1
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj PK. Insights into structure and activity relationship of clinically mutated PER1 and PER2 class A β-lactamase enzymes. J Biomol Struct Dyn 2022:1-18. [PMID: 35475497 DOI: 10.1080/07391102.2022.2066179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PER1 and PER2 are among the class A β-lactamase enzymes, which have evolved clinically to form antibiotic resistance and have significantly expanded their spectrum of activity. Hence, there is a need to study the clinical mutation responsible for such β-lactamase mediated antibiotic resistance. Alterations in catalytic centre and Ω-loop structure could be the cause of antibiotic resistance in these β-lactamase enzymes. Structural and functional alterations are caused due to mutations on or near the catalytic centre, which results in active site plasticity and are responsible for its expanded spectrum of activity in these class A β-lactamase enzymes. Multiple sequence alignment, structure, kinetic, molecular docking, MMGBSA and molecular dynamic simulation comparisons were done on 38 clinically mutated and wild class A β-lactamase enzymes. This work shows that PER1 and PER2 enzymes contains most unique mutations and have altered Ω-loop structure, which could be responsible for altering the structure-activity relationship and extending the spectrum of activity of these enzymes. Alterations in molecular docking, MMGBSA, kinetic values reveals the modification in the binding and activity of these clinically mutated enzymes with antibiotics. Further, the cause of these alterations can be revealed by active site interactions and H-bonding pattern of these enzymes with antibiotics. Met69Gln, Glu104Thr, Tyr105Trp, Met129His, Pro167Ala, Glu168Gln, Asn170His, Ile173Asp and Asp176Gln mutations were uniquely found in PER1 and PER2 enzymes. These mutations occurs at catalytic important residues and results in altered interactions with β-lactam antibiotics. Hence, these mutations could be responsible for altering the structure-activity of PER1 and PER2 enzymes.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Jhalwa, Allahabad, India
| | - Tara Chand Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Jhalwa, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Jhalwa, Allahabad, India
| |
Collapse
|
2
|
Pauquet E, Coppry M, Sarlangue J, Rogues AM. Carbapenem stewardship program in a French university children's hospital. Arch Pediatr 2021; 28:621-625. [PMID: 34686425 DOI: 10.1016/j.arcped.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Carbapenems, last-resort antibiotics, are widely used as first-line treatment in patients carrying extended-spectrum beta-lactamases (ESBL) Enterobacteriaceae, including in a pediatric setting. We aimed to implement an antibiotic stewardship program (ASP) to improve the use of carbapenems. METHODS We implemented an ASP at the Bordeaux Children's University Hospital with 6-month audits on prescribing practice before and after an intervention (revision of antibiotic treatment protocols, a half-day educational session with feedback of the first study period). The number of carbapenem prescriptions was analyzed and two criteria were used to assess conformity of the indication for carbapenem prescription and conformity of the reassessment. A logistic regression was used to assess the overall compliance of carbapenem prescriptions over the two periods adjusted for ESBL carriage. RESULTS A total of 57 patients were included with 37 carbapenem prescriptions before the intervention and 23 after. Overall carbapenem consumption decreased from 0.54 prescriptions per 100 admissions to 0.32 (p = 0.06). Conformity increased during the study for indication (46-87%, p = 0.004) and for reassessment (48-78%, p = 0.04) and was significantly associated with the second study period, after adjustment for ESBL carriage. CONCLUSION Our intervention contributed to a significant improvement in the compliance to indications for carbapenem indication and in the reassessment of the prescription.
Collapse
Affiliation(s)
- E Pauquet
- Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France.
| | - M Coppry
- Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - J Sarlangue
- Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - A-M Rogues
- Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France
| |
Collapse
|
3
|
Occurrence of NDM-1 and VIM-2 Co-Producing Escherichia coli and OprD Alteration in Pseudomonas aeruginosa Isolated from Hospital Environment Samples in Northwestern Tunisia. Diagnostics (Basel) 2021; 11:diagnostics11091617. [PMID: 34573959 PMCID: PMC8467603 DOI: 10.3390/diagnostics11091617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.
Collapse
|
4
|
Galani I, Papoutsaki V, Karantani I, Karaiskos I, Galani L, Adamou P, Deliolanis I, Kodonaki A, Papadogeorgaki E, Markopoulou M, Maraki S, Damala M, Prifti E, Vagiakou E, Petinaki E, Fountoulis K, Tsiplakou S, Kirikou H, Souli M, Antoniadou A, Giamarellou H. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J Antimicrob Chemother 2021; 75:2164-2172. [PMID: 32449909 DOI: 10.1093/jac/dkaa160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents against MDR non-MBL Pseudomonas aeruginosa isolates collected from nine Greek hospitals and we assessed the potential synergistic interaction between ceftolozane/tazobactam and amikacin. METHODS A total of 160 non-MBL P. aeruginosa isolates collected in 2016 were tested for susceptibility to ceftolozane/tazobactam and seven comparator agents including ceftazidime/avibactam. Time-kill assays were performed for synergy testing using ceftolozane/tazobactam 60 or 7.5 mg/L, corresponding to the peak and trough concentrations of a 1.5 g q8h dose, respectively, in combination with 69 mg/L amikacin, corresponding to the free peak plasma concentration. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS Overall, ceftolozane/tazobactam inhibited 64.4% of the P. aeruginosa strains at ≤4 mg/L. Colistin was the most active agent (MIC50/90, 0.5/2 mg/L; 96.3% susceptible) followed by ceftazidime/avibactam (MIC50/90, 4/16 mg/L; 80.6% susceptible). GES-type enzymes were predominantly responsible for ceftolozane/tazobactam resistance; 81.6% of the non-producers were susceptible. MICs for the P. aeruginosa isolates selected for synergy testing were 2-32 mg/L ceftolozane/tazobactam and 2-128 mg/L amikacin. The combination of ceftolozane/tazobactam with amikacin was synergistic against 85.0% of all the isolates tested and against 75.0% of the GES producers. No antagonistic interactions were observed. CONCLUSIONS Ceftolozane/tazobactam demonstrated good in vitro activity against MDR/XDR P. aeruginosa clinical isolates, including strains with co-resistance to other antipseudomonal drugs. In combination with amikacin, a synergistic interaction at 24 h was observed against 85.0% of P. aeruginosa strains tested, including isolates with ceftolozane/tazobactam MICs of 32 mg/L or GES producers.
Collapse
Affiliation(s)
- Irene Galani
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece.,University General Hospital 'ATTIKON', Chaidari, Athens, Greece
| | | | - Irene Karantani
- Infectious Diseases Laboratory, Hygeia General Hospital, Athens, Greece
| | - Ilias Karaiskos
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| | - Lamprini Galani
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| | - Panagiota Adamou
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antigoni Kodonaki
- Department of Microbiology, 'Laikon' General Hospital, Athens, Greece
| | | | | | - Sofia Maraki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Maria Damala
- Microbiology Department, 'Alexandra' General Hospital of Athens, Athens, Greece
| | - Eleni Prifti
- Microbiology Department, 'Alexandra' General Hospital of Athens, Athens, Greece
| | - Eleni Vagiakou
- Microbiology Laboratory, General Hospital of Athens 'G. Gennimatas', Athens, Greece
| | - Efthimia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Kimon Fountoulis
- Microbiology Department, Evangelismos General Hospital, Athens, Greece
| | | | - Helen Kirikou
- Microbiology Department, Agia Sofia Children's Hospital, Athens, Greece
| | - Maria Souli
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniadou
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Giamarellou
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
5
|
Bratić V, Mihaljević S, Verzak Ž, Pleško E, Lukić A, Ćaćić M, Bedenić B. Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing Gram-negative bacteria in the oral cavity. Lett Appl Microbiol 2021; 73:206-219. [PMID: 33896011 DOI: 10.1111/lam.13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Prophylactic administration of broad-spectrum antibiotics in surgery can change the oral microbiome and induce colonization of oral cavity with Gram-negative bacteria including multidrug (MDR) or extensively drug resistant (XDR) organisms which can lead to lower respiratory tract infections. The aim of the study was to analyse the Gram-negative isolates obtained from oral cavity of the mechanically ventilated patients in ICUs, after prophylactic application of antibiotics and their resistance mechanisms and to compare them with the isolates obtained from tracheal aspirates from the same patients. The antibiotic susceptibility was determined by broth dilution method. PCR was applied to detect genes encoding β-lactamases. Marked diversity of Gram-negative bacteria and resistance mechanisms was found. High resistance rates and high rate of blaCTX-M and carbapenemase encoding genes (blaVIM-1 , blaOXA-48 ) were found among Klebsiella pneumoniae. Pseudomonas aeruginosa was found to harbour blaVIM and in one strain blaPER-1 gene, whereas Acinetobacter baumannii produced OXA-23-like and OXA-24/40-like oxacillinases and was XDR in all except one case. All XDR isolates belong to international clonal lineage II (IC II). The main finding of the study is that the prophlylactic application of antibiotics in surgery intensive care units (ICUs) is associated with the colonization of oral cavity and lower respiratory tract with Gram-negative bacteria. The identity of Gram-negative bacteria in oral cavity reflected those found in endotracheal aspirates leading to conclusion that oral swab as non-invasive specimen can predict the colonization of lower respiratory tract with resistant Gram-negative organisms and the risk for development of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- V Bratić
- University Hospital Center Zagreb, Zagreb, Croatia
| | - S Mihaljević
- University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, University Hospital Center, Zagreb, Croatia
| | - Ž Verzak
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - E Pleško
- School of Medicine, University of Zagreb, University Hospital Center, Zagreb, Croatia
| | - A Lukić
- Varaždin General Hospital, Varaždin, Croatia
| | - M Ćaćić
- Campus Bad Neustadt, Neustadt, Germany
| | - B Bedenić
- University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, University Hospital Center, Zagreb, Croatia
| |
Collapse
|
6
|
Urbanowicz P, Bitar I, Izdebski R, Baraniak A, Literacka E, Hrabák J, Gniadkowski M. Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations. Antimicrob Agents Chemother 2021; 65:e02122-20. [PMID: 33526490 PMCID: PMC8097432 DOI: 10.1128/aac.02122-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
In 2003 to 2004, the first five VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) isolates with an In4-like integron, In461 (aadB-blaVIM-2-aadA6), on conjugative plasmids were identified in three hospitals in Poland. In 2005 to 2015, MPPA expanded much in the country, and as many as 80 isolates in a collection of 454 MPPA (∼18%) had In461, one of the two most common MBL-encoding integrons. The organisms occurred in 49 hospitals in 33 cities of 11/16 main administrative regions. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) classified them into 55 pulsotypes and 35 sequence types (STs), respectively, revealing their remarkable genetic diversity overall, with only a few small clonal clusters. S1 nuclease/hybridization assays and mating of 63 representative isolates showed that ∼85% of these had large In461-carrying plasmids, ∼350 to 550 kb, usually self-transmitting with high efficiency (∼10-1 to 10-2 per donor cell). The plasmids from 19 isolates were sequenced and subjected to structural and single-nucleotide-polymorphism (SNP)-based phylogenetic analysis. These formed a subgroup within a family of IncP-2-type megaplasmids, observed worldwide in pseudomonads from various environments and conferring resistance/tolerance to multiple stress factors, including antibiotics. Their microdiversity in Poland arose mainly from acquisition of different accessory fragments, as well as new resistance genes and multiplication of these. Short-read sequence and/or PCR mapping confirmed the In461-carrying plasmids in the remaining isolates to be the IncP-2 types. The study demonstrated a large-scale epidemic spread of multidrug resistance plasmids in P. aeruginosa populations, creating an epidemiological threat. It contributes to the knowledge on IncP-2 types, which are interesting research objects in resistance epidemiology, environmental microbiology, and biotechnology.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
7
|
Tchakal-Mesbahi A, Metref M, Singh VK, Almpani M, Rahme LG. Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns 2021; 47:1833-1843. [PMID: 33795157 DOI: 10.1016/j.burns.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the prevalence of multidrug-resistant (MDR) Pseudomonas aeruginosa (PA) producing extended-spectrum beta-lactamases (ESBLs) and metallo-beta-lactamases (MBLs) in burn patients in Algeria. METHODS Between April 2016 and October 2019, 47 non-redundant isolates of PA were collected from 47 burn patients admitted to the Department of Burns at the Military Hospital of Algiers in Algeria. Antibiotic susceptibility testing was performed by agar diffusion and the Phoenix automated method. Resistance genes were identified by PCR, and molecular typing of isolates was carried out by enterobacterial repetitive intergenic consensus (ERIC) sequences-polymerase chain reaction (PCR). RESULTS Among the 47 non-redundant MDR PA strains isolated, 59.57% were phenotypically ESBLs-positive, and 100% were phenotypically MBL-positive. The ESBL-positive isolates were subsequently screened for six groups of bla genes encoding ESBL-type enzymes, namely blaCTX-M2, blaPER, blaTEM, blaSHV, blaVEB, and blaGES. Out of the 28 ESBL-producing strains, 23 (82.14%) were blaCTX-M2 positive; 18 (38.29%) were blaPER positive, and 16 (34.04%) were blaTEM positive, while 5 (17.9%) were co-harboring blaCTX-M2, blaTEM, and blaPER genes. The blaSHV, blaVEB, and blaGES genes were not detected in any of the ESBL positive isolates. Since all isolates were MBL-positive, all 47 strains were screened for the blaNDM-1, blaIMP, blaVIM genes that produce MBLs; however, none of these genes were detected. Additional screening for the oprD gene demonstrated that 45 (95.74%) of the isolates were positive for this gene. Finally, ERIC PCR revealed 11 distinct PA clones among the blaCTX-M2 positive strains. CONCLUSION This is the first study to report the presence of CTX-M2-producing PA in the North Africa region and the first to detect blaCTX-M2-positive and blaPER-positive PA clinical isolates in Algeria, therefore demonstrating the spread of such MDR strains to this part of the world. Identification of bacterial genotypic alterations that confer antibiotic resistance is critical in determining the most effective antimicrobial strategies to be employed. Therefore, our findings could potentially facilitate clinical decision making regarding the antibiotics of choice for the treatment of burn patients that suffer from PA infections in Algeria.
Collapse
Affiliation(s)
- Asma Tchakal-Mesbahi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, P.B. 32 El-Alia, Bab-Ezzouar, 16111, Algiers, Algeria
| | - Merzak Metref
- Microbiology Laboratory of the Burn Center, The Central Hospital of Army, BP 244 Kouba, Algiers, Algeria
| | - Vijay K Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA; Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA; Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laurence G Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA; Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Tsang KK, Maguire F, Zubyk HL, Chou S, Edalatmand A, Wright GD, Beiko RG, McArthur AG. Identifying novel β-lactamase substrate activity through in silico prediction of antimicrobial resistance. Microb Genom 2021; 7:mgen000500. [PMID: 33416461 PMCID: PMC8115898 DOI: 10.1099/mgen.0.000500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Diagnosing antimicrobial resistance (AMR) in the clinic is based on empirical evidence and current gold standard laboratory phenotypic methods. Genotypic methods have the potential advantages of being faster and cheaper, and having improved mechanistic resolution over phenotypic methods. We generated and applied rule-based and logistic regression models to predict the AMR phenotype from Escherichia coli and Pseudomonas aeruginosa multidrug-resistant clinical isolate genomes. By inspecting and evaluating these models, we identified previously unknown β-lactamase substrate activities. In total, 22 unknown β-lactamase substrate activities were experimentally validated using targeted gene expression studies. Our results demonstrate that generating and analysing predictive models can help guide researchers to the mechanisms driving resistance and improve annotation of AMR genes and phenotypic prediction, and suggest that we cannot solely rely on curated knowledge to predict resistance phenotypes.
Collapse
Affiliation(s)
- Kara K. Tsang
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Haley L. Zubyk
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sommer Chou
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Arman Edalatmand
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew G. McArthur
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Ohadian Moghadam S, Afshar D, Nowroozi MR, Behnamfar A, Farzin A. Molecular Epidemiology of Carbapenemase-Producing Pseudomonas aeruginosa Isolated from an Iranian University Hospital: Evidence for Spread of High-Risk Clones. Infect Drug Resist 2020; 13:1583-1592. [PMID: 32581561 PMCID: PMC7277578 DOI: 10.2147/idr.s253756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Given the importance of treatment failure due to multidrug-resistant (MDR) strains, studies on population structure of these organisms are necessary to improve control strategies. Accordingly, the current study aimed to determine the prevalence of carbapenem-resistant P. aeruginosa (CRPA) at a teaching referral hospital in Iran and to analyz their molecular clonality by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for epidemiological purposes. Methods In this study, modified Hodge test (MHT) and double-disk synergy test (DDST) were used for carbapenemase production and metallo-β-lactamases (MBLs) screening, respectively. All P. aeruginosa isolates were tested for antimicrobial resistance. Moreover, MBL genes (blaIMP, blaVIM, blaSPM, blaNDM) were detected by multiplex PCR assay. Results Among 68 P. aeruginosa clinical isolates, 38 (55.88%) isolates were CRPA. Antibiotic susceptibility testing revealed that most of these isolates were MDR. PFGE analyses showed 5 common types and 27 single types among CRPA isolates. MLST analysis revealed three major clusters (MLST-sequence types (STs): 235, 357, and 861) among them. The 30 non-CRPA isolates corresponded mainly to MLST-STs 253, 360, and 446. Conclusion Our results showed that internationally distributed MLST-STs with widely genomic diversity have spread in our hospital, and clonal expansion of MDR strains of P. aeruginosa was described as well.
Collapse
Affiliation(s)
| | - Davoud Afshar
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Amir Behnamfar
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Farzin
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ogbolu DO, Piddock LJ, Webber MA. Opening Pandora's box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. J Glob Antimicrob Resist 2020; 21:211-217. [DOI: 10.1016/j.jgar.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022] Open
|
11
|
Secondary in-hospital epidemiological investigation after an outbreak of Pseudomonas aeruginosa ST357. J Infect Chemother 2020; 26:257-265. [DOI: 10.1016/j.jiac.2019.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
12
|
Iovene MR, Pota V, Galdiero M, Corvino G, Lella FMD, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Franco SD, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescensin an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019. [DOI: 10.12998/wjcc.v7.i21.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
13
|
Iovene MR, Pota V, Galdiero M, Corvino G, Di Lella FM, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Di Franco S, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019; 7:3535-3548. [PMID: 31750335 PMCID: PMC6854422 DOI: 10.12998/wjcc.v7.i21.3535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics.
CASE SUMMARY An outbreak of VIM-producing Serratia marcescens occurred over a period of 11 wk (August, 1 to October, 18) in patients admitted to the adult polyvalent intensive care unit of the University of Campania “Luigi Vanvitelli” located in Naples. Four episodes occurred in three patients (two patients infected, and one patient colonized). All the strains revealed the production of VIM.
CONCLUSION After three decades of carbapenem antibiotics use, the emergence of carbapenem-resistance in Enterobacteriaceae has become a significant concern and a stricter control to preserve its clinical application is mandatory. This is, to our knowledge, the first outbreak of VIM-producing Serratia marcescens in Europe. Surveillance policies must be implemented to avoid future outbreaks.
Collapse
Affiliation(s)
- Maria Rosaria Iovene
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Giusy Corvino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Federica Maria Di Lella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Caterina Aurilio
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | | | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
14
|
Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm. Curr Med Chem 2019; 26:1979-1993. [PMID: 30207213 DOI: 10.2174/0929867325666180912110151] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
The environment exerts strong influence on microbes. Adaptation of microbes to changing conditions is a dynamic process regulated by complex networks. Pseudomonas aeruginosa is a life-threating, versatile opportunistic and multi drug resistant pathogen that provides a model to investigate adaptation mechanisms to environmental changes. The ability of P. aeruginosa to form biofilms and to modify virulence in response to environmental changes is coordinated by various mechanisms including two-component systems (TCS), and secondary messengers involved in quorum sensing (QS) and c-di-GMP networks (diguanylate cyclase systems, DGC). In this review, we focus on the role of c-di-GMP during biofilm formation. We describe TCS and QS signal cascades regulated by c-di-GMP in response to changes in the external environment. We present a complex signaling network dynamically changing during the transition of P. aeruginosa from the free-living to sessile mode of growth.
Collapse
Affiliation(s)
- Grzegorz Guła
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Miguel A Valvano
- Wellcome- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
15
|
Orsi TD, Perdigão Neto LV, Martins RCR, Levin AS, Costa SF. Polymyxin-resistant Pseudomonas aeruginosa assigned as ST245: First report in an intensive care unit in São Paulo, Brazil. J Glob Antimicrob Resist 2019; 16:147-149. [PMID: 30634055 DOI: 10.1016/j.jgar.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infections, especially in hospitalised and immunocompromised patients. Polymyxins are the last therapeutic option to treat infections caused by this micro-organism. Here we describe a polymyxin-resistant P. aeruginosa assigned as sequence type (ST) 245 for the first time in Brazil. METHODS Antimicrobial susceptibility testing of the isolate was performed. In addition, whole-genome sequencing was performed and its virulence and resistance genes were analysed. RESULTS The P. aeruginosa ST245 isolate was identified for the first time in Brazil in a patient with ventilator-associated pneumonia hospitalised at Hospital das Clínicas, São Paulo. Analysis of the genome showed the presence of several resistance and virulence genes. Mutations in β-lactam resistance genes were found in β-lactamases, outer membrane proteins, efflux pump and penicillin-binding proteins. Polymorphisms related to pathways leading to polymyxin resistance are also present, such as lipid A or keto-deoxyoctulosonate modification with aminoarabinose as well as activation of lipopolysaccharide (LPS). CONCLUSION Such findings may represent an alert for the spread of an unusual profile in the country.
Collapse
Affiliation(s)
- Tatiana D'Annibale Orsi
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil.
| | - Lauro Vieira Perdigão Neto
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil; Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo - SP, 05403-010, Brazil
| | - Roberta Cristina Ruedas Martins
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil
| | - Anna S Levin
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil; Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo - SP, 05403-010, Brazil
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil
| |
Collapse
|
16
|
van Burgh S, Maghdid DM, Ganjo AR, Mansoor IY, Kok DJ, Fatah MH, Alnakshabandi AA, Asad D, Hammerum AM, Ng K, Klaassen C, Goessens WHF. PME and Other ESBL-Positive Multiresistant Pseudomonas aeruginosa Isolated from Hospitalized Patients in the Region of Kurdistan, Iraq. Microb Drug Resist 2018; 25:32-38. [PMID: 30067166 DOI: 10.1089/mdr.2018.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nosocomial infections occur worldwide and also in the Kurdistan region. Frequently patients colonized with multiresistant Pseudomonas aeruginosa isolates are encountered in many hospitals. As information is lacking with respect to the mechanisms of resistance responsible for the multiresistant character of the P. aeruginosa isolates and their genetic relationship, isolates were prospectively collected and characterized with respect to their mechanism of resistance. During 2012 and 2013, 81 P. aeruginosa isolates were collected from three teaching hospitals in the city of Erbil, Iraq. Susceptibility testing was performed using the VITEK-2 system. Isolates were screened for the presence of extended-spectrum β-lactamases (ESBLs) and for the presence of metallo β-lactamases (MBLs). The presence of serine carbapenemases was detected by PCR. The genetic relationship of the isolates was demonstrated by amplified fragment length polymorphism (AFLP). Susceptibility results revealed high rates of resistance against all classes of antibiotics except polymyxins. Genetic characterization demonstrated the presence of ESBL-genes, that is, blaVEB (30%) and blaPER (17%), also ESBL blaPME was detected in four isolates. AFLP typing revealed clonal spread of blaVEB, blaPER, and three clusters of blaOXA-10-positive isolates. Only one isolate was MBL (blaVIM) positive. Of a selected number of isolates (n = 11), whole-genome sequencing analysis revealed that these isolates belonged to "high-risk" MLSTs ST244, ST235, ST308, and ST654. This study reveals the presence and clonal spread of widely resistant high-risk clones of P. aeruginosa in Iraqi Kurdistan. As far as we are aware, this is the first report of multiple, polyclonal, PME producing P. aeruginosa outside the Arabian Peninsula.
Collapse
Affiliation(s)
- Sebastian van Burgh
- 1 Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam , Rotterdam, the Netherlands
| | - Delshad M Maghdid
- 1 Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam , Rotterdam, the Netherlands
| | - Aryann R Ganjo
- 2 College of Pharmacy, Hawler Medical University , Erbil, Iraq
| | - Isam Y Mansoor
- 2 College of Pharmacy, Hawler Medical University , Erbil, Iraq
| | - Dik J Kok
- 1 Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam , Rotterdam, the Netherlands
| | | | | | - Dlnya Asad
- 4 School of Science, Sulaimani University , Sulaimani, Iraq
| | - Anette M Hammerum
- 5 Department of Bacteria, Parasites and Fungi, Statens Serum Institut , Copenhagen S, Denmark
| | - Kim Ng
- 5 Department of Bacteria, Parasites and Fungi, Statens Serum Institut , Copenhagen S, Denmark
| | - Corné Klaassen
- 1 Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam , Rotterdam, the Netherlands
| | - Wil H F Goessens
- 1 Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam , Rotterdam, the Netherlands
| |
Collapse
|
17
|
Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, Gniadkowski M, Shimojima M, Kirikae T. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa. Genome Biol Evol 2018; 9:3238-3245. [PMID: 29202180 PMCID: PMC5726472 DOI: 10.1093/gbe/evx243] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most common nosocomial pathogens worldwide. Although the emergence of multidrug-resistant (MDR) P. aeruginosa is a critical problem in medical practice, the key features involved in the emergence and spread of MDR P. aeruginosa remain unknown. This study utilized whole genome sequence (WGS) analyses to define the population structure of 185 P. aeruginosa clinical isolates from several countries. Of these 185 isolates, 136 were categorized into sequence type (ST) 235, one of the most common types worldwide. Phylogenetic analysis showed that these isolates fell within seven subclades. Each subclade harbors characteristic drug resistance genes and a characteristic genetic background confined to a geographic location, suggesting that clonal expansion following antibiotic exposure is the driving force in generating the population structure of MDR P. aeruginosa. WGS analyses also showed that the substitution rate was markedly higher in ST235 MDR P. aeruginosa than in other strains. Notably, almost all ST235 isolates harbor the specific type IV secretion system and very few or none harbor the CRISPR/CAS system. These findings may help explain the mechanism underlying the emergence and spread of ST235 P. aeruginosa as the predominant MDR lineage.
Collapse
Affiliation(s)
- Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | - Bharat Mani Pokhrel
- Department of Microbiology, Tribuvan University Teaching Hospital, Kathmandu, Nepal
| | | | | | - Teruo Kirikae
- Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Laudy AE, Róg P, Smolińska-Król K, Ćmiel M, Słoczyńska A, Patzer J, Dzierżanowska D, Wolinowska R, Starościak B, Tyski S. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLoS One 2017; 12:e0180121. [PMID: 28658322 PMCID: PMC5489192 DOI: 10.1371/journal.pone.0180121] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/11/2017] [Indexed: 01/17/2023] Open
Abstract
Knowledge of the prevalence of ESBL enzymes among P. aeruginosa strains compared to the Enterobacteraiceae family is limited. The phenotypic tests recommended by EUCAST for the detection of ESBL-producing Enterobacteriaceae are not always suited for P. aeruginosa strains. This is mainly due to the presence of other families of ESBLs in P. aeruginosa isolates more often than in Enterobacteriaceae, production of natural AmpC cephalosporinase and its overexpression, and co-production of metallo-β-lactamases. The aim of this study was to determine the occurrence of ESBLs in P. aeruginosa isolated from patients from hospitals in Warsaw, to evaluate the ESBL production of these isolates using currently available phenotypic tests, their modifications, multiplex PCR and molecular typing of ESBL-positive isolates by PFGE. Clinical isolates of P. aeruginosa were collected in 2000-2014 from four Warsaw hospitals. Based on the data obtained in this study, we suggest using three DDST methods with inhibitors, such as clavulanic acid, sulbactam and imipenem, to detect ESBL-producing P. aeruginosa strains. Depending on the appearance of the plates, we suggest a reduction in the distance between discs with antibiotics to 15 mm and the addition of boronic acid at 0.4 mg per disc. The analysed isolates carried genes encoding ESBL from the families VEB (69 isolates with VEB-9), GES (6 with GES-1, 1 GES-5, 5 GES-13 and 2 with GES-15), OXA-2 (12 with OXA-15, 1 OXA-141, 1 OXA-210, 1 OXA-543 and 1 with OXA-544) and OXA-10 (5 isolates with OXA-74 and one with OXA-142). The most important result of this study was the discovery of three new genes, blaGES-15, blaOXA-141 and blaOXA-142; their nucleotide sequences have been submitted to the NCBI GenBank. It is also very important to note that this is the first report on the epidemiological problem of VEB-9-producing bacterial strains, not only in Poland but also worldwide.
Collapse
Affiliation(s)
- Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Patrycja Róg
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Milena Ćmiel
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Słoczyńska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Patzer
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Danuta Dzierżanowska
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Bohdan Starościak
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
19
|
Luczkiewicz A, Kotlarska E, Artichowicz W, Tarasewicz K, Fudala-Ksiazek S. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19823-34. [PMID: 26286796 PMCID: PMC4679113 DOI: 10.1007/s11356-015-5098-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/20/2015] [Indexed: 05/21/2023]
Abstract
In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.
Collapse
Affiliation(s)
- Aneta Luczkiewicz
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Ewa Kotlarska
- Institute of Oceanology Polish Academy of Sciences, Powstancow Warszawy 55, 81-712, Sopot, Poland.
| | - Wojciech Artichowicz
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Katarzyna Tarasewicz
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Sylwia Fudala-Ksiazek
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
20
|
Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa strains isolated from patients with urinary tract infections in Southern Poland. Diagn Microbiol Infect Dis 2015; 83:295-7. [DOI: 10.1016/j.diagmicrobio.2015.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 11/21/2022]
|
21
|
Chen Z, Niu H, Chen G, Li M, Li M, Zhou Y. Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital. Int J Clin Exp Med 2015; 8:19400-19405. [PMID: 26770582 PMCID: PMC4694482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
This study was to explore the molecular dissemination of P. aeruginosa producing extended spectrum β-lactamase (ESBLs) recovered from the different wards in a teaching hospital, Jilin. Among 240 isolates, 91 strains were isolated from burn wards and 149 strains from surgical wards. A total of 210 strains (87.5%) produced ESBLs, 30 strains (12.5%) didn't produce ESBLs. All ESBLs isolates showed identical antimicrobial susceptibility profiles. The genotypic prevalence of ESBLs for bla SHV-12, bla TEM-24, bla CTX-M-1, bla CTX-M-2, bla CTX-M-3, bla PER and bla VEB genes was 17.6%, 20.5%, 14.3%, 9.6%, 12.9%, 13.8% and 11.4% respectively. All P. aeruginosa strains producing ESBLs had three to six plasmids and contained class 1 integrons, which transferred resistance to E. coli C 600 by conjuation. The data indicated a high prevalence of ESBL among P. aeruginosa isolates in this region and their enzyme types were diverse.
Collapse
Affiliation(s)
- Zhilong Chen
- Department of Surgery, Associated Hospital, Beihua UniversityJilin, China
| | - Hui Niu
- Department of Surgery, Associated Hospital, Beihua UniversityJilin, China
| | - Guangyu Chen
- Department of Surgery, Associated Hospital, Beihua UniversityJilin, China
| | - Mingcheng Li
- Department of Clinical Microbiology, School of Laboratory Medicine, Beihua UniversityJilin, China
| | - Ming Li
- Department of Clinical Microbiology, School of Laboratory Medicine, Beihua UniversityJilin, China
| | - Yuqing Zhou
- Department of Clinical Microbiology, School of Laboratory Medicine, Beihua UniversityJilin, China
| |
Collapse
|
22
|
Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22:41-59. [PMID: 26304792 DOI: 10.1016/j.drup.2015.08.002] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.
Collapse
Affiliation(s)
- Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Ctra. Valldemossa 79, 07010 Palma de Mallorca, Spain
| |
Collapse
|
23
|
Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Genetic characterization of Pseudomonas aeruginosa-resistant isolates at the university teaching hospital in Iran. Adv Biomed Res 2015; 4:156. [PMID: 26380241 PMCID: PMC4550956 DOI: 10.4103/2277-9175.161583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic pathogen that is commonly responsible for nosocomial infections. The aim of this study was to perform a genotyping analysis of the Pseudomonas aeruginosa-resistant isolates by the multilocus sequence typing (MLST) method at the university teaching hospital in Iran. Materials and Methods: Antimicrobial susceptibility was analyzed for P. aeruginosa isolates. Ceftazidime-resistant (CAZres) isolates with a positive double-disc synergy test were screened for the presence of extended-spectrum β-lactamase-encoding genes. Phenotypic tests to detect the metallo-β-lactamase strains of P. aeruginosa were performed on imipenem-resistant (IMPres) isolates. Selected strains were characterized by MLST. Results: Of 35 P. aeruginosa isolates, 71%, 45% and 45% of isolates were CAZres, IMPres and multidrug resistant (MDR), respectively. Fifty-seven percent of the isolates carried the blaOXAgroup-1. All the five typed isolates were ST235. Isolates of ST235 that were MDR showed a unique resistance pattern. Conclusion: This study shows a high rate of MDR P. aeruginosa isolates at the university teaching hospital in Iran. It seems MDR isolates of P. aeruginosa ST235 with unique resistance pattern disseminated in this hospital.
Collapse
Affiliation(s)
- Hossein Fazeli
- Department of Microbiology, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical sciences, Isfahan, Iran
| | - Hooman Sadighian
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran ; Department of Microbiology, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85. [PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here.
Collapse
Affiliation(s)
- Anaïs Potron
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; HFR - Hôpital Cantonal de Fribourg, Fribourg, Switzerland
| |
Collapse
|
25
|
Persistence and epidemic propagation of a Pseudomonas aeruginosa sequence type 235 clone harboring an IS26 composite transposon carrying the blaIMP-1 integron in Hiroshima, Japan, 2005 to 2012. Antimicrob Agents Chemother 2015; 59:2678-87. [PMID: 25712351 DOI: 10.1128/aac.04207-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
A 9-year surveillance for multidrug-resistant (MDR) Pseudomonas aeruginosa in the Hiroshima region showed that the number of isolates harboring the metallo-β-lactamase gene bla(IMP-1) abruptly increased after 2004, recorded the highest peak in 2006, and showed a tendency to decline afterwards, indicating a history of an epidemic. PCR mapping of the variable regions of the integrons showed that this epidemic was caused by the clonal persistence and propagation of an MDR P. aeruginosa strain harboring the bla(IMP-1) gene and an aminoglycoside 6'-N-acetyltransferase gene, aac(6')-Iae in a class I integron (In113), whose integrase gene intl1 was disrupted by an IS26 insertion. Sequence analysis of the representative strain PA058447 resistance element containing the In113-derived gene cassette array showed that the element forms an IS26 transposon embedded in the chromosome. It has a Tn21 backbone and is composed of two segments sandwiched by three IS26s. In Japan, clonal nationwide expansion of an MDR P. aeruginosa NCGM2.S1 harboring chromosomally encoded In113 with intact intl1 is reported. Multilocus sequence typing and genomic comparison strongly suggest that PA058447 and NCGM2.S1 belong to the same clonal lineage. Moreover, the structures of the resistance element in the two strains are very similar, but the sites of insertion into the chromosome are different. Based on tagging information of the IS26 present in both resistance elements, we suggest that the MDR P. aeruginosa clone causing the epidemic in Hiroshima for the past 9 years originated from a common ancestor genome of PA058447 and NCGM2.S1 through an IS26 insertion into intl1 of In113 and through IS26-mediated genomic rearrangements.
Collapse
|
26
|
Mano Y, Saga T, Ishii Y, Yoshizumi A, Bonomo RA, Yamaguchi K, Tateda K. Molecular analysis of the integrons of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates collected by nationwide surveillance programs across Japan. BMC Microbiol 2015; 15:41. [PMID: 25881168 PMCID: PMC4362823 DOI: 10.1186/s12866-015-0378-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/10/2015] [Indexed: 12/27/2022] Open
Abstract
Background We investigate the evolving molecular epidemiology of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa isolates collected in a 100 institution, nationwide surveillance study in Japan from 2004 to 2006. Results MBL-producers were detected in 23/996 isolates (2.3%) in 2004 and 21/992 (2.1%) in 2006. Antimicrobial resistance (specifically, carbapenem resistance) rates between two periods did not differ significantly. MBL-producers were more prevalent in urinary tract isolates. blaIMP-1 group was the most predominant (38 isolates, 80%), followed by 3 blaIMP-7, 2 blaIMP-11 group, and 1 blaVIM-1. All MBL genes were identified in 16 different class 1 integrons, most of which were novel to INTEGRALL database. A total of 17 isolates of sequence type (ST) 235, a recognized worldwide drug-resistant lineage, were distributed in 5 geographic regions across Japan. ST235 isolates included a sublineage associated with In113-like integron. ST357 was identified in 14 isolates, 9 of which harboring a sole blaIMP-1 gene cassette (In994) were recovered from Chugoku region in 2004. ST357 isolates with blaIMP-11 group or ST235 with blaIMP-7 emerged in 2006. We also report for the first time the presence of novel fosI gene cassette in strains other than Mycobacterium spp. Conclusions Our data give an important “snapshot” of the molecular characteristics and dynamics of MBL-producing lineages in P. aeruginosa in Japan. The significant association of specific genotypes and integrons implies that dissemination and transmission of the preexisting resistant lineage, rather than horizontal gene transfer in situ, might largely explain their endemicity.
Collapse
Affiliation(s)
- Yoko Mano
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Tomoo Saga
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Ayumi Yoshizumi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH, 44106, USA. .,Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Keizo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
27
|
Emami A, Bazargani A, Mohammadi AA, Zardosht M, Seyed Jafari SM. Detection of blaPER-1 & blaOxa10 among imipenem resistant isolates of Pseudomonas aeruginosa isolated from burn patients hospitalized in Shiraz Burn Hospital. IRANIAN JOURNAL OF MICROBIOLOGY 2015; 7:7-11. [PMID: 26644867 PMCID: PMC4670471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Pseudomonas aeruginosa is one of the most important Gram negative opportunistic bacteria which causes infection among burn patients. Resistance to the antibiotics in this group of bacteria is increased due to the activity of extended spectrum β-lactamase (ESBLs) genes. In the current study, we investigated the prevalence of two genes (blaPER-1 & blaOxa10 ) related β-lactamase genes among imipenem resistance clinical isolates of P. aeruginosa in hospitalized patients. MATERIALS AND METHODS From May 2010 to March 2011, 270 P. aeruginosa isolated from hospitalized burned patients' wounds in Shiraz Burn Hospital, were tested for Imipenem resistance by disk diffusion method. Presence of ESBLs exo-enzyme, blaPER-1 and blaOxa10 genes were also evaluated in the resistant isolate. RESULTS 210 (77.7%) of 270 P. aeruginosa isolates were resistant to imipenem. blaPER-1 and blaOxa10 were detected among 168 (80.0%) of imipenem resistant isolates. Furthermore, 160 (76.2%) of them had blaOxa10 gene and 84 (40.0%) of them had blaPER-1 while 63 (30.0%) resistant isolates contained both genes simultaneously. CONCLUSION This study showed a high prevalence of blaPER-1 and blaOxa10 genes in hospitalized burn patients in south west of Iran. Therefore, it's highly recommended to perform such tests routinely to evaluate the resistance pattern in order to better antibiotic selection in the burned patients.
Collapse
Affiliation(s)
- Amir Emami
- Shiraz Burn Research Center, Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Bazargani
- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Mohammadi
- Shiraz Burn Research Center, Division of plastic and reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran., Corresponding author: Ali Akbar Mohammadi, Address: Shiraz Burn Research Center, Division of plastic and reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +98- 917-113-3639, Fax: +98-71-38208880, E-mail:
| | - Mitra Zardosht
- Shiraz Burn Research Center, Division of plastic and reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Morteza Seyed Jafari
- Shiraz Burn Research Center, Division of plastic and reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods 2014; 107:106-18. [DOI: 10.1016/j.mimet.2014.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023]
|
29
|
Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:125-134. [PMID: 25379131 PMCID: PMC4214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Catheter associated urinary tract infections by P. aeruginosa are related to variety of complications. Quorum sensing and related circuitry guard its virulence potential. Though P. aeruginosa accounts for an appreciable amount of virulence factors, this organism is highly unstable phenotypically. Thus, genotyping of clinical isolates of P. aeruginosa is of utmost importance for understanding the epidemiology of infection. This may contribute towards development of immunotherapeutic approaches against this multi drug resistant pathogen. Moreover, no epidemiological study has been reported yet on uroisolates of P. aeruginosa. Thus this study was planned to obtain information regarding presence, distribution and rate of occurrence of quorum sensing and some associated virulence genes at genetic level. The profiling of quorum sensing genes lasI, lasR, rhlI, rhlR and virulence genes like toxA, aprA, rhlAB, plcH, lasB and fliC of twelve strains of P. aeruginosa isolated from patients with UTIs was done by direct PCR. The results showed variable distribution of quorum sensing genes and virulence genes. Their percentage occurrence may be specifically associated with different levels of intrinsic virulence and pathogenicity in urinary tract. Such information can help in identifying these virulence genes as useful diagnostic markers for clinical P. aeruginosa strains isolated from UTIs.
Collapse
Affiliation(s)
- Neha Sabharwal
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University Chandigarh, India, 160014
| | - Shriya Dhall
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University Chandigarh, India, 160014
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University Chandigarh, India, 160014
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences Block-I, South Campus, Panjab University Chandigarh, India, 160014
| |
Collapse
|
30
|
Identification of VIM-2-producing Pseudomonas aeruginosa from Tanzania is associated with sequence types 244 and 640 and the location of blaVIM-2 in a TniC integron. Antimicrob Agents Chemother 2014; 59:682-5. [PMID: 25331700 DOI: 10.1128/aac.01436-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data on carbapenemase-producing Gram-negative bacteria on the African continent are limited. Here, we report the identification of VIM-2-producing Pseudomonas aeruginosa isolates in Tanzania. Eight out of 90 clinical isolates of P. aeruginosa from a tertiary care hospital in Dar es Salaam were shown to harbor bla(VIM-2). The bla(VIM-2)-positive isolates belonged to two different sequence types (ST), ST244 and ST640, with bla(VIM-2) located in an unusual integron structure lacking the 3' conserved region of qacΔE1-sul1.
Collapse
|
31
|
Cholley P, Ka R, Guyeux C, Thouverez M, Guessennd N, Ghebremedhin B, Frank T, Bertrand X, Hocquet D. Population structure of clinical Pseudomonas aeruginosa from West and Central African countries. PLoS One 2014; 9:e107008. [PMID: 25187957 PMCID: PMC4154784 DOI: 10.1371/journal.pone.0107008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) has a non-clonal, epidemic population with a few widely distributed and frequently encountered sequence types (STs) called 'high-risk clusters'. Clinical P. aeruginosa (clinPA) has been studied in all inhabited continents excepted in Africa, where a very few isolates have been analyzed. Here, we characterized a collection of clinPA isolates from four countries of West and Central Africa. METHODOLOGY 184 non-redundant isolates of clinPA from hospitals of Senegal, Ivory Coast, Nigeria, and Central African Republic were genotyped by MLST. We assessed their resistance level to antibiotics by agar diffusion and identified the extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) by sequencing. The population structure of the species was determined by a nucleotide-based analysis of the entire PA MLST database and further localized on the phylogenetic tree (i) the sequence types (STs) of the present collection, (ii) the STs by continents, (iii) ESBL- and MBL-producing STs from the MLST database. PRINCIPAL FINDINGS We found 80 distinct STs, of which 24 had no relationship with any known STs. 'High-risk' international clonal complexes (CC155, CC244, CC235) were frequently found in West and Central Africa. The five VIM-2-producing isolates belonged to CC233 and CC244. GES-1 and GES-9 enzymes were produced by one CC235 and one ST1469 isolate, respectively. We showed the spread of 'high-risk' international clonal complexes, often described as multidrug-resistant on other continents, with a fully susceptible phenotype. The MBL- and ESBL-producing STs were scattered throughout the phylogenetic tree and our data suggest a poor association between a continent and a specific phylogroup. CONCLUSIONS ESBL- and MBL-encoding genes are borne by both successful international clonal complexes and distinct local STs in clinPA of West and Central Africa. Furthermore, our data suggest that the spread of a ST could be either due to its antibiotic resistance or to features independent from the resistance to antibiotics.
Collapse
Affiliation(s)
- Pascal Cholley
- Laboratoire d'Hygiène Hospitalière, UMR 6249 CNRS Chrono-environnement, Université de Franche-Comté, Centre Hospitalier Universitaire, Besançon, France
| | - Roughyatou Ka
- Laboratoire de Bactériologie, Centre Hospitalier National Universitaire de Fann, Dakar, Senegal
| | - Christophe Guyeux
- Département d'Informatique des Systèmes Complexes, UMR 6174 CNRS, Université de Franche-Comté, Belfort, France
| | - Michelle Thouverez
- Laboratoire d'Hygiène Hospitalière, UMR 6249 CNRS Chrono-environnement, Université de Franche-Comté, Centre Hospitalier Universitaire, Besançon, France
| | | | | | | | - Xavier Bertrand
- Laboratoire d'Hygiène Hospitalière, UMR 6249 CNRS Chrono-environnement, Université de Franche-Comté, Centre Hospitalier Universitaire, Besançon, France
| | - Didier Hocquet
- Laboratoire d'Hygiène Hospitalière, UMR 6249 CNRS Chrono-environnement, Université de Franche-Comté, Centre Hospitalier Universitaire, Besançon, France
- Centre de Ressources Biologiques Ferdinand Cabanne – Filière microbiologie, Centre Hospitalier Régional Universitaire, Besançon, France
- * E-mail:
| |
Collapse
|
32
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
33
|
Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia. Antimicrob Agents Chemother 2014; 58:6277-83. [PMID: 25070098 DOI: 10.1128/aac.03116-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 isolates produced VIM-1 or VIM-2 metallo-β-lactamases or PER-1 or GES-7 extended-spectrum β-lactamases.
Collapse
|
34
|
Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn Microbiol Infect Dis 2014; 79:373-7. [PMID: 24792837 DOI: 10.1016/j.diagmicrobio.2014.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/11/2014] [Accepted: 03/09/2014] [Indexed: 01/07/2023]
Abstract
This study was performed to investigate the prevalence and molecular epidemiology of Pseudomonas aeruginosa isolates from Korea that produce enzymes with extended-spectrum (ES) activity to β-lactams. A total of 205 non-duplicate P. aeruginosa clinical isolates were collected from 18 university hospitals in Korea. PCR and sequencing experiments were performed to identify genes encoding β-lactamases. PCR mapping and sequencing of the regions surrounding the β-lactamase genes were performed. Multilocus sequence typing experiments were performed. The most common sequence type (ST) was ST235 (n = 96), and 2 single-locus variants of ST235, ST1015 (n = 1) and ST1162 (n = 1), were also identified. These 3 STs were grouped as a clonal complex (CC), CC235. The remaining 107 isolates were identified as 59 different STs. Isolates belonging to CC235 showed higher rates of non-susceptibility to imipenem (85.4% versus 47.7%) and meropenem (92.7% versus 52.3%) compared to non-CC235 isolates. All the metallo-β-lactamase (MBL)-producing isolates were identified as CC235, except for 1 ST591. Genes encoding OXA-17 and OXA-142 were detected in 1 isolate and 4 isolates of CC235, respectively; while the bla(SHV-12) gene was detected in 4 non-CC235 isolates. Class A and D β-lactamases with ES activity play a role in acquiring ceftazidime resistance in P. aeruginosa in Korea. Production of IMP-6 and VIM-2 MBLs is the main mechanisms in acquiring resistance to ceftazidime and carbapenems in P. aeruginosa isolates in Korea. Clonal spread of P. aeruginosa CC235 may be an important conduit for the dissemination of MBL genes in Korea.
Collapse
|
35
|
Outbreak of PER-1 and diversity of β-lactamases among ceftazidime-resistant Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2014; 63:386-392. [DOI: 10.1099/jmm.0.069427-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A growing number of β-lactamases have been reported in Pseudomonas aeruginosa clinical isolates. The aim of this study was to investigate the diversity of β-lactamases in the collection of 51 ceftazidime-resistant P. aeruginosa clinical isolates in four hospitals of southern China. Among these isolates, variable degrees of resistance to other β-lactam and non-β-lactam agents were observed. Pulsed-field gel electrophoresis (PFGE) revealed a high degree of clonality with five main genotypes. Of the 51 isolates tested, 35 (68.6 %) were identified as extended-spectrum β-lactamase (ESBL) producers, with 35 producing PER-1, 1 CTX-M-3, 7 CTX-M-15 and 1 CTX-M-14. Most (82.9 %, 29/35) PER-1-producing isolates were collected from two hospitals between January and April in 2008 and belonged to the same PFGE pattern (pattern B) with similar antibiogram and β-lactamase profiles, which suggested an outbreak of this clone at the time. The prevalence of CTX-M-type ESBL (17.6 %, 9/51) was unexpectedly high. One isolate was identified as producing VIM-2. Furthermore, we also reported an occurrence of a novel OXA-10 variant, OXA-246, in 14 P. aeruginosa isolates. In addition, AmpC overproduction was found to be the β-lactamase-mediated mechanism responsible for ceftazidime resistance in 6 isolates (11.8 %). Our results revealed an overall diversity of β-lactamases and outbreak of a PER-1-producing clone among ceftazidime-resistant P. aeruginosa in southern China.
Collapse
|
36
|
Dissemination of IMP-6-producing Pseudomonas aeruginosa ST244 in multiple cities in China. Eur J Clin Microbiol Infect Dis 2014; 33:1181-7. [PMID: 24500601 DOI: 10.1007/s10096-014-2063-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen responsible for nosocomial infections and is currently reported to be a worldwide nosocomial menace. The aim of this study was to investigate the epidemiological traits and the distribution of metallo-β-lactamases (MBLs)-producing P. aeruginosa clinical isolates in ten cities in China between January 2010 and May 2012. Antimicrobial susceptibility was determined by disc diffusion assay and the minimum inhibitory concentrations (MICs) of imipenem and meropenem were also determined by the Etest according to Clinical and Laboratory Standards Institute (CLSI) guidelines. In addition, polymerase chain reaction (PCR) and DNA sequencing were applied to detect bla MBL genes, and their epidemiological relationships were investigated by multilocus sequence typing (MLST). Of 368 P. aeruginosa isolates, MLST analysis identified 138 sequence types (STs), including 122 known and 16 novel STs, and the most frequently detected clone was ST244, followed by ST235. Besides, our study revealed that 25 isolates carried the bla IMP-6 gene and three isolates carried the bla VIM-2 gene, and a probe specific for both genes could be hybridised to an ~1,125-kb fragment in all isolates. Interestingly, all of the bla IMP-6-producing isolates shared an identical ST, ST244, and exhibited a higher level of resistance to several antibiotics. Overall, these observations suggest that P. aeruginosa ST244 carrying the chromosomally located bla IMP-6 gene is widely disseminated in multiple cites in China.
Collapse
|
37
|
Hansen F, Johansen HK, Østergaard C, Arpi M, Hansen DS, Littauer P, Holm A, Heltberg O, Schumacher H, Fuursted K, Lykke MAD, Tønning B, Hammerum AM, Justesen US. Characterization of Carbapenem Nonsusceptible Pseudomonas aeruginosa in Denmark: A Nationwide, Prospective Study. Microb Drug Resist 2014; 20:22-9. [DOI: 10.1089/mdr.2013.0085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Claus Østergaard
- Department of Clinical Microbiology, Aalborg Sygehus, Aalborg, Denmark
| | - Magnus Arpi
- Department of Clinical Microbiology, Herlev Hospital, Herlev, Denmark
| | | | - Pia Littauer
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Anette Holm
- Department of Clinical Microbiology, Vejle Hospital, Vejle, Denmark
| | - Ole Heltberg
- Department of Clinical Microbiology, Slagelse Sygehus, Slagelse, Denmark
| | - Helga Schumacher
- Department of Clinical Microbiology, Regionshospitalet Herning, Herning, Denmark
| | - Kurt Fuursted
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mari-Ann Domar Lykke
- Department of Clinical Microbiology, Sydvestjysk Sygehus Esbjerg, Esbjerg, Denmark
| | - Birgitte Tønning
- Department of Clinical Microbiology, Regionshospitalet Viborg, Viborg, Denmark
| | | | - Ulrik Stenz Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
38
|
Maâtallah M, Bakhrouf A, Habeeb MA, Turlej-Rogacka A, Iversen A, Pourcel C, Sioud O, Giske CG. Four genotyping schemes for phylogenetic analysis of Pseudomonas aeruginosa: comparison of their congruence with multi-locus sequence typing. PLoS One 2013; 8:e82069. [PMID: 24349186 PMCID: PMC3859543 DOI: 10.1371/journal.pone.0082069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Several molecular typing schemes have been proposed to differentiate among isolates and clonal groups, and hence establish epidemiological or phylogenetic links. It has been widely accepted that multi-locus sequence typing (MLST) is the gold standard for phylogenetic typing/long-term epidemiological surveillance, but other recently described methods may be easier to carry out, especially in settings with limited access to DNA sequencing. Comparing the performance of such techniques to MLST is therefore of relevance. A study was therefore carried out with a collection of P. aeruginosa strains (n = 133) typed by four typing schemes: MLST, multiple-locus variable number tandem repeat analysis (MLVA), pulsed-field gel electrophoresis (PFGE) and the commercial DiversiLab microbial typing system (DL). The aim of this study was to compare the results of each typing method with MLST. The Simpson's indices of diversity were 0.989, 0.980, 0.961 and 0.906 respectively for PFGE, MLVA, DL and MLST. The congruence between techniques was measured by the adjusted Wallace index (W): this coefficient indicates the probability that a pair of isolates which is assigned to the same type by one typing method is also typed as identical by the other. In this context, the congruence between techniques was recorded as follow: MLVA-type to predict MLST-type (93%), PFGE to MLST (92%), DL to MLST (64.2%), PFGE to MLVA (63.5%) and PFGE to DL (61.7%). Conversely, for all above combinations, prediction was very poor. The congruence was increased at the clonal complex (CC) level. MLST is regarded the gold standard for phylogenetic classification of bacteria, but is rather laborious to carry out in many settings. Our data suggest that MLVA can predict the MLST-type with high accuracy, and even higher when studying the clonal complex level. Of the studied three techniques MLVA was therefore the best surrogate method to predict MLST.
Collapse
Affiliation(s)
- Makaoui Maâtallah
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, Monastir, Tunisia
| | - Amina Bakhrouf
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, Monastir, Tunisia
| | - Muhammed Asif Habeeb
- Clinical Microbiology L2:02, MTC – Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Agata Turlej-Rogacka
- Clinical Microbiology L2:02, MTC – Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aina Iversen
- Clinical Microbiology L2:02, MTC – Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christine Pourcel
- Univ Paris-Sud, Institut de Génétique et Microbiologie, Orsay, France
- CNRS, Orsay, France
| | - Olfa Sioud
- Laboratoire de Microbiologie CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Christian G. Giske
- Clinical Microbiology L2:02, MTC – Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
39
|
Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Molecular epidemiology and mechanisms of antimicrobial resistance in Pseudomonas aeruginosa isolates causing burn wound infection in Iran. J Chemother 2013; 26:222-8. [PMID: 24070432 DOI: 10.1179/1973947813y.0000000132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, the contributions of different resistance mechanisms in Pseudomonas aeruginosa isolates were investigated among burned patients. The real-time reverse transcription polymerase chain reaction was performed to determine the expression level of mexY, ampC, and oprD for isolates. Also the isolates were typed by multilocus sequence typing (MLST). Seventy-five per cent of clinical isolates were multidrug resistant. The bla(OXA group-I) and blaPER alleles were identified in 28 and 10 P. aeruginosa isolates, respectively. The majority of bla(PER) positive isolates belonged to the same MLST clone and was identified as ST235. The types of remaining isolates were ST360 and ST861. Among 10 bla(PER) positive isolates, eight isolates demonstrated reduced oprD expression and mexY overexpression. Our data further highlight the epidemic potential of the international clone ST235. According to the results, different resistant mechanisms identified among ST235 isolates that were resistant to ceftazidime, imipenem, ciprofloxacin, and amikacin.
Collapse
|
40
|
Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 2013; 57:5527-35. [PMID: 23979744 DOI: 10.1128/aac.01481-13] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies.
Collapse
|
41
|
Multilocus sequence typing reveals genetic diversity of carbapenem- or ceftazidime-nonsusceptible Pseudomonas aeruginosa in China. Antimicrob Agents Chemother 2013; 57:5697-700. [PMID: 23939886 DOI: 10.1128/aac.00970-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is unclear whether the genetic background of drug-resistant Pseudomonas aeruginosa was disseminated from a certain clone. Thus, we performed MLST (multilocus sequence typing) of 896 P. aeruginosa isolates that were nonsusceptible to imipenem, meropenem, or ceftazidime. This revealed 254 sequence types (STs), including 104 new STs and 34 STs with novel alleles. Thirty-three clonal complexes and 404 singletons were found. In conclusion, drug-resistant P. aeruginosa clones can be developed from diverse genetic backgrounds.
Collapse
|
42
|
Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, Yoon SS, Thamlikitkul V, Hsueh PR, Yasin RM, Lalitha MK, Lee K. Dissemination of metallo- -lactamase-producing Pseudomonas aeruginosa of sequence type 235 in Asian countries. J Antimicrob Chemother 2013; 68:2820-4. [DOI: 10.1093/jac/dkt269] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Molecular characterization of blaNDM-1 in a sequence type 235 Pseudomonas aeruginosa isolate from France. Antimicrob Agents Chemother 2013; 57:3408-11. [PMID: 23612200 DOI: 10.1128/aac.02334-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An NDM-1 carbapenemase-producing Pseudomonas aeruginosa isolate was recovered from a patient hospitalized in France after a previous hospitalization in Serbia. Genetic studies revealed that the blaNDM-1 gene was surrounded by insertion sequence ISAba125 and a truncated bleomycin resistance gene. This blaNDM-1 region was a part of the variable region of a new complex class 1 integron bearing IS common region 1 (ISCR1). The presence of ISPa7 upstream of this integron suggests insertion in a chromosomally located Tn402-like structure.
Collapse
|
44
|
Vatcheva-Dobrevska R, Mulet X, Ivanov I, Zamorano L, Dobreva E, Velinov T, Kantardjiev T, Oliver A. Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals. Microb Drug Resist 2013; 19:355-61. [PMID: 23600605 DOI: 10.1089/mdr.2013.0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A panel of 29 multidrug-resistant (MDR) Pseudomonas aeruginosa isolates recovered from seven hospitals as part of a country-wide surveillance of antimicrobial resistance in Bulgarian hospitals was studied. Molecular typing through multiple-locus variable number tandem-repeat analysis (MLVA6) yielded 23 different profiles. Phenotypic and genotypic tests for the detection of acquired carbapenemases yielded negative results in all cases. In contrast, 76% of the isolates produced other acquired β-lactamases, including extended-spectrum β-lactamases (ESBLs). Namely, 6 of the isolates (21%) produced a VEB-1 ESBL; 14 (48%) produced an OXA-10-type enzyme (7 OXA-10 and 7 OXA-10 ESBL variants, including 2 OXA-17 [A218G], 2 OXA-74 [C197T, A218G], and 3 OXA-142 [A218G, G470A]); 8 (28%) an OXA-2-type enzyme (all OXA-2); and 1 (3%) a PSE-1 carbenicillinase. Further analysis through multilocus sequence typing (MLST) revealed that the six VEB-1-producing strains, recovered from four hospitals, belonged to ST111 or ST244 international high-risk clones. Additionally, nearly all of the isolates (97%) lacked OprD production, explaining carbapenem resistance. Overexpression of AmpC was documented in 5 (17%) of the isolates, including most of the MDR isolates not producing any acquired β-lactamase. Particularly noteworthy was the very high prevalence of MexXY-OprM overexpression, documented in 72% of the isolates, whereas the prevalence of MexAB-OprM overexpression was lower (21%). In summary, while the production of metallo-β-lactamases is uncommon among P. aeruginosa isolates from Bulgarian hospitals, MDR profiles frequently result from the production of ESBLs combined with the lack of production of the carbapenem porin OprD and the overexpression of the MexXY-OprM efflux pump.
Collapse
|
45
|
|
46
|
Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 2012; 56:6349-57. [PMID: 23045355 DOI: 10.1128/aac.01388-12] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent reports have revealed the existence of widespread extensively drug-resistant (XDR) P. aeruginosa high-risk clones in health care settings, but there is still scarce information on their specific chromosomal (mutational) and acquired resistance mechanisms. Up to 20 (10.5%) of 190 bloodstream isolates collected from 10 Spanish hospitals met the XDR criteria. A representative number (15 per group) of isolates classified as multidrug-resistant (MDR) (22.6%), resistant to 1 to 2 classes (moderately resistant [modR]) (23.7%), or susceptible to all antibiotics (multiS) (43.2%) were investigated in parallel. Multilocus sequence typing (MLST) analysis revealed that all XDR isolates belonged to sequence type 175 (ST175) (n = 19) or ST111 (n = 1), both recognized as international high-risk clones. Clonal diversity was higher among the 15 MDR isolates (4 ST175, 2 ST111, and 8 additional STs) and especially high among the 15 modR (13 different STs) and multiS (14 STs) isolates. The XDR/MDR pattern in ST111 isolates correlated with the production of VIM-2, but none of the ST175 isolates produced acquired β-lactamases. In contrast, the analysis of resistance markers in 12 representative isolates (from 7 hospitals) of ST175 revealed that the XDR pattern was driven by the combination of AmpC hyperproduction, OprD inactivation (Q142X), 3 mutations conferring high-level fluoroquinolone resistance (GyrA T83I and D87N and ParC S87W), a G195E mutation in MexZ (involved in MexXY-OprM overexpression), and the production of a class 1 integron harboring the aadB gene (gentamicin and tobramycin resistance). Of particular interest, in nearly all the ST175 isolates, AmpC hyperproduction was driven by a novel AmpR-activating mutation (G154R), as demonstrated by complementation studies using an ampR mutant of PAO1. This work is the first to describe the specific resistance markers of widespread P. aeruginosa XDR high-risk clones producing invasive infections.
Collapse
|
47
|
Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother 2012; 56:6175-80. [PMID: 22985882 DOI: 10.1128/aac.01233-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The objective of this study was to determine the genetic diversity of multidrug-resistant (MDR) Pseudomonas aeruginosa strains isolated over a period of 12 months in two French hospitals and to test their susceptibility to bacteriophages. A total of 47 MDR isolates recovered from hospitalized patients were genotyped using multiple-locus variable number of tandem repeats analysis. The genotypes were distributed into five clones (including 19, 5, 5, 3, and 3 isolates, respectively) and 12 singletons. Comparison to 77 MDR strains from three other countries, and MLST analysis of selected isolates showed the predominance of international MDR clones. The larger clone, CC235, contained 59 isolates displaying different antibiotic resistance mechanisms, including the presence of the GES1, VIM-2, VIM-4, and IMP-1 β-lactamases. Three newly isolated P. aeruginosa bacteriophages were found to lyse 42 of the 44 analyzed strains, distributed into the different clonal complexes. This pilot study suggests that systematic genotyping of P. aeruginosa MDR strains could improve our epidemiological understanding of transmission at both the local (hospital) and the national level and that phage therapy could be an alternative or a complementary treatment to antibiotics for treating MDR-infected patients.
Collapse
|
48
|
Bowler PG, Welsby S, Towers V, Booth R, Hogarth A, Rowlands V, Joseph A, Jones SA. Multidrug-resistant organisms, wounds and topical antimicrobial protection. Int Wound J 2012; 9:387-96. [PMID: 22640181 DOI: 10.1111/j.1742-481x.2012.00991.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Multidrug-resistant organisms (MDROs) are increasingly implicated in both acute and chronic wound infections. The limited therapeutic options are further compromised by the fact that wound bacteria often co-exist within a biofilm community which enhances bacterial tolerance to antibiotics. As a consequence, topical antiseptics may be an important consideration for minimising the opportunity for wound infections involving MDROs. The objective of this research was to investigate the antimicrobial activity of a silver-containing gelling fibre dressing against a variety of MDROs in free-living and biofilm states, using stringent in vitro models designed to simulate a variety of wound conditions. MDROs included Acinetobacter baumannii, community-associated methicillin-resistant Staphylococcus aureus, and extended-spectrum beta-lactamase-producing bacteria. Clostridium difficile was also included in the study because it carries many of the characteristics seen in MDROs and evidence of multidrug resistance is emerging. Sustained in vitro antimicrobial activity of the silver-containing dressing was shown against 10 MDROs in a simulated wound fluid over 7 days, and inhibitory and bactericidal effects against both free-living and biofilm phenotypes were also consistently shown in simulated colonised wound surface models. The in vitro data support consideration of the silver-containing gelling fibre dressing as part of a protocol of care in the management of wounds colonised or infected with MDROs.
Collapse
Affiliation(s)
- Philip G Bowler
- Infection Prevention R&D, ConvaTec Global Development Centre, First Avenue, Deeside Industrial Park, Deeside, Flintshire CH5 2NU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yoo JS, Yang JW, Kim HM, Byeon J, Kim HS, Yoo JI, Chung GT, Lee YS. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents 2012; 39:300-4. [DOI: 10.1016/j.ijantimicag.2011.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/10/2011] [Accepted: 11/21/2011] [Indexed: 11/16/2022]
|
50
|
Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. Antonie van Leeuwenhoek 2012; 102:73-81. [DOI: 10.1007/s10482-012-9714-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|