1
|
Tian M, Yan B, Jiang R, Liu C, Li Y, Xu B, Guo S, Li X. Activity of polymyxin B combined with cefepime-avibactam against the biofilms of polymyxin B-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae in in vitro and in vivo models. BMC Microbiol 2024; 24:409. [PMID: 39407114 PMCID: PMC11481319 DOI: 10.1186/s12866-024-03571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial biofilms, often forming on medical devices, can lead to treatment failure due to their increased antimicrobial resistance. Cefepime-avibactam (CFP-AVI) exhibits potent activities against Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) when used with polymyxin B (PMB). However, its efficacy in biofilm-related infections is unknown. The present study aimed to evaluate the activity of PMB combined with CFP-AVI against the biofilms of PMB-resistant Gram-negative bacteria. Five K. pneumoniae strains and three P. aeruginosa strains known to be PMB-resistant and prone to biofilm formation were selected and evaluated. Antimicrobial susceptibility assays demonstrated that the minimal biofilm inhibitory and eradication concentrations of PMB and CFP-AVI for biofilms formed by the eight strains were significantly higher than the minimal inhibitory concentrations of the antibiotics for planktonic cells. The biofilm formation inhibition and eradication assays showed that PMB combined with CFP-AVI cannot only suppress the formation of biofilm but also effectively eradicate the preformed mature biofilms. In a modified in vitro pharmacokinetic/pharmacodynamic biofilm model, CFP-AVI monotherapy exhibited a bacteriostatic or effective activity against the biofilms of seven strains, whereas PMB monotherapy did not have any activity at 72 h. However, PMB combined with CFP-AVI demonstrated bactericidal activity against the biofilms of all strains at 72 h. In an in vivo Galleria mellonella infection model, the 7-day survival rates of larvae infected with biofilm implants of K. pneumoniae or P. aeruginosa were 0-6.7%, 40.0-63.3%, and 46.7-90.0%, respectively, for PMB alone, CFP-AVI alone, and PMB combined with CFP-AVI; the combination therapy increased the rate by 6.7-33.3% (P < 0.05, n = 6), compared to CFP-AVI monotherapy. It is concluded that PMB combined with CFP-AVI exhibits effective anti-biofilm activities against PMB-resistant K. pneumoniae and P. aeruginosa both in vitro and in vivo, and thus may be a promising therapeutic strategy to treat biofilm-related infections.
Collapse
Affiliation(s)
- Miaomei Tian
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Bingqian Yan
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Rong Jiang
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Candi Liu
- Hunan Drug Inspection Center, Changsha, Hunan Province, People's Republic of China
| | - You Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Siwei Guo
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Rihane R, Hecini-Hannachi A, Bentchouala C, Benlabed K, Diene SM. Molecular Characterization of Carbapenem and Colistin Resistance in Klebsiella pneumoniae Isolates Obtained from Clinical Samples at a University Hospital Center in Algeria. Microorganisms 2024; 12:1942. [PMID: 39458252 PMCID: PMC11509410 DOI: 10.3390/microorganisms12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
The current study aimed to determine the molecular mechanisms of carbapenem and colistin resistance among the clinical isolates of Klebsiella pneumoniae from hospitalized patients admitted to a university hospital in Eastern Algeria. In total, 124 non-duplicate isolates of K. pneumoniae were collected from September 2018 to April 2019. Bacterial identification was performed using MALDI-TOF MS. The presence of extended spectrum β-lactamase (ESBL) genes, carbapenemase genes, chromosomal mutation and mcr genes in colistin-resistant K. pneumoniae were evaluated by PCR. ESBLs represented a rate of 49.1% and harbored blaCTX-M, blaTEM and blaSHV genes. Concerning carbapenems, 12 strains (9.6%) were resistant to ertapenem (MIC: 1-32 μg/mL), of which one strain (0.8%) was also resistant to imipenem (MIC: 32 μg/mL). Among these strains, nine (75%) harbored blaOXA-48 gene. Seven strains (5.6%) expressed resistance to colistin (MIC: 2-32 μg/mL), of which two harbored mcr-8 and mgrB genes simultaneously. The existence of a double resistance to colistin in the same strain is new in Algeria, and this could raise concerns about the increase in levels of resistance to this antibiotic (MIC: 32 μg/mL). The mgrB gene alone was observed in five isolates (71.4%), including two strains harboring blaOXA-48. This is the first report revealing the presence of K. pneumoniae strains carrying the blaOXA-48 gene as well as a mutation in the mgrB gene. Large-scale surveillance and effective infection control measures are also urgently needed to prevent the outbreak of various carbapenem- and colistin-resistant isolates.
Collapse
Affiliation(s)
- Riyane Rihane
- Molecular and Cellular Biology Laboratory, University of Mentouri Brothers Constantine 1, Constantine 25000, Algeria
| | - Abla Hecini-Hannachi
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
| | - Chafia Bentchouala
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Kaddour Benlabed
- Department of Medicine, Faculty of Medicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria; (C.B.); (K.B.)
- Bacteriology Laboratory, Benbadis University Hospital, Constantine 25000, Algeria
| | - Seydina M. Diene
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
3
|
Xu C, Zhang Y, Ma L, Zhang G, Li C, Zhang C, Li Y, Zeng X, Li Y, Dong N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun Biol 2024; 7:1122. [PMID: 39261709 PMCID: PMC11390741 DOI: 10.1038/s42003-024-06805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuan Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangfen Zhang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chunli Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yunbing Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China
| | - Xiangkun Zeng
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China.
| | - Ning Dong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Clinical Laboratory, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Chen X, Jiang Z, Chen R, Zhu Z, Wu Y, Sun Z, Chen L. Nosocomial outbreak of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae ST11 in a medical intensive care unit. J Glob Antimicrob Resist 2024; 36:436-443. [PMID: 37931688 DOI: 10.1016/j.jgar.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is an important opportunistic Gram-negative pathogen. This study describes an outbreak due to colistin-resistant and carbapenem-resistant Klebsiella pneumoniae (ColR-CRKP) in a tertiary hospital related to six patients successively admitted to the department of medical intensive care unit (MICU) between March 11 and April 29, 2021. METHODS Phenotypic characterization was conducted on 16 ColR-CRKP strains obtained from six infected patients and five ColR-CRKP strains isolated from 48 environmental samples, followed by whole-genome sequencing (WGS) and polymerase chain reaction (PCR) analysis. RESULTS All ColR-CRKP strains showed resistance to commonly used antibiotics. Whole-genome sequencing revealed a variety of resistance genes such as blaKPC-2, blaCTX-M-65, and blaTEM-4 present in all strains, which is consistent with their antimicrobial resistance profile. All isolates were identified as the high-risk sequence type 11 (ST11) clonal lineage by multilocus sequencing typing (MLST) and subsequently clustered into a single clonal type by core genome MLST (cgMLST). IS5-like element ISKpn26 family transposase insertion mutations at positions 74 nucleotides in the mgrB gene were the main cause of colistin resistance in these ColR-CRKP. The variations of genes were verified by PCR. SCOTTI analysis demonstrated the transmission pathway of the ColR-CRKP between the patients. CONCLUSION Our study highlights the importance of coordinated efforts between clinical microbiologists and infection control teams to implement aggressive surveillance cultures and proper bacterial genotyping to diagnose nosocomial infections and take control measures. Routine surveillance and the use of advanced sequencing technologies should be implemented to enhance nosocomial infection control and prevention measures.
Collapse
Affiliation(s)
- Xi Chen
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zhihui Jiang
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Chen
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zijing Zhu
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yixue Wu
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Lidan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China; Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Kim SJ, Shin JH, Kim H, Ko KS. Roles of crrAB two-component regulatory system in Klebsiella pneumoniae: growth yield, survival in initial colistin treatment stage, and virulence. Int J Antimicrob Agents 2024; 63:107011. [PMID: 37863340 DOI: 10.1016/j.ijantimicag.2023.107011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.
Collapse
Affiliation(s)
- Sun Ju Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Hyun Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Vinchhi R, Yelpure C, Balachandran M, Matange N. Pervasive gene deregulation underlies adaptation and maladaptation in trimethoprim-resistant E. coli. mBio 2023; 14:e0211923. [PMID: 38032208 PMCID: PMC10746255 DOI: 10.1128/mbio.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Bacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription. In previous work, we found that mutations in MgrB, a feedback regulator of the PhoQP two-component system, conferred trimethoprim tolerance to Escherichia coli. Here, we elucidate how mutations in MgrB have a domino-like effect on the gene regulatory network of E. coli. As a result, pervasive perturbation of gene regulation ensues. Depending on the environmental context, this pervasive deregulation is either adaptive or maladaptive. Our study sheds light on how deregulation of gene expression can be beneficial for bacteria when challenged with antibiotics, and why regulators like MgrB may have evolved in the first place.
Collapse
Affiliation(s)
- Rhea Vinchhi
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Chetna Yelpure
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Manasvi Balachandran
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| |
Collapse
|
7
|
Boonyasiri A, Brinkac LM, Jauneikaite E, White RC, Greco C, Seenama C, Tangkoskul T, Nguyen K, Fouts DE, Thamlikitkul V. Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014-2017. BMC Infect Dis 2023; 23:556. [PMID: 37641085 PMCID: PMC10464208 DOI: 10.1186/s12879-023-08539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.
Collapse
Affiliation(s)
- Adhiratha Boonyasiri
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Lauren M Brinkac
- J. Craig Venter Institute, Rockville, MD, 20850, USA
- Noblis, Reston, VA, 20191, USA
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | | | - Chris Greco
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | | | - Kevin Nguyen
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand.
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Al-Zubairy SA. Microbiologic Cure with a Simplified Dosage of Intravenous Colistin in Adults: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:4237-4249. [PMID: 37404254 PMCID: PMC10317528 DOI: 10.2147/idr.s411381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Colistin's FDA weight-based dosing (WBD) and frequency are both expressed in a broad range. Therefore, a simplified fixed-dose regimen (SFDR) of intravenous colistin based on three body-weight segments has been established for adults. The SFDR falls within the WBD range of each body-weight segment and accounts for the pharmacokinetic features. This study compared microbiologic cure with colistin SFDR to WBD in critically ill adults. Patients and Methods A retrospective cohort study was conducted for colistin orders from January 2014 to February 2022. The study included ICU patients who received intravenous colistin for carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections. Patients received the SFDR after the protocol was implemented, as the WBD was previously used. The primary endpoint was microbiologic cure. Secondary endpoints were 30-day infection recurrence and acute kidney injury (AKI). Results Of the 228 screened patients, 84 fulfilled the inclusion and matching criteria (42 in each group). The microbiologic cure rate was 69% with the SFDR and 36% with the WBD [p=0.002]. Infection recurred in four of the 29 patients who had a microbiologic cure with the SFDR (14%), and in six of the 15 patients with WBD (40%); [p=0.049]. AKI occurred in seven of the 36 SFDR patients who were not on hemodialysis (19%) and 15 of the 33 WBD patients (46%); [p=0.021]. Conclusion In this study, colistin SFDR was associated with a higher microbiologic cure in carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections and with a lower incidence of AKI in critically ill adults compared to WBD.
Collapse
|
9
|
Jakkampudi T, Lin Q, Mitra S, Vijai A, Qin W, Kang A, Chen J, Ryan E, Wang R, Gong Y, Heinrich F, Song J, Di YP(P, Tristram-Nagle S. Lung SPLUNC1 Peptide Derivatives in the Lipid Membrane Headgroup Kill Gram-Negative Planktonic and Biofilm Bacteria. Biomacromolecules 2023; 24:2804-2815. [PMID: 37223955 PMCID: PMC10265666 DOI: 10.1021/acs.biomac.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Indexed: 05/25/2023]
Abstract
SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.
Collapse
Affiliation(s)
- Tanvi Jakkampudi
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Qiao Lin
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Saheli Mitra
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Aishwarya Vijai
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Weiheng Qin
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ann Kang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jespar Chen
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emma Ryan
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Runxuan Wang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Gong
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Junming Song
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Yuan-Pu (Peter) Di
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Rubic Z, Jelic M, Soprek S, Tarabene M, Ujevic J, Goic-Barisic I, Novak A, Radic M, Tambic Andrasevic A, Tonkic M. Molecular characterization of colistin resistance genes in a high-risk ST101/KPC-2 clone of Klebsiella pneumoniae in a University Hospital of Split, Croatia. Int Microbiol 2023:10.1007/s10123-023-00327-3. [PMID: 36683114 PMCID: PMC9867991 DOI: 10.1007/s10123-023-00327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) has become a major concern worldwide due to multidrug resistance and the ability to spread locally and globally. Infections caused by KPC-KP are great challenge in the healthcare systems because these are associated with longer hospitalization and high mortality. The emergence of colistin resistance has significantly reduced already limited treatment options. This study describes the molecular background of colistin-resistant KPC-KP isolates in the largest hospital in southern Croatia. Thirty-four non-duplicate colistin-resistant KPC-KP isolates were collected during routine work from April 2019 to January 2020 and from February to May 2021. Antimicrobial susceptibility was determined using disk diffusion, broth microdilution, and the gradient strip method. Carbapenemase was detected with an immunochromatographic test. Identification of blaKPC and mcr genes or mutations in pmrA, pmrB, mgrB, phoP, and phoQ genes were performed by polymerase chain reaction (PCR) and positive products were sequenced. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used for epidemiological analysis. All isolates were multidrug-resistant, with colistin minimum inhibitory concentrations (MICs) from 4 to >16 mg/L, and all harbored blaKPC-2 and had a single point mutation in the mgrB gene resulting in a premature stop codon, with the exception of one isolate with four point mutations corresponding to stop codons. All isolates were negative for mcr genes. PFGE analysis identified a single genetic cluster, and MLST revealed that all isolates belonged to sequence type 101 (ST101). These results show emergence of the high-risk ST101/KPC-2 clone of K. pneumoniae in Croatia as well as appearance of colistin resistance due to mutations in the mgrB gene. Molecular analysis of epidemiology and possible resistance mechanisms are important to develop further strategies to combat such threats.
Collapse
Affiliation(s)
- Zana Rubic
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia ,University of Split School of Medicine, Split, Croatia
| | - Marko Jelic
- Department of Clinical Microbiology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, Zagreb, Croatia
| | - Silvija Soprek
- Department of Clinical Microbiology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, Zagreb, Croatia
| | - Maja Tarabene
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia
| | - Josip Ujevic
- Department of Clinical Microbiology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, Zagreb, Croatia
| | - Ivana Goic-Barisic
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia ,University of Split School of Medicine, Split, Croatia
| | - Anita Novak
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia ,University of Split School of Medicine, Split, Croatia
| | - Marina Radic
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia ,University of Split School of Medicine, Split, Croatia
| | - Arjana Tambic Andrasevic
- Department of Clinical Microbiology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, Zagreb, Croatia ,University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Marija Tonkic
- Department of Clinical Microbiology, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia ,University of Split School of Medicine, Split, Croatia
| |
Collapse
|
11
|
Modified Drug-Susceptibility Testing and Screening Culture Agar for Colistin-Susceptible Enterobacteriaceae Isolates Harboring a Mobilized Colistin Resistance Gene mcr-9. J Clin Microbiol 2022; 60:e0139922. [PMID: 36445156 PMCID: PMC9769915 DOI: 10.1128/jcm.01399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Three isolates of the Enterobacter cloacae complex harboring mcr-9, a member of the colistin resistance mcr gene family encoded on plasmids, were susceptible to colistin, with MICs of 0.125 to 0.5 μg/mL in standard broth microdilution (BMD) tests using cation-adjusted Mueller-Hinton broth (CA-MHB) in accordance with European Committee on Antimicrobial Susceptibility Testing guidelines. In contrast, their MICs for colistin were significantly higher (4 to 128 μg/mL) when BMD tests were performed using brain-heart infusion (BHI) medium, Luria-Bertani (LB) broth, tryptic soy broth (TSB), or CA-MHB supplemented with casein, tryptonen or peptone. Colistin significantly induced mcr-9 expression in a dose-dependent manner when these mcr-9-positive isolates were cultured in BHI or CA-MHB supplemented with peptone/casein. Pretreatment of mcr-9-positive isolates and Escherichia coli DH5α harboring mcr-9 with colistin significantly increased their survival rates against LL-37, a human antimicrobial peptide. Electrospray ionization time-of-flight mass spectrometry analysis showed that a lipid A moiety of lipopolysaccharide was partially modified by phosphoethanolamine in E. coli DH5α harboring mcr-9 when treated with colistin. Of 93 clinical isolates of Enterobacteriaceae, only the mcr-9-positive isolates showed MICs to colistin that were at least 32 times higher in BHI than in CA-MHB. These mcr-9-positive isolates grew on a modified BHI agar, MCR9-JU, containing 3 μg/mL colistin. These results suggest that the BMD method using BHI is useful when performed together with the BMD method using CA-MHB to detect mcr-9-positive isolates and that MCR9-JU agar is useful in screening for Enterobacteriaceae isolates harboring mcr-9 and other colistin-resistant isolates.
Collapse
|
12
|
Lindstedt K, Buczek D, Pedersen T, Hjerde E, Raffelsberger N, Suzuki Y, Brisse S, Holt K, Samuelsen Ø, Sundsfjord A. Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes 2022; 14:2118500. [PMID: 36045603 PMCID: PMC9450895 DOI: 10.1080/19490976.2022.2118500] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic healthcare-associated pathogen and major contributor to the global spread of antimicrobial resistance. Gastrointestinal colonization with K. pneumoniae is a major predisposing risk factor for infection and forms an important hub for the dispersal of resistance. Current culture-based detection methods are time consuming, give limited intra-sample abundance and strain diversity information, and have uncertain sensitivity. Here we investigated the presence and abundance of K. pneumoniae at the species and strain level within fecal samples from 103 community-based adults by qPCR and whole metagenomic sequencing (WMS) compared to culture-based detection. qPCR demonstrated the highest sensitivity, detecting K. pneumoniae in 61.2% and 75.8% of direct-fecal and culture-enriched sweep samples, respectively, including 52/52 culture-positive samples. WMS displayed lower sensitivity, detecting K. pneumoniae in 71.2% of culture-positive fecal samples at a 0.01% abundance cutoff, and was inclined to false positives in proportion to the relative abundance of other Enterobacterales present. qPCR accurately quantified K. pneumoniae to 16 genome copies/reaction while WMS could estimate relative abundance to at least 0.01%. Quantification by both methods correlated strongly with each other (Spearman's rho = 0.91). WMS also supported accurate intra-sample K. pneumoniae sequence type (ST)-level diversity detection from fecal microbiomes to 0.1% relative abundance, agreeing with the culture-based detected ST in 16/19 samples. Our results show that qPCR and WMS are sensitive and reliable tools for detection, quantification, and strain analysis of K. pneumoniae from fecal samples with potential to support infection control and enhance insights in K. pneumoniae gastrointestinal ecology.
Collapse
Affiliation(s)
- Kenneth Lindstedt
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,CONTACT Kenneth Lindstedt
| | - Dorota Buczek
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kathryn Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Arnfinn Sundsfjord Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, 9038, Norway
| |
Collapse
|
13
|
Xu C, Liu C, Chen K, Zeng P, Chan EWC, Chen S. Otilonium bromide boosts antimicrobial activities of colistin against Gram-negative pathogens and their persisters. Commun Biol 2022; 5:613. [PMID: 35729200 PMCID: PMC9213495 DOI: 10.1038/s42003-022-03561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Colistin is the last-line antibiotic against Gram-negative pathogens. Here we identify an FDA-approved drug, Otilonium bromide (Ob), which restores the activity of colistin against colistin-resistant Gram-negative bacteria in vitro and in a mouse infection model. Ob also reduces the colistin dosage required for effective treatment of infections caused by colistin-susceptible bacteria, thereby reducing the toxicity of the drug regimen. Furthermore, Ob acts synergistically with colistin in eradicating multidrug-tolerant persisters of Gram-negative bacteria in vitro. Functional studies and microscopy assays confirm that the synergistic antimicrobial effect exhibited by the Ob and colistin involves permeabilizing the bacterial cell membrane, dissipating proton motive force and suppressing efflux pumps, resulting in membrane damages, cytosol leakage and eventually bacterial cell death. Our findings suggest that Ob is a colistin adjuvant which can restore the clinical value of colistin in combating life-threatening, multidrug resistant Gram-negative pathogens. The drug otilonium bromide restores the activity of colistin against colistinresistant Gram-negative bacteria in vitro and in a mouse infection model, suggesting that this combination may restore the value of colistin in treatment of antibiotic resistant disease.
Collapse
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chenyu Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Pudpong K, Pattharachayakul S, Santimaleeworagun W, Nwabor OF, Laohaprertthisan V, Hortiwakul T, Charernmak B, Chusri S. Association Between Types of Carbapenemase and Clinical Outcomes of Infection Due to Carbapenem Resistance Enterobacterales. Infect Drug Resist 2022; 15:3025-3037. [PMID: 35720254 PMCID: PMC9205317 DOI: 10.2147/idr.s363588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Compared with non-carbapenemase producing carbapenem-resistant Enterobacterales (non-CP-CRE), carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) are associated with considerable mortality. However, given that the patients are treated with various therapeutic options, it remains unclear whether differences in types of carbapenemase genes yield different mortality rates. Therefore, this study aims to identify carbapenemase genes and identify whether clinical outcomes differ according to the prevalence of genotype and phenotype of carbapenemase among Enterobacterales clinical isolated. Patients and Methods A retrospective cohort study was performed to determine whether types of carbapenemase genes have an impact on clinical outcomes. Carbapenem-resistant clinical isolates were collected at a tertiary care university hospital in Songkhla, Thailand, between June 2018 and February 2020. Demographic and microbiological data such as antimicrobial susceptibility, carbapenemase genes, and overall mortality were evaluated. Results A total of 121 Enterobacterales clinical isolated were evaluated. The blaNDM-1 gene was detected in 44% of the isolates, followed by blaOXA-48 (28%) and blaNDM-1/OXA-48 (28%). NDM-1- or NDM-1/OXA-48- producing isolates were more likely to require meropenem MICs of ≥16 mg/L, while OXA-48-producing isolates were more likely to require meropenem MICs of <16 mg/L. The patients with NDM-1 or NDM-1/OXA-48 had a higher 14 days mortality rate than those with OXA-48 after treating with carbapenem-containing regimens (P-value 0.001) or colistin-containing regimens (P-value < 0.001). Conclusion Our findings suggest that the mortality for CP-CRE infection in patients with NDM-1 or NDM-1/OXA-48 was higher than the mortality in those with OXA-48, which It seems that the type of carbapenemase gene may affect meropenem MIC levels. Hence, in treatment decisions involving the use of either carbapenem-containing regiment or colistin-containing regiment in patients with CP-CRE infection, especially those in the NDM-1 and NDM-1/OXA-48 groups, the patient symptoms should be closely monitored.
Collapse
Affiliation(s)
- Korawan Pudpong
- Department of Pharmacy, College of Pharmacotherapy Thailand, Nontaburi, 11000, Thailand.,Pharmaceutical Care Unit, Department of Pharmacy, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Sutthiporn Pattharachayakul
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, 73000, Thailand.,Department of Pharmacy, Pharmaceutical Initiative for Resistant Bacteria and Infectious Disease Working Group (PIRBIG), Nakorn Pathom, 73000, Thailand
| | - Ozioma F Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Varaporn Laohaprertthisan
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
15
|
Bao D, Xu X, Wang Y, Zhu F. Emergence of a Multidrug-Resistant Escherichia coli Co-Carrying a New mcr-1.33 Variant and blaNDM-5 Genes Recovered from a Urinary Tract Infection. Infect Drug Resist 2022; 15:1499-1503. [PMID: 35411158 PMCID: PMC8994605 DOI: 10.2147/idr.s358566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are a significant threat to worldwide public health, resulting in increased morbidity, death, hospitalization time and healthcare expenses. Here, the genomic and phylogenetic characteristics of a multidrug-resistant Escherichia coli isolate carrying both the new mcr-1.33 variant and blaNDM-5 gene obtained from a urinary tract infection in China are investigated. Methods Antimicrobial susceptibility of E. coli 779 was evaluated by using the broth microdilution method. Short-read Illumina NovaSeq 6000 and long-read Oxford Nanopore MinION platforms were applied to sequence the bacterial whole genomic DNA and then de novo assembled. The genome sequence was annotated using the NCBI Prokaryotic Genome Annotation Pipeline and further subjected to identify the sequence type (ST), capsular type, and antibiotic resistance genes. BacWGSTdb 2.0 was used to perform the core genome multilocus sequence typing (cgMLST) analysis with other closely related E. coli isolates deposited in the public database. Results E. coli 779 was resistant to aztreonam, levofloxacin, fosfomycin, cefoxitin, cefepime, cefotaxime, imipenem, meropenem, polymyxin, and tigecycline. The complete genome sequence of E. coli 779 is made up of nine contigs totaling 5,667,876 bp, including one chromosome and eight plasmids. The isolate was assigned to ST101, serotype O-:H31, and phylogroup B1. The colistin resistance gene mcr-1.33 (located in a 242,460 bp IncHI2/IncHI2A plasmid) and the β-lactam resistance gene blaNDM-5 (located in a 46,161 bp IncX3 plasmid) were among the 27 antimicrobial resistance genes discovered. The closest relative of E. coli 779, another ST101 strain (E. coli 443) obtained from a sewage sample in Shandong, China in 2015, differs by only 24 cgMLST alleles. Conclusion We discovered the first multidrug-resistant ST101 E. coli strain with plasmid-mediated mcr-1.33 variant and blaNDM-5 gene in China. These findings would help us to better understanding the genomic traits, antimicrobial resistance mechanisms and epidemiological aspects of this bacterial pathogen.
Collapse
Affiliation(s)
- Danni Bao
- Department of Clinical Laboratory, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Yizhang Wang
- Department of Clinical Laboratory, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Fengjiao Zhu
- Department of Clinical Laboratory, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
- Correspondence: Fengjiao Zhu, Department of Clinical Laboratory, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China, Email
| |
Collapse
|
16
|
Fordham SME, Mantzouratou A, Sheridan E. Prevalence of insertion sequence elements in plasmids relating to mgrB gene disruption causing colistin resistance in Klebsiella pneumoniae. Microbiologyopen 2022; 11:e1262. [PMID: 35212479 PMCID: PMC8796155 DOI: 10.1002/mbo3.1262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is a last resort antibiotic for the treatment of carbapenemase producing Klebsiella pneumoniae. The disruption of the mgrB gene by insertion sequences (ISs) is a mechanism mediating colistin resistance. Plasmids encode mobilizable IS elements which integrate into the mgrB gene in K. pneumoniae causing gene inactivation and colistin resistance. The species prevalence of mgrB-gene disrupting insertion elements ISL3 (ISKpn25), IS5 (ISKpn26), ISKpn14, and IS903B present on plasmids were assessed. IS containing plasmids were also scanned for antimicrobial resistance genes, including carbapenem resistant genes. Plasmids encoding ISs are abundant in K. pneumoniae. IS903B was found in 28 unique Inc groups, while ISKpn25 was largely carried by IncFIB(pQil) plasmids. ISKpn26 and ISKpn14 were most often found associated with IncFII(pHN7A8) plasmids. Of the 34 unique countries which contained any of the IS elements, ISKpn25 was identified from 26. ISKpn26, ISKpn14, and IS903B ISs were identified from 89.3%, 44.9%, and 23.9% plasmid samples from China. Plasmids carrying ISKpn25, ISKpn14, and ISKpn26 IS have a 4.6-, 6.0-, and 6.6-fold higher carbapenemase gene count, respectively, relative to IS903B-carrying plasmids. IS903B bearing plasmids have a 20-, 5-, and 5-fold higher environmental source isolation count relative to ISKpn25, ISKpn14, and ISKpn26 bearing plasmids. ISKpn25 present on IncFIB(pQil) sourced from clinical settings is established across multiple countries, while ISKpn26, ISKpn14, and IS903B appear most often in China. Carbapenemase presence in tandem with IS elements may help promote an extensively drug resistant profile in K. pneumoniae limiting already narrow treatment options.
Collapse
Affiliation(s)
| | - Anna Mantzouratou
- Department of Life & Environmental SciencesBournemouth UniversityPooleUK
| | - Elizabeth Sheridan
- Department of Medical MicrobiologyUniversity Hospitals Dorset NHS Foundation Trust, Poole HospitalPooleUK
| |
Collapse
|
17
|
Sharma S, Banerjee T, Kumar A, Yadav G, Basu S. Extensive outbreak of colistin resistant, carbapenemase (bla OXA-48, bla NDM) producing Klebsiella pneumoniae in a large tertiary care hospital, India. Antimicrob Resist Infect Control 2022; 11:1. [PMID: 34991724 PMCID: PMC8740481 DOI: 10.1186/s13756-021-01048-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive drug resistance in Klebsiella pneumoniae (K. pneumoniae) causing major outbreaks in large hospitals is an emerging challenge. We describe a near fatal outbreak of colistin resistant, carbapenem resistant K. pneumoniae (CRKp) producing metallo beta-lactamases (blaNDM) and blaOXA-48 in the neonatal intensive care unit (NICU) at the background of a larger outbreak involving multiple parts of the hospital and the challenges in its containment. METHODS Following identification of an outbreak due to colistin resistant CRKp between April to June 2017 in the NICU, a thorough surveillance of similar cases and the hospital environment was performed to trace the source. All the isolated K. pneumoniae were tested for susceptibility to standard antibiotics by disc diffusion and microbroth dilution methods. Molecular detection of extended spectrum beta lactamases (ESBLs) and carbapenemases (classes A, B, D) genes was done. Enterobacterial repetitive intergenic consensus (ERIC) PCR and multi-locus sequence typing (MLST) was done to determine the genetic relatedness of the isolates. Characteristics of different sequence types were statistically compared (Student's t-test). RESULTS A total of 45 K. pneumoniae isolates were studied from NICU (14 cases of neonatal sepsis), ICU (18 cases), other wards (7 cases) along with 6 isolates from hospital environment and human colonizers. The primary case was identified in the ICU. All the K. pneumoniae from NICU and 94.4% from the ICU were colistin resistant CRKp. Majority (59.37% and 56.25%) harbored blaSHV/blaCTXM and blaOXA-48 genes, respectively. Two distinct sequence types ST5235 and ST5313 were noted with colistin resistance, distribution within the NICU and mortality as significant attributes of ST5235 (p < 0.05). The outbreak was contained with strengthening of the infection control practices and unintended short duration closure of the hospital. CONCLUSION Large hospital outbreaks with considerable mortality can be caused by non-dominant clones of colistin resistant CRKp harboring blaOXA-48 and blaNDM carbapenemases in endemic regions. The exact global impact of these sequence types should be further studied to prevent future fatal outbreaks.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ghanshyam Yadav
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sriparna Basu
- Department of Neonatology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
18
|
Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio 2021; 12:e0277621. [PMID: 34781730 PMCID: PMC8593676 DOI: 10.1128/mbio.02776-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Colistin (polymyxin E) and polymyxin B have been used as last-resort agents for treating infections caused by multidrug-resistant Gram-negative bacteria. However, their efficacy has been challenged by the emergence of the mobile colistin resistance gene mcr-1, which encodes a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. The enzyme catalyzes the transfer of the cationic PEA moiety of phosphatidylethanolamine (PE) to lipid A, thereby neutralizing the negative charge of lipid A and blocking the binding of positively charged polymyxins. This study aims to facilitate understanding of the mechanism of the MCR-1 enzyme by investigating its active-site sequence requirements. For this purpose, 23 active-site residues of MCR-1 protein were randomized by constructing single-codon randomization libraries. The libraries were individually selected for supporting Escherichia coli cell growth in the presence of colistin or polymyxin B. Deep sequencing of the polymyxin-resistant clones revealed that wild-type residues predominates at 17 active-site residue positions, indicating these residues play critical roles in MCR-1 function. These residues include Zn2+-chelating residues as well as residues that may form a hydrogen bond network with the PEA moiety or make hydrophobic interactions with the acyl chains of PE. Any mutations at these residues significantly decrease polymyxin resistance levels and the PEA transferase activity of the MCR-1 enzyme. Therefore, deep sequencing of the randomization libraries of MCR-1 enzyme identifies active-site residues that are essential for its polymyxin resistance function. Thus, these residues may be utilized as targets to develop inhibitors to circumvent MCR-1-mediated polymyxin resistance.
Collapse
|
19
|
Valcourt C, Buyck JM, Grégoire N, Couet W, Marchand S, Tewes F. Lipid Nanoparticles Loaded with Farnesol or Geraniol to Enhance the Susceptibility of E. coli MCR-1 to Colistin. Pharmaceutics 2021; 13:pharmaceutics13111849. [PMID: 34834268 PMCID: PMC8625850 DOI: 10.3390/pharmaceutics13111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Resistance to colistin, one of the antibiotics of last resort against multidrug-resistant Gram-negative bacteria, is increasingly reported. Notably, MCR plasmids discovered in 2015 have now been reported worldwide in humans. To keep this antibiotic of last resort efficient, a way to tackle this mechanism seems essential. Terpene alcohols such as farnesol have been shown to improve the efficacy of some antibiotics. However, their high lipophilicity makes them difficult to use. This problem can be solved by encapsulating them in water-dispersible lipid nanoparticles (LNPs). The aim of this study was to discover, using checkerboard tests and time-kill curve experiments, an association between colistin and farnesol or geraniol loaded in LNPs, which would improve the efficacy of colistin against E. coli and, in particular, MCR-1 transconjugants. Then, the effect of the combination on E. coli inner membrane permeabilisation was evaluated using propidium iodide (PI) uptake and compared to human red blood cells plasma membrane permeabilisation. Both terpene alcohols were able to restore the susceptibility of E. coli J53 MCR-1 to colistin with the same efficacy (Emax = 16, i.e., colistin MIC was decreased from 8 to 0.5 mg/L). However, with an EC50 of 2.69 mg/L, farnesol was more potent than geraniol (EC50 = 39.49 mg/L). Time-kill studies showed a bactericidal effect on MCR-1 transconjugant 6 h after incubation, with no regrowth up to 30 h in the presence of 1 mg/L colistin (1/8 MIC) and 60 mg/L or 200 mg/L farnesol or geraniol, respectively. Colistin alone was more potent in increasing PI uptake rate in the susceptible strain (EC50 = 0.86 ± 0.08 mg/L) than in the MCR-1 one (EC50 = 7.38 ± 0.85 mg/L). Against the MCR-1 strain, farnesol-loaded LNP at 60 mg/L enhanced the colistin-induced inner membrane permeabilization effect up to 5-fold and also increased its potency as shown by the decrease in its EC50 from 7.38 ± 0.85 mg/L to 2.69 ± 0.25 mg/L. Importantly, no hemolysis was observed for LNPs loaded with farnesol or geraniol, alone or in combination with colistin, at the concentrations showing the maximum decrease in colistin MICs. The results presented here indicate that farnesol-loaded LNPs should be studied as combination therapy with colistin to prevent the development of resistance to this antibiotic of last resort.
Collapse
Affiliation(s)
- Chantal Valcourt
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
| | - Julien M. Buyck
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
- UFR Médecine-Pharmacie Université de Poitiers, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers, France
| | - Nicolas Grégoire
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
- UFR Médecine-Pharmacie Université de Poitiers, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2 rue de la Miletrie, 86021 Poitiers, France
| | - William Couet
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
- UFR Médecine-Pharmacie Université de Poitiers, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2 rue de la Miletrie, 86021 Poitiers, France
| | - Sandrine Marchand
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
- UFR Médecine-Pharmacie Université de Poitiers, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU de Poitiers, 2 rue de la Miletrie, 86021 Poitiers, France
| | - Frédéric Tewes
- INSERM U1070 “Pharmacology of Anti-Infective Agents”, 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France; (C.V.); (J.M.B.); (N.G.); (W.C.); (S.M.)
- UFR Médecine-Pharmacie Université de Poitiers, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers, France
- Correspondence:
| |
Collapse
|
20
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
21
|
Queiroz PA, Meneguello JE, Silva BR, Caleffi-Ferracioli KR, Scodro RB, Cardoso RF, Marchiosi R, Siqueira VL. Proteomic profiling of Klebsiella pneumoniae carbapenemase (KPC)-producer Klebsiella pneumoniae after induced polymyxin resistance. Future Microbiol 2021; 16:1195-1207. [PMID: 34590903 DOI: 10.2217/fmb-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the changes in protein expression associated with polymyxin resistance in Klebsiella pneumoniae, we profiled a comparative proteomic analysis of polymyxin B-resistant mutants KPC-2-producing K. pneumoniae, and of its susceptible counterparts. Material & methods: Two-dimensional reversed phase nano ultra-performance liquid chromatography mass spectrometry was used for proteomic analysis. Results: Our results showed that the proteomic profile involved several biological processes, and we highlight the downregulation of outer membrane protein A (OmpA) and the upregulation of SlyB outer membrane lipoprotein (conserved protein member of the PhoPQ regulon) and AcrA multidrug efflux pump in polymyxin B-resistant strains. Conclusion: Our results highlight the possible participation of the SlyB, AcrA and OmpA proteins in the determination of polymyxin B heteroresistance in KPC-2-producing K. pneumoniae.
Collapse
Affiliation(s)
- Paula A Queiroz
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Bruna R Silva
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringa, Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| |
Collapse
|
22
|
Al Fadhli A, Jamal W, Rotimi VO. Molecular characterization of rectal isolates of carbapenemase-negative carbapenem-resistant enterobacterales obtained from ICU patients in Kuwait by whole-genome sequencing. J Med Microbiol 2021; 70. [PMID: 34477546 DOI: 10.1099/jmm.0.001409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Carbapenem-resistant enterobacterales (CRE) are listed among the most urgent antibiotic resistance threats.Hypothesis. Previous studies on the mechanisms of CRE in Kuwait have focused on carbapenemases. There have been no studies on non-carbapenemase-producing CRE in Kuwait.Aim/Gap Statement. The aim of this study was to investigate the genetic characteristics of non-carbapenemase-producing carbapenem-resistant enterobacterales (NCPE) isolates using whole-genome sequencing (WGS).Methodology. Fourteen confirmed NCPE isolates that were negative for genes encoding carbapenemase production by polymerase chain reaction (PCR) assays using rectal swabs from intensive care unit patients were characterized using phenotypic, PCR and WGS methods. Susceptibility testing was performed via Etest and clonality via multi-locus sequence typing (MLST).Results. All of the isolates were resistant to ertapenem; 78.6 % were resistant to imipenem, meropenem and trimethoprim-sulfamethoxazole. Resistance to the other antibiotics was variable, ranging from 28.5 (colistin) through 50 (tigecycline) and 64.3 (amikacin) up to 85.7 % against both amoxicillin-clavulanic acid and ciprofloxacin. WGS detected several resistance genes mediating the production of β-lactamases, genes encoding an outer-membrane porin permeability mutation resulting in reduced susceptibility to β-lactams, including carbapenems, and genes for multidrug-resistant (MDR) efflux pumps. The isolates also possessed global activator protein MarA, which mediated reduced permeability to β-lactams. The existence of β-lactamase genes, overexpression of MDR efflux pumps and reduced permeability mediated by the porin genes were responsible for carbapenem resistance.Conclusions. This finding reflects the superior detection capabilities offered by WGS analysis, which can be used to complement traditional methods and overcome their limited resolution in clinical settings.
Collapse
Affiliation(s)
- Amani Al Fadhli
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Wafaa Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
23
|
Chatzidimitriou M, Chatzivasileiou P, Sakellariou G, Kyriazidi M, Kavvada A, Chatzidimitriou D, Chatzopoulou F, Meletis G, Mavridou M, Rousis D, Katsifa E, Vagdatli E, Mitka S, Theodoros L. Ceftazidime/avibactam and eravacycline susceptibility of carbapenem-resistant Klebsiella pneumoniae in two Greek tertiary teaching hospitals. Acta Microbiol Immunol Hung 2021; 68:65-72. [PMID: 33522985 DOI: 10.1556/030.2021.01364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
The present study evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents.Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki between 2016 and 2018. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomérieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used to detect blaKPC, blaVIM, blaNDM and blaOXA-48 genes.The meropenem-EDTA and meropenem-boronic acid synergy test performed on the 24 K. pneumoniae strains demonstrated that 8 (33.3%) yielded positive for metallo-beta-lactamases (MBL) and 16 (66.6%) for K. pneumonia carbapenemases (KPC) production. Colistin demonstrated the highest in vitro activity (87.7%) among the 47 K. pneumoniae strains followed by gentamicin (76.5%) and tigecycline (51%). Among new antibiotics ceftazidime/avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacycline (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected.Well established antimicrobial agents such as colistin, gentamicin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline can be reliable options for the treatment of invasive infections caused by carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Maria Chatzidimitriou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | | | | | - Asimoula Kavvada
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | - Fani Chatzopoulou
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Meletis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mavridou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Dimitris Rousis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Katsifa
- 4General Teaching Hospital “G. Papanikolaou”, Thessaloniki, Greece
| | - Eleni Vagdatli
- 5General Teaching Hospital “Ippokrateio”, Thessaloniki, Greece
| | - Stella Mitka
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | |
Collapse
|
24
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
25
|
Doi Y, van Duin D. Polymyxin Resistance in Klebsiella pneumoniae: Complexity at Every Level. Clin Infect Dis 2020; 70:2092-2094. [PMID: 31513703 DOI: 10.1093/cid/ciz627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pennsylvania.,Center for Innovative Antimicrobial Therapy, University of Pittsburgh, School of Medicine, Pennsylvania.,Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| |
Collapse
|
26
|
Di Domenico EG, Cavallo I, Sivori F, Marchesi F, Prignano G, Pimpinelli F, Sperduti I, Pelagalli L, Di Salvo F, Celesti I, Paluzzi S, Pronesti C, Koudriavtseva T, Ascenzioni F, Toma L, De Luca A, Mengarelli A, Ensoli F. Biofilm Production by Carbapenem-Resistant Klebsiella pneumoniae Significantly Increases the Risk of Death in Oncological Patients. Front Cell Infect Microbiol 2020; 10:561741. [PMID: 33363047 PMCID: PMC7759150 DOI: 10.3389/fcimb.2020.561741] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40–96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorella Pelagalli
- Anesthesiology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Di Salvo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Celesti
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Silvia Paluzzi
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Carmelina Pronesti
- Hospital Infection Control Committee, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza, University of Rome Sapienza, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Assunta De Luca
- Quality, Accreditation and Risk Management Unit, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
27
|
Kumar H, Chen BH, Kuca K, Nepovimova E, Kaushal A, Nagraik R, Bhatia SK, Dhanjal DS, Kumar V, Kumar A, Upadhyay NK, Verma R, Kumar D. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals (Basel) 2020; 10:E1892. [PMID: 33081121 PMCID: PMC7602861 DOI: 10.3390/ani10101892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram-122413, Haryana, India;
| | - Rupak Nagraik
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Anil Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| |
Collapse
|
28
|
Yang Q, Pogue JM, Li Z, Nation RL, Kaye KS, Li J. Agents of Last Resort: An Update on Polymyxin Resistance. Infect Dis Clin North Am 2020; 34:723-750. [PMID: 33011049 DOI: 10.1016/j.idc.2020.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymyxin resistance is a major public health threat, because the polymyxins represent last-line therapeutics for gram-negative pathogens resistant to essentially all other antibiotics. Minimizing any potential emergence and dissemination of polymyxin resistance relies on an improved understanding of mechanisms of and risk factors for polymyxin resistance, infection prevention and stewardship strategies, together with optimization of dosing of polymyxins (eg, combination regimens).
Collapse
Affiliation(s)
- Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China.
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.9 Dongdan Santiao, Dongcheng District, Beijing, China
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Keith S Kaye
- Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Jian Li
- Laboratory of Antimicrobial Systems Pharmacology, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
29
|
Carpenter J, Neidig N, Campbell A, Thornsberry T, Truex T, Fortney T, Zhang Y, Bush K. Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance. J Antimicrob Chemother 2020; 74:3260-3263. [PMID: 31430370 DOI: 10.1093/jac/dkz354] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Imipenem/relebactam, an investigational β-lactam/β-lactamase inhibitor combination for treatment of Gram-negative infections, and comparators including ceftazidime/avibactam, piperacillin/tazobactam and colistin were tested for activity against representative carbapenemase-producing Enterobacteriaceae (CPE) isolates. METHODS MICs of the antimicrobial agents were determined using standard broth microdilution methodology for CPE isolates collected from Indiana patients, primarily during the time frame of 2013-17 (n = 199 of a total of 200 isolates). Inhibitors were tested at 4 mg/L in all combinations. RESULTS Of the CPE in the study, 199 produced plasmid-encoded KPC class A carbapenemases; 1 Serratia marcescens isolate produced the SME-1 chromosomal class A carbapenemase. MIC50/MIC90 values of imipenem/relebactam were ≤0.25/0.5 mg/L, whereas MIC50/MIC90 values of ceftazidime/avibactam were 1/2 mg/L. Resistance to colistin was observed in 54% (n = 97) of 180 non-Serratia isolates tested (MIC50 of 4 mg/L). Colistin resistance mechanisms included production of a plasmid-encoded mcr-1-like gene (n = 2) or an inactivated mgrB gene. CONCLUSIONS Imipenem/relebactam was the most potent agent tested against CPE in this study and may be a useful addition to the antimicrobial armamentarium to treat infections caused by these pathogens.
Collapse
Affiliation(s)
- Jessica Carpenter
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Nick Neidig
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Alex Campbell
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Tanner Thornsberry
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Taylor Truex
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Tiffany Fortney
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Yunliang Zhang
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| | - Karen Bush
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN, USA
| |
Collapse
|
30
|
Nang SC, Han ML, Yu HH, Wang J, Torres VVL, Dai C, Velkov T, Harper M, Li J. Polymyxin resistance in Klebsiella pneumoniae: multifaceted mechanisms utilized in the presence and absence of the plasmid-encoded phosphoethanolamine transferase gene mcr-1. J Antimicrob Chemother 2020; 74:3190-3198. [PMID: 31365098 DOI: 10.1093/jac/dkz314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Until plasmid-mediated mcr-1 was discovered, it was believed that polymyxin resistance in Gram-negative bacteria was mainly mediated by the chromosomally-encoded EptA and ArnT, which modify lipid A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), respectively. This study aimed to construct a markerless mcr-1 deletion mutant in Klebsiella pneumoniae, validate a reliable reference gene for reverse transcription quantitative PCR (RT-qPCR) and investigate the interactions among mcr-1, arnT and eptA, in response to polymyxin treatments using pharmacokinetics/pharmacodynamics (PK/PD). METHODS An isogenic markerless mcr-1 deletion mutant (II-503Δmcr-1) was generated from a clinical K. pneumoniae II-503 isolate. The efficacy of different polymyxin B dosage regimens was examined using an in vitro one-compartment PK/PD model and polymyxin resistance was assessed using population analysis profiles. The expression of mcr-1, eptA and arnT was examined using RT-qPCR with a reference gene pepQ, and lipid A was profiled using LC-MS. In vivo polymyxin B efficacy was investigated in a mouse thigh infection model. RESULTS In K. pneumoniae II-503, mcr-1 was constitutively expressed, irrespective of polymyxin exposure. Against II-503Δmcr-1, an initial bactericidal effect was observed within 4 h with polymyxin B at average steady-state concentrations of 1 and 3 mg/L, mimicking patient PK. However, substantial regrowth and concomitantly increased expression of eptA and arnT were detected. Predominant l-Ara4N-modified lipid A species were detected in II-503Δmcr-1 following polymyxin B treatment. CONCLUSIONS This is the first study demonstrating a unique markerless deletion of mcr-1 in a clinical polymyxin-resistant K. pneumoniae. The current polymyxin B dosage regimens are suboptimal against K. pneumoniae, regardless of mcr, and can lead to the emergence of resistance.
Collapse
Affiliation(s)
- Sue C Nang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Heidi H Yu
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Von Vergel L Torres
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Thomas CS, Braun DR, Olmos JL, Rajski SR, Phillips GN, Andes D, Bugni TS. Pyridine-2,6-Dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo -Lactamase-1. Mar Drugs 2020; 18:md18060295. [PMID: 32498259 PMCID: PMC7374359 DOI: 10.3390/md18060295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae continue to threaten human health worldwide with few effective treatment options. New Delhi metallo-β-lactamase (NDM) enzymes are a contributing element that drive resistance to many β-lactam- and carbapenem-based antimicrobials. Many NDM inhibitors are known, yet none are clinically viable. In this study, we present and characterize a new class of NDM-1 inhibitors based on a pyridine-2,6-dithiocarboxylic acid metal complex scaffold. These complexes display varied and unique activity profiles against NDM-1 in kinetic assays and serve to increase the effectiveness of meropenem, an established antibacterial, in assays using clinical Enterobacteriaceae isolates.
Collapse
Affiliation(s)
- Chris S. Thomas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Jose Luis Olmos
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - George N. Phillips
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - David Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
- Correspondence: ; Tel.: +1-608-263-2519
| |
Collapse
|
32
|
Castanheira M, Doyle TB, Carvalhaes CG, Roth BM, Rhomberg PR, Mendes RE. Media for colistin susceptibility testing does not improve the detection of Klebsiella pneumoniae isolates carrying MgrB disruption and other mutation driven colistin resistance mechanisms. Diagn Microbiol Infect Dis 2020; 98:115077. [PMID: 32629337 DOI: 10.1016/j.diagmicrobio.2020.115077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 01/25/2023]
Abstract
We evaluated different susceptibility testing media against 200 Klebsiella pneumoniae isolates that have been genetically characterized for the presence of polymyxin resistance mechanisms. The media evaluated included calcium enriched media that was described to promote separation of mcr-carrying Enterobacterales isolates and standard cation-adjusted Mueller-Hinton broth with and without polysorbate 80. The testing conditions evaluated did not show improvement in the separation of isolates carrying MgrB alterations and other mutation-driven polymyxin resistance mechanisms.
Collapse
|
33
|
Arena F, Di Pilato V, Vannetti F, Fabbri L, Antonelli A, Coppi M, Pupillo R, Macchi C, Rossolini GM. Population structure of KPC carbapenemase-producing Klebsiella pneumoniae in a long-term acute-care rehabilitation facility: identification of a new lineage of clonal group 101, associated with local hyperendemicity. Microb Genom 2020; 6:e000308. [PMID: 32003322 PMCID: PMC7067035 DOI: 10.1099/mgen.0.000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/27/2019] [Indexed: 01/15/2023] Open
Abstract
In this work, we used a whole-genome sequencing (WGS) approach to study the features of KPC-producing Klebsiella pneumoniae (KPC-Kp) spreading in a large Italian long-term acute-care rehabilitation facility (LTACRF), and to track the dynamics of dissemination within this setting. Thirty-eight, non-replicated, KPC-Kp isolates from colonized patients (either already colonized at admission or colonized during admission), collected during 2016, were subjected to antimicrobial-susceptibility testing and WGS. All isolates were resistant to β-lactams, with the exception of ceftazidime/avibactam (97.4 % susceptible). The second most effective agent was fosfomycin, followed by colistin, trimethoprim/sulfamethoxazole, gentamicin and amikacin (92.1, 86.8, 60.5, 44.7 and 50 % of susceptibility, respectively). A large proportion of isolates (n=18/38, 47.4%) belonged to clonal group (CG) 101, and most of them (n=15) to a new sequence type (ST) designated as ST2502. All the CG101 isolates had a capsule locus type KL17. The ST2502 harboured the genes encoding for the yersiniabactin siderophore and the ArmA methylase, conferring high-level resistance to aminoglycosides. The second most represented lineage of isolates (16/38, 42.1%) belonged to ST512 of CG258. Analysing WGS data, we were able to ascertain the common origin of some isolates imported from other hospitals, and to track several clusters of in-LTACRF cross-transmissions. The results revealed that, in peculiar epidemiological settings such as LTACRF, new KPC-Kp clones different from those prevailing in acute-care hospitals and associated with uncommon resistance and virulence determinants can successfully emerge and disseminate.
Collapse
Affiliation(s)
- Fabio Arena
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Present address: Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Present address: Don Carlo Gnocchi Foundation, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Present address: Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | | | | | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| |
Collapse
|
34
|
Di Tella D, Tamburro M, Guerrizio G, Fanelli I, Sammarco ML, Ripabelli G. Molecular Epidemiological Insights into Colistin-Resistant and Carbapenemases-Producing Clinical Klebsiella pneumoniae Isolates. Infect Drug Resist 2019; 12:3783-3795. [PMID: 31819559 PMCID: PMC6899070 DOI: 10.2147/idr.s226416] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose Carbapenemases-producing Klebsiella pneumoniae are challenging antimicrobial therapy of hospitalised patients, which is further complicated by colistin resistance. This study describes molecular epidemiological insights into colistin-resistant and carbapenemases-producing clinical K. pneumoniae. Patients and methods Cultures collected from 26 hospitalised patients during 2014-2017 in the main hospital in Molise Region, central Italy, were characterized. The minimum inhibitory concentration for 19 antibiotics was determined, including carbapenems and colistin. Prevalence of resistance-associated genes was investigated through PCR, detecting bla KPC, bla GES, bla VIM, bla IMP, bla NDM, bla OXA-48, bla CTX-M, bla TEM, bla SHV, and mcr-1,2,3,4,5,6,7,8. The mgrB gene was also analysed in colistin-resistant strains by PCR and sequencing assays. K. pneumoniae were typed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Results Twenty out of 26 K. pneumoniae were phenotypically resistant to carbapenems and 19 were resistant to colistin. All isolates harbored bla KPC, and bla SHV, bla TEM and bla VIM were further the most common resistance-associated genes. In colistin-resistant strains, mcr-1,2,3,4,5,6,7,8 variants were not detected, while mutations and insertion elements in mgrB were observed in 68.4% (n=13) in 31.6% (n=6) isolates, respectively. PFGE revealed 12 clusters and 18 pulsotypes at 85% and 95% cut-off, while the Sequence Types ST512 (n=13, 50%), ST101 (n=10, 38.5%), ST307 (n=2, 7.7%) plus a novel ST were detected using MLST. Conclusion All K. pneumoniae showed a multidrug-resistant phenotype, particularly to carbapenems and colistin. According to national data, bla KPC was the prevailing carbapenemase, followed by bla VIM, while bla TEM and bla SHV were among the most frequent beta-lactamases. Consistent with previous reports in Italy, ST512 was the most common clone, particularly during 2014-15, whilst ST101 became dominant in 2016-17. Colistin resistance was mainly associated with deleterious mutations and transposon in the mgrB gene. Improvements of surveillance, compliance with infection prevention procedures and antimicrobial stewardship are essential to limit the spread of resistant K. pneumoniae.
Collapse
Affiliation(s)
- Domiziana Di Tella
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Manuela Tamburro
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giuliana Guerrizio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Incoronata Fanelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Michela Lucia Sammarco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giancarlo Ripabelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
35
|
Petrosillo N, Taglietti F, Granata G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J Clin Med 2019; 8:E934. [PMID: 31261755 PMCID: PMC6678465 DOI: 10.3390/jcm8070934] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/01/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae represents an increasing threat to human health, causing difficult-to-treat infections with a high mortality rate. Since colistin is one of the few treatment options for carbapenem-resistant K. pneumoniae infections, colistin resistance represents a challenge due to the limited range of potentially available effective antimicrobials, including tigecycline, gentamicin, fosfomycin and ceftazidime/avibactam. Moreover, the choice of these antimicrobials depends on their pharmacokinetics/pharmacodynamics properties, the site of infection and the susceptibility profile of the isolated strain, and is sometimes hampered by side effects. This review describes the features of colistin resistance in K. pneumoniae and the characteristics of the currently available antimicrobials for colistin-resistant MDR K. pneumoniae, as well as the characteristics of novel antimicrobial options, such as the soon-to-be commercially available plazomicin and cefiderocol. Finally, we consider the future use of innovative therapeutic strategies in development, including bacteriophages therapy and monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Petrosillo
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Fabrizio Taglietti
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| | - Guido Granata
- Systemic and Immunocompromised Host Infection Unit, National Institute for Infectious Diseases "L. Spallanzani", IRCCS-Via Portuense, 292 00149 Rome, Italy.
| |
Collapse
|
36
|
Germ J, Cerar Kišek T, Kokošar Ulčar B, Lejko Zupanc T, Mrvič T, Kerin Povšič M, Seme K, Pirs M. Surveillance cultures for detection of rectal and lower respiratory tract carriage of colistin-resistant Gram-negative bacilli in intensive care unit patients: comparison of direct plating and pre-enrichment step. J Med Microbiol 2019; 68:1269-1278. [PMID: 31237536 DOI: 10.1099/jmm.0.001029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose. Increasing consumption of colistin as treatment for infections with multidrug-resistant (MDR) Gram-negative bacilli (GNB) has been accompanied by increasingly frequent reports of colistin-resistant (ColR) MDR GNB. Higher selective pressure creates a favourable environment that can facilitate the spread of ColR isolates. Monitoring of asymptomatic ColR GNB carriage can give us a better understanding of this emerging healthcare problem, particularly in wards with higher polymyxin selective pressure and prevalence of carbapenem-resistant GNB. Our aim was to assess the ColR GNB colonization rate in intensive care unit (ICU) patients and evaluate the performance of two surveillance protocols using a selective medium.Methodology. A prospective study included 739 surveillance samples (rectal swabs and tracheal aspirates) from 330 patients that were screened for ColR GNB carriage using SuperPolymyxin medium. Two approaches were used: direct sample plating and overnight pre-enrichment of samples followed by plating. Colistin resistance was confirmed with broth microdilution. ColR isolates were molecularly screened for plasmid-mediated mcr genes.Results. A total of 44/739 samples (45 ColR GNB isolates) were positive for ColR GNB, which included 31/330 (9.4 %) colonized patients; mcr genes were not detected. The direct plating method only identified 17/45 (37.8 %) isolates correctly, whereas the pre-enrichment protocol identified all 45 ColR GNB.Conclusion. The colonization rate among our ICU patients was 9.4 %. Based on our findings, the pre-enrichment step is necessary for the determination of ColR GNB carriage - even though the time to result takes an additional day, fewer than half of ColR GNB carriers were detected using the direct plating protocol.
Collapse
Affiliation(s)
- Julija Germ
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar Kišek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Kokošar Ulčar
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tatjana Lejko Zupanc
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tatjana Mrvič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Infection Control Unit, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Evaluation of a novel epidemiological screening approach for detection of colistin resistant human Enterobacteriaceae isolates using a selective SuperPolymyxin medium. J Microbiol Methods 2019; 160:117-123. [DOI: 10.1016/j.mimet.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
|
38
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Sib E, Voigt AM, Wilbring G, Schreiber C, Faerber HA, Skutlarek D, Parcina M, Mahn R, Wolf D, Brossart P, Geiser F, Engelhart S, Exner M, Bierbaum G, Schmithausen RM. Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Int J Hyg Environ Health 2019; 222:655-662. [PMID: 30905579 DOI: 10.1016/j.ijheh.2019.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential.
Collapse
Affiliation(s)
- E Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - A M Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - G Wilbring
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - C Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - H A Faerber
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - D Skutlarek
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Parcina
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R Mahn
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - D Wolf
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; University Clinic V, Department Hematology and Oncology, Medical University Innsbruck, Christoph-Probst-Platz Innrain 52, 6020, Innsbruck, Austria
| | - P Brossart
- Medical Clinic III, Department of Haematology and Oncology, Centre for Integrated Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - F Geiser
- Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - S Engelhart
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - G Bierbaum
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R M Schmithausen
- Institute for Hygiene and Public Health, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
40
|
Klebsiella pneumoniae prevents spore germination and hyphal development of Aspergillus species. Sci Rep 2019; 9:218. [PMID: 30659217 PMCID: PMC6338788 DOI: 10.1038/s41598-018-36524-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Different bacteria and fungi live as commensal organisms as part of the human microbiota, but shifts to a pathogenic state potentially leading to septic infections commonly occur in immunocompromised individuals. Several studies have reported synergistic or antagonistic interactions between individual bacteria and fungi which might be of clinical relevance. Here, we present first evidence for the interaction between Klebsiella pneumoniae and several Aspergillus species including A. fumigatus, A. terreus, A. niger and A. flavus which cohabit in the lungs and the intestines. Microbiological and molecular methods were employed to investigate the interaction in vitro, and the results indicate that Klebsiella pneumoniae is able to prevent Aspergillus spp. spore germination and hyphal development. The inhibitory effect is reversible, as demonstrated by growth recovery of Aspergillus spp. upon inhibition or elimination of the bacteria, and is apparently dependent on the physical interaction with metabolically active bacteria. Molecular analysis of Klebsiella-Aspergillus interaction has shown upregulation of Aspergillus cell wall-related genes and downregulation of hyphae-related genes, suggesting that Klebsiella induces cell wall stress response mechanisms and suppresses filamentous growth. Characterization of polymicrobial interactions may provide the basis for improved clinical management of mixed infections by setting the stage for appropriate diagnostics and ultimately for optimized treatment strategies.
Collapse
|
41
|
Jasim R, Baker MA, Zhu Y, Han M, Schneider-Futschik EK, Hussein M, Hoyer D, Li J, Velkov T. A Comparative Study of Outer Membrane Proteome between Paired Colistin-Susceptible and Extremely Colistin-Resistant Klebsiella pneumoniae Strains. ACS Infect Dis 2018; 4:1692-1704. [PMID: 30232886 DOI: 10.1021/acsinfecdis.8b00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present report we characterized the outer membrane proteome, genomic, and lipid A remodelling changes following the evolution of a colistin-susceptible K. pneumoniae ATCC 13883 strain into an extremely colistin-resistant strain. Lipid A profiling revealed the outer membrane of the colistin-susceptible strain is decorated primarily by hexa- and hepta-acylated lipid A species and a minor tetra-acylated species. In the lipid A profile of the extremely colistin-resistant strain, in addition to the aforementioned lipid A species, the obligatory 4-amino-4-deoxy-l-arabinose modification of the hexa-acylated lipid A was detected. Comparative genomic analysis revealed that the mgrB gene of the colistin-resistant strain is inactivated by a single nucleotide insertion which produces a frame-shift, resulting in premature termination. We also detected two synonymous mutations in the two-component system genes phoP and phoQ. Comparative profiling of the outer membrane proteome of each strain revealed that outer membrane proteins from bacterial stress response, glutamine degradation, pyruvate, aspartate, and asparagine metabolic pathways were over-represented in the extremely colistin-resistant K. pneumoniae ATCC 13883 strain. In comparison, in the sensitive strain, outer membrane proteins from carbohydrate metabolism, H+-ATPase, cell division, and peptidoglycan biosynthesis were over-represented. Notably, there were no discernible differences between the OmpK35 and OmpK36 major outer membrane porins between the polymyxin-susceptible and -resistant strains suggesting porin deficiency is not involved in the colistin resistance in the ATCC 13883 strain. These findings shed new light on the outer membrane remodelling events accompanying the development of extremely high levels of colistin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Raad Jasim
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Meiling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | - Maytham Hussein
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Giordano C, Barnini S. Rapid detection of colistin-resistant Klebsiella pneumoniae using MALDI-TOF MS peak-based assay. J Microbiol Methods 2018; 155:27-33. [DOI: 10.1016/j.mimet.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022]
|
43
|
Development of novel antibodies for detection of mobile colistin-resistant bacteria contaminated in meats. Sci Rep 2018; 8:16744. [PMID: 30425266 PMCID: PMC6233175 DOI: 10.1038/s41598-018-34764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
The recent discovery and rapid spread of mobile colistin-resistant gene, mcr-1, among bacteria isolated from a broad range of sources is undermining our ability to treat bacterial infections and threatening human health and safety. To prevent further transfer of colistin resistance, practical and reliable methods for mcr-1-containing bacteria are need. In this study, standards and novel polyclonal and monoclonal antibodies (mAbs) against MCR-1 were developed. Among nine mAbs, three were MCR-1 specific and six cross-reacted with both MCR-1 and MCR-2. A sandwich enzyme-linked immunosorbent assay (ELISA) was established using the polyclonal antibody as a capturer and the mAb MCR-1-7 as a detector. The assay had a limit of detection of 0.01 ng/mL for MCR-1 and 0.1 ng/mL for MCR-2 in buffer with coefficients of variation (CV) less than 15%. When applied to ground beef, chicken and pork, this ELISA identified samples inoculated with less than 0.4 cfu/g of meat, demonstrating its strong tolerance to complex food matrices. To our knowledge, this is the first immunoassay developed for MCR-1 and MCR-2. It should be useful for prompt and reliable screening of meat samples contaminated with plasmid-borne colistin-resistant bacteria, thus reducing human risk of foodborne infections with possibly no antibiotic treatment options.
Collapse
|
44
|
Lorenzoni VV, Rubert FDC, Rampelotto RF, Hörner R. Increased antimicrobial resistance in Klebsiella pneumoniae from a University Hospital in Rio Grande do Sul, Brazil. Rev Soc Bras Med Trop 2018; 51:676-679. [PMID: 30304277 DOI: 10.1590/0037-8682-0362-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/20/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The spread of multidrug-resistant Gram-negative bacilli is a health threat, limiting therapeutic options and increasing morbimortality rates. METHODS This study aimed to evaluate the antimicrobial susceptibility profile of 1805 Klebsiella pneumoniae isolates collected from Hospital Universitário de Santa Maria between January 2015 and December 2016. RESULTS Resistance to colistin (239.3%), meropenem (74.2%), ciprofloxacin (68%), gentamicin (35.1%), tigecycline (33.9%), imipenem (29.7%), ertapenem (26.8%), and amikacin (21.4%) was found increased. CONCLUSIONS Infection control measures in the hospitals are necessary for reducing the spread of multidrug-resistant microorganisms and preventing efficacy loss of these drugs.
Collapse
Affiliation(s)
- Vinícius Victor Lorenzoni
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil.,Universidade Federal de Santa Maria, Laboratório de Bacteriologia, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil
| | | | - Roberta Filipini Rampelotto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil.,Universidade Federal de Santa Maria, Laboratório de Bacteriologia, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Laboratório de Bacteriologia, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil
| |
Collapse
|
45
|
Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101. Viruses 2018; 10:v10090482. [PMID: 30205588 PMCID: PMC6163469 DOI: 10.3390/v10090482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to carbapenems in Enterobacteriaceae, including Klebsiella pneumoniae, represents a major clinical problem given the lack of effective alternative antibiotics. Bacteriophages could provide a valuable tool to control the dissemination of antibiotic resistant isolates, for the decolonization of colonized individuals and for treatment purposes. In this work, we have characterized a lytic bacteriophage, named vB_Kpn_F48, specific for K. pneumoniae isolates belonging to clonal group 101. Phage vB_Kpn_F48 was classified as a member of Myoviridae, order Caudovirales, on the basis of transmission electron microscopy analysis. Physiological characterization demonstrated that vB_Kpn_F48 showed a narrow host range, a short latent period, a low burst size and it is highly stable to both temperature and pH variations. High throughput sequencing and bioinformatics analysis revealed that the phage is characterized by a 171 Kb dsDNA genome that lacks genes undesirable for a therapeutic perspective such integrases, antibiotic resistance genes and toxin encoding genes. Phylogenetic analysis suggests that vB_Kpn_F48 is a T4-like bacteriophage which belongs to a novel genus within the Tevenvirinae subfamily, which we tentatively named "F48virus". Considering the narrow host range, the genomic features and overall physiological parameters phage vB_Kpn_F48 could be a promising candidate to be used alone or in cocktails for phage therapy applications.
Collapse
|
46
|
Jasim R, Han ML, Zhu Y, Hu X, Hussein MH, Lin YW, Zhou QT, Dong CYD, Li J, Velkov T. Lipidomic Analysis of the Outer Membrane Vesicles from Paired Polymyxin-Susceptible and -Resistant Klebsiella pneumoniae Clinical Isolates. Int J Mol Sci 2018; 19:E2356. [PMID: 30103446 PMCID: PMC6121281 DOI: 10.3390/ijms19082356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired polymyxin-susceptible and -resistant Klebsiella pneumoniae isolates. K. pneumoniae ATCC 700721 was employed as a reference strain in addition to two clinical strains, K. pneumoniae FADDI-KP069 and K. pneumoniae BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of these lipid species, both intrinsically and increasingly under polymyxin treatment. The average diameter of the OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate, measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B treatment (2 mg/L) of the K. pneumoniae ATCC 700721 cells resulted in the production of OMVs with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant (average diameter ~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated with polymyxin resistance in K. pneumoniae may involve fortifying the membrane structure with increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack.
Collapse
Affiliation(s)
- Raad Jasim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Xiaohan Hu
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Maytham H Hussein
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Charlie Yao Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
47
|
Esposito EP, Cervoni M, Bernardo M, Crivaro V, Cuccurullo S, Imperi F, Zarrilli R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood Isolates From the Hospital Agency "Ospedale dei Colli," Naples, Italy. Front Microbiol 2018; 9:1463. [PMID: 30061868 PMCID: PMC6054975 DOI: 10.3389/fmicb.2018.01463] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Resistance to colistin is increasingly reported in Klebsiella pneumoniae clinical isolates. The aim of this study was to analyze the molecular epidemiology and virulence profiles of 25 colistin-resistant K. pneumoniae blood isolates from the Hospital Agency “Ospedale dei Colli,” Naples, Italy, during 2015 and 2016. Colistin MIC values of isolates ranged from 4 to 256 mg/L. The inactivation of the mgrB gene, encoding a negative regulator of the PhoQ/PhoP signaling system, was the most frequent mechanism of colistin resistance found in 22 out of 25 isolates. Of these, 10 isolates assigned to ST512 and PFGE types A and A4 showed identical frameshift mutation and premature termination of mgrB gene; 4 isolates assigned to ST258 and PFGE types A1 showed non-sense, frameshift mutation, and premature termination; 3 and 1 isolates assigned to ST258 and PFGE A2 and ST512 and PFGE A3, respectively, had insertional inactivation of mgrB gene due to IS5-like mobile element; 2 isolates assigned to ST101 and 1 to ST392 had missense mutations in the mgrB gene, 1 isolate assigned to ST45 showed insertional inactivation of mgrB gene due to IS903-like mobile element. phoQ missense mutations were found in 2 isolates assigned to ST629 and ST101, respectively, which also showed a missense mutation in pmrA gene. The mcr-1-2-3-4 genes were not detected in any isolate. Colistin-resistant K. pneumoniae isolates showed variable virulence profiles in Galleria mellonella infection assays, with the infectivity of two isolates assigned to ST45 and ST629 being significantly higher than that of all other strains (P < 0.001). Interestingly, colistin MIC values proved to make a significant contribution at predicting lethal doses values (LD50 and LD90) of studied isolates in G. mellonella. Our data show that MgrB inactivation is a common mechanism of colistin resistance among K. pneumoniae in our clinical setting. The presence of identical mutations/insertions in isolates of the same ST and PFGE profile suggests the occurrence of clonal expansion and cross-transmission. Although virulence profiles differ among isolates irrespective of their genotypes, our results suggest that high colistin MIC could predict lower infectivity capability of the isolates.
Collapse
Affiliation(s)
- Eliana P Esposito
- Department of Public Health, University of Naples "Federico II,", Naples, Italy
| | - Matteo Cervoni
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Mariano Bernardo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Valeria Crivaro
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Susanna Cuccurullo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples "Federico II,", Naples, Italy.,Centro di Ingegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
48
|
Osei Sekyere J. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. Microbiologyopen 2018; 8:e00682. [PMID: 29974640 PMCID: PMC6530528 DOI: 10.1002/mbo3.682] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 11/23/2022] Open
Abstract
Resistance to colistin, mediated by chromosomal mutations and more recently, by plasmid‐borne mcr genes, is increasingly being reported in bacterial isolates taken from humans, animals, farms, foods, and the environment. To easily identify and contain this quickly spreading menace, efficient diagnostics that are cheaper, faster, simpler, sensitive, and specific have become indispensable and urgently necessary. A thorough and systematic review of the literature available at Pubmed, ScienceDirect and Web of Science was thus undertaken to identify articles describing novel and efficient colistin resistance‐ and mcr gene‐detecting methods. From the final 23 studies included in this review, both phenotypic and molecular tests were found. The phenotypic tests consisted of novel culture media viz., SuperPolymyxin™, CHROMagar COL‐APSE and LBJMR media, commercial automated MIC‐determining instruments such as MICRONAUT‐S, Vitek 2, BD Phoenix, Sensititre and MicroScan, and novel assays such as Colistin MAC test, Colispot, rapid polymxin NP test (RPNP), alteration of Zeta potential, modified RPNP test, MICRONAUT‐MIC Strip, MIC Test Strip, UMIC System, and Sensitest™ Colistin. Molecular diagnostics consisted of the CT103XL microarray, eazyplex® SuperBug kit, and Taqman®/SYBR Green® real‐time PCR assays, with 100% sensitivity and specificity plus a shorter turnaround time (<3 hr). Based on the sensitivity, specificity, cost, required skill and turnaround time, the RPNP test and/or novel culture media is recommended for under‐resourced laboratories while the Multiplex PCR or Taqman®/SYBR Green® real‐time PCR assay alongside the RPNP or novel culture media is suggested for well‐resourced ones.
Collapse
Affiliation(s)
- John Osei Sekyere
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Medical Microbiology, Prinshof Medical School Campus, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
49
|
Colistin resistance in carbapenemase-producing Klebsiella pneumoniae bloodstream isolates: Evolution over 15 years and temporal association with colistin use by time series analysis. Int J Antimicrob Agents 2018; 52:397-403. [PMID: 29960007 DOI: 10.1016/j.ijantimicag.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/16/2018] [Indexed: 01/09/2023]
Abstract
Colistin is often the only available treatment option against infections caused by carbapenemase-producing Klebsiella pneumoniae (CP-Kp). In this study, the evolution of colistin resistance among CP-Kp and its relationship with colistin use in a tertiary-care hospital in Athens, Greece, was investigated. All CP-Kp blood isolates recovered between January 2002 and June 2016 were tested for susceptibility to colistin by agar dilution and broth microdilution methods. Data on colistin use were collected from the pharmacy database. Time series of colistin use and resistance were analysed using the Box and Jenkins method. A transfer function model was built to quantify the dynamic relationship between colistin use and resistance. Overall, 313 CP-Kp isolates were identified. The percentage colistin resistance increased from 0% in 2002 to 26.9% in 2016 (R2 = 0.5, P < 0.01). A temporal association between colistin use and resistance was observed; an increase in colistin use by 1 DDD/100 patient-days led to a 0.05 increase in the incidence rate of colistin resistance. The time lag between the effect of colistin use on subsequent variations in colistin resistance was 3 months. Colistin use and prior levels of colistin resistance could explain 69% of colistin resistance; in the remaining 31%, other factors might have played a role. The results presented here demonstrate a significant temporal association between colistin use and colistin resistance. These findings have important implications in implementing strategies to contain colistin resistance.
Collapse
|
50
|
Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam – epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther 2018. [DOI: 10.1080/14787210.2018.1453807] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Norelle Sherry
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| | - Benjamin Howden
- Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
| |
Collapse
|