid.2015.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022]
Abstract
Absence of mutations within the genes encoding drug targets in some phenotypically drug resistant strains of Mycobacterium tuberculosis suggests possible involvement of alternative mechanisms such as over-expression of efflux pumps. We investigated the expression level of Rv1410c, Rv2459, Rv1218c and Rv1273c efflux pumps gene by real-time quantitative reverse transcription PCR (qRT-PCR) in 31 clinical isolates of M. tuberculosis. Susceptibility to first-line drugs was performed using the proportion method. Twenty one isolates were characterized with drug resistance (DR), and among them 12 showed a significantly elevated level of expression (>4 fold) for at least one of the studied genes encoding for efflux pumps. Point mutations in the katG (codons 315 or 335) and rpoB (codons 456 and 441) genes were found in 42.85% and 66.6% of drug resistant isolates, respectively. Only one isolate showed mutation at position -15 of the inhA promoter region. Among the 7 isolates (33.33%) which had no mutation in the studied regions of drug target genes, 5 isolates showed over-expression for efflux pumps. Our results demonstrated that over-expression of efflux pumps can contribute to drug resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Jalil Kardan Yamchi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seifu Gizaw Feyisa
- Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran
| | - Hossein Kazemian
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zahednamazi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Haeili M, Fooladi AI, Bostanabad SZ, Sarokhalil DD, Siavoshi F, Feizabadi MM. Rapid screening of rpoB and katG mutations in Mycobacterium tuberculosis isolates by high-resolution melting curve analysis. Indian J Med Microbiol 2015; 32:398-403. [PMID: 25297024 DOI: 10.4103/0255-0857.142245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Early detection of multidrug-resistant tuberculosis (MDR-TB) is essential to prevent its transmission in the community and initiate effective anti-TB treatment regimen. MATERIALS AND METHODS High-resolution melting curve (HRM) analysis was evaluated for rapid detection of resistance conferring mutations in rpoB and katG genes. We screened 95 Mycobacterium tuberculosis clinical isolates including 20 rifampin resistant (RIF-R), 21 isoniazid resistant (INH-R) and 54 fully susceptible (S) isolates determined by proportion method of drug susceptibility testing. Nineteen M. tuberculosis isolates with known drug susceptibility genotypes were used as references for the assay validation. The nucleotide sequences of the target regions rpoB and katG genes were determined to investigate the frequency and type of mutations and to confirm HRM results. RESULTS HRM analysis of a 129-bp fragment of rpoB allowed correct identification of 19 of the 20 phenotypically RIF-R and all RIF-S isolates. All INH-S isolates generated wild-type HRM curves and 18 out of 21 INH-R isolates harboured any mutation in 109-bp fragment of katG exhibited mutant type HRM curves. However, 1 RIF-R and 3 INH-R isolates were falsely identified as susceptible which were confirmed for having no mutation in their target regions by sequencing. The main mutations involved in RIF and INH resistance were found at codons rpoB531 (60% of RIF-R isolates) and katG315 (85.7% of INH-R isolates), respectively. CONCLUSION HRM was found to be a reliable, rapid and low cost method to characterise drug susceptibility of clinical TB isolates in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | | | - M M Feizabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes. mBio 2015; 6:e02273. [PMID: 25714709 PMCID: PMC4357996 DOI: 10.1128/mbio.02273-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. Multidrug-resistant tuberculosis threatens global tuberculosis control efforts. Optimal therapy utilizes susceptibility test results to guide individualized treatment regimens; however, the susceptibility testing methods in use are technically difficult and slow. We developed an integrated TaqMan array card method with high-resolution melt analysis that interrogates 10 genes to yield a fast, comprehensive, and accurate drug susceptibility result for the 9 major antituberculosis antibiotics.
Collapse
|
41
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Antimicrob Agents Chemother 2014; 59:1542-8. [PMID: 25534743 DOI: 10.1128/aac.04374-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most Mycobacterium tuberculosis rifampin-resistant strains have been associated with mutations in an 81-bp rifampin resistance-determining region (RRDR) in the gene rpoB. However, if this region alone were targeted, rifampin-resistant strains with mutations outside the RRDR would not be detected. In this study, among 51 rifampin-resistant clinical isolates analyzed by sequencing 1,681-bp-long DNA fragments containing the RRDR, 47 isolates contained mutations within the RRDR, three isolates contained mutations both within and outside the RRDR, and only one isolate had a single missense mutation (Arg548His) located outside the RRDR. A drug susceptibility test of recombinant Mycobacterium smegmatis and M. tuberculosis isolates carrying mutated rpoB (Arg548His) showed an increased MIC for rifampin compared to that of the control strains. Modeling of the Arg548His mutant RpoB-DNA complex revealed that the His548 side chain formed a more stable hydrogen bond structure than did Arg548, reducing the flexibility of the rifampin-resistant cluster II region of RpoB, suggesting that the RpoB Arg548His mutant does not effectively interact with rifampin and results in bacterial resistance to the drug. This is the first report on the relationship between the mutation in codon 548 of RpoB and rifampin resistance in tuberculosis. The novel mutational profile of the rpoB gene described here will contribute to the comprehensive understanding of rifampin resistance patterns and to the development of a useful tool for simple and rapid drug susceptibility tests.
Collapse
|
43
|
Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BIOMED RESEARCH INTERNATIONAL 2014; 2014:375681. [PMID: 25343142 PMCID: PMC4197867 DOI: 10.1155/2014/375681] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 12/25/2022]
Abstract
Atypical and multidrug resistance, especially ESBL and carbapenemase expressing Enterobacteriaceae, is globally spreading. Therefore, it becomes increasingly difficult to achieve therapeutic success by calculated antibiotic therapy. Consequently, rapid antibiotic resistance testing is essential. Various molecular and mass spectrometry-based approaches have been introduced in diagnostic microbiology to speed up the providing of reliable resistance data. PCR- and sequencing-based approaches are the most expensive but the most frequently applied modes of testing, suitable for the detection of resistance genes even from primary material. Next generation sequencing, based either on assessment of allelic single nucleotide polymorphisms or on the detection of nonubiquitous resistance mechanisms might allow for sequence-based bacterial resistance testing comparable to viral resistance testing on the long term. Fluorescence in situ hybridization (FISH), based on specific binding of fluorescence-labeled oligonucleotide probes, provides a less expensive molecular bridging technique. It is particularly useful for detection of resistance mechanisms based on mutations in ribosomal RNA. Approaches based on MALDI-TOF-MS, alone or in combination with molecular techniques, like PCR/electrospray ionization MS or minisequencing provide the fastest resistance results from pure colonies or even primary samples with a growing number of protocols. This review details the various approaches of rapid resistance testing, their pros and cons, and their potential use for the diagnostic laboratory.
Collapse
|
44
|
Real time PCR quantification of viable Mycobacterium tuberculosis from sputum samples treated with propidium monoazide. Tuberculosis (Edinb) 2014; 94:421-7. [PMID: 24863654 DOI: 10.1016/j.tube.2014.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 11/21/2022]
Abstract
Diagnostic methods of TB, nowadays, are prone to delay in diagnosis, increased false negative results and are not sensitive to many forms of paucibacillary disease. The aims of this study were to implement a quantitative nucleic acid-based diagnostic test for paucibacillary tuberculosis, enabling the identification and quantification of viable Mycobacterium tuberculosis bacilli by quantitative Real-Time PCR (qRT-PCR). The intergenic region of the single-copy inhA-mabA gene was chosen as the target region for design of primers and probes conjugated with fluorophores. The construction of synthetic DNA flanking the target region served as standards for absolute quantification of nucleic acids. Using the intercaling dye, propidium monoazide, we were able to discriminate between viable and dead cells of M. tuberculosis. The diagnosis method showed a broad sensitivity (96.1%) when only compared to samples of smear-positive sputum and ROC analyses shows that our approach performed well and yielded a specificity of 84.6% and a sensitivity of 84.6% when compared to M. tuberculosis colony-forming units counting.
Collapse
|
45
|
Pholwat S, Stroup S, Gratz J, Trangan V, Foongladda S, Kumburu H, Juma SP, Kibiki G, Houpt E. Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis (Edinb) 2014; 94:20-5. [PMID: 24246607 PMCID: PMC3877170 DOI: 10.1016/j.tube.2013.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022]
Abstract
Pyrazinamide (PZA) plays the important role in shortening the tuberculosis treatment period and in treating MDR-TB. Phenotypic PZA susceptibility methods are limited because they require specialized acidified media, which increases costs and complexity. In this study we developed a genotypic high resolution melt (HRM) analysis technique to detect pncA mutations associated with PZA resistant Mycobacterium tuberculosis. Seven overlapping primer pairs were designed to cover the entire pncA gene and upstream regions. Each gene segment was individually amplified by real-time PCR followed by HRM analysis. The assay was evaluated on 98 clinical M. tuberculosis isolates (41 PZA susceptible by MGIT method, 55 PZA resistant, 2 undetermined). HRM was 94% concordant to full-length sequencing results, with most discrepancies attributable to mixed populations per HRM or transversions. Sequencing and HRM yielded 82% and 84% concordance, respectively, to phenotypic PZA susceptibilities by MGIT, with most discrepancies attributable to isolates with wild-type pncA but phenotypic PZA resistance. This HRM technique is a simple and high-throughput method for screening clinical M. tuberculosis samples for PZA resistance.
Collapse
Affiliation(s)
- Suporn Pholwat
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Suzanne Stroup
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jean Gratz
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Varittha Trangan
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Saumu Pazia Juma
- Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
46
|
Silva JLD, Leite GGS, Bastos GM, Lucas BC, Shinohara DK, Takinami JS, Miyata M, Fajardo CM, Luchessi AD, Leite CQF, Cardoso RF, Hirata RDC, Hirata MH. Plasmid-based controls to detect rpoB mutations in Mycobacterium tuberculosis by quantitative polymerase chain reaction-high-resolution melting. Mem Inst Oswaldo Cruz 2013; 108:106-9. [PMID: 23440123 PMCID: PMC3974309 DOI: 10.1590/s0074-02762013000100017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 11/21/2022] Open
Abstract
Quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis was used to screen for mutations related to drug resistance in Mycobacterium tuberculosis. We detected the C526T and C531T mutations in the rifampicin resistance-determining region (RRDR) of the rpoB gene with qPCR-HRM using plasmid-based controls. A segment of the RRDR region from M. tuberculosis H37Rv and from strains carrying C531T or C526T mutations in the rpoB were cloned into pGEM-T vector and these vectors were used as controls in the qPCR-HRM analysis of 54 M. tuberculosis strains. The results were confirmed by DNA sequencing and showed that recombinant plasmids can replace genomic DNA as controls in the qPCR-HRM assay. Plasmids can be handled outside of biosafety level 3 facilities, reducing the risk of contamination and the cost of the assay. Plasmids have a high stability, are normally maintained in Escherichia coli and can be extracted in large amounts.
Collapse
Affiliation(s)
- Joas Lucas da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
High-resolution melting curve analysis for rapid detection of rifampin resistance in Mycobacterium tuberculosis: a meta-analysis. J Clin Microbiol 2013; 51:3294-9. [PMID: 23885006 DOI: 10.1128/jcm.01264-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A rapid, simple, accurate, and affordable method for the detection of drug-resistant tuberculosis is very critical for the selection of antimicrobial therapy and management of patient treatment. High-resolution melting curve analysis has been used for the detection of rifampin resistance in Mycobacterium tuberculosis and has shown promise. We did a systematic review and meta-analysis of published studies to evaluate the accuracy of high-resolution melting curve analysis for the detection of rifampin resistance in clinical M. tuberculosis isolates. We searched the PubMed, BIOSIS Previews, and Web of Science databases to identify studies and included them according to predetermined criteria. We used the DerSimonian-Laird random-effects model to calculate pooled measures and applied Moses' constant for linear models to fit the summary receiver operating characteristic curve. According to the selection criteria, most of the identified studies were excluded, and only seven studies were included in the final analysis. The overall sensitivity of the high-resolution melting curve analysis was 94% (95% confidence interval [CI], 92% to 96%), and the overall specificity was very high at 99% (95% CI, 98% to 100%). The values for the pooled positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 63.39 (95% CI, 30.21 to 133.00), 0.06 (95% CI, 0.04 to 0.09), and 892.70 (95% CI, 385.50 to 2,067.24), respectively. There was no significant heterogeneity across all included studies for the measurements we evaluated. The summary receiver operating characteristic curve for the same data shows an area of 0.99 and a Q* value of 0.97. High-resolution melting curve analysis has high sensitivity and specificity for the detection of rifampin resistance in clinical M. tuberculosis isolates. This method might be a good alternative to conventional drug susceptibility tests in clinical practice.
Collapse
|
48
|
High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. J Infect Chemother 2013; 19:1116-25. [PMID: 23793795 DOI: 10.1007/s10156-013-0636-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
We developed and evaluated a high resolution melting (HRM) curve assay by using real-time PCR for the detection of the most frequent mutations of Mycobacterium tuberculosis, which are responsible for the resistance of four anti-TB drugs: rifampicin, isoniazid, ethambutol, and streptomycin. The HRM assay was successfully used for the detection of dominant mutations: A516V, H526A, H526T, S531L, L533P, and A516G/S531L in rpoB; S315T, and S315A in katG; -15C/T, and -8T/C in mab-inhA; M306I in embB; K88Q and K43R in rpsL; and 513A/C in rrs. We were able to discriminate the mutant from the wild type by analyzing the melting-curve shape in 40 clinical M. tuberculosis isolates, and the results of the HRM assay were completely consistent with those of DNA sequencing. This HRM assay is a simple, rapid, and cost-effective method that can be performed in a closed tube. Therefore, our assay is a potentially useful tool for the rapid detection of drug-resistant M. tuberculosis.
Collapse
|
49
|
Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis. J Microbiol Methods 2013; 93:32-6. [DOI: 10.1016/j.mimet.2013.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
|
50
|
Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding. J Clin Microbiol 2012; 50:2194-202. [PMID: 22535987 DOI: 10.1128/jcm.00143-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rifampin resistance in Mycobacterium tuberculosis is largely determined by mutations in an 80-bp rifampin resistance determining region (RRDR) of the rpoB gene. We developed a rapid single-well PCR assay to identify RRDR mutations. The assay uses sloppy molecular beacons to probe an asymmetric PCR of the M. tuberculosis RRDR by melting temperature (T(m)) analysis. A three-point T(m) code is generated which distinguishes wild-type from mutant RRDR DNA sequences in approximately 2 h. The assay was validated on synthetic oligonucleotide targets containing the 44 most common RRDR mutations. It was then tested on a panel of DNA extracted from 589 geographically diverse clinical M. tuberculosis cultures, including isolates with wild-type RRDR sequences and 25 different RRDR mutations. The assay detected 236/236 RRDR mutant sequences as mutant (sensitivity, 100%; 95% confidence interval [CI], 98 to 100%) and 353/353 RRDR wild-type sequences as wild type (specificity, 100%; 95% CI, 98.7 to 100%). The assay identified 222/225 rifampin-resistant isolates as rifampin resistant (sensitivity, 98.7%; 95% CI, 95.8 to 99.6%) and 335/336 rifampin-susceptible isolates as rifampin susceptible (specificity, 99.7%; 95% CI, 95.8 to 99.6%). All mutations were either individually identified or clustered into small mutation groups using the triple T(m) code. The assay accurately identified mixed (heteroresistant) samples and was shown analytically to detect RRDR mutations when present in at least 40% of the total M. tuberculosis DNA. This was at least as accurate as Sanger DNA sequencing. The assay was easy to use and well suited for high-throughput applications. This new sloppy molecular beacon assay should greatly simplify rifampin resistance testing in clinical laboratories.
Collapse
|