1
|
Reta MA, Said HM, Maningi NE, Wubetu GY, Agonafir M, Fourie PB. Genetic diversity of Mycobacterium tuberculosis strains isolated from spiritual holy water site attendees in Northwest Ethiopia. A cross-sectional study. New Microbes New Infect 2024; 59:101235. [PMID: 38590765 PMCID: PMC11000200 DOI: 10.1016/j.nmni.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background The genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains was characterized among isolates from individuals with pulmonary tuberculosis (PTB) symptoms attended holy water sites (HWSs) in the Amhara region, Ethiopia. Methods A cross-sectional study was done from June 2019 to March 2020 to describe the genetic diversity and drug-resistance profiles of MTBC isolates. Sputum specimens were collected and cultured in the Löwenstein-Jensen culture medium. Line Probe Assay, MTBDRplus VER 2.0, and MTBDRsl VER 2.0 were used to detect first-and second-line anti-TB drug-resistance patterns. A spoligotyping technique was utilized to characterize the genetic diversity. Statistical analysis was performed using STATA 15. Results Of 560 PTB-symptomatic participants, 122 (21.8%) were culture-positive cases. Spoligotyping of 116 isolates revealed diverse MTBC sublineages, with four major lineages: Euro-American (EA) (Lineage 4), East-African-Indian (EAI) (Lineage 3), Ethiopian (ETH) (Lineage 7), East Asian (EA) (Lineage 2). The majority (96.6%) of the isolates were EA (lineage 4) and EAI, with proportions of 54.3% and 42.2%, respectively. A total of 31 spoligotype patterns were identified, 26 of which were documented in the SITVIT2 database. Of these, there were 15 unique spoligotypes, while eleven were grouped with 2-17 isolates. SIT149/T3-ETH (n = 17), SIT26/CAS1-DELHI (n = 16), SIT25/CAS1-DELHI (n = 12), and SIT52/T2 (n = 11) spoligotypes were predominant. A rare spoligotype pattern: SIT41/Turkey and SIT1/Beijing, has also been identified in North Shewa. The overall clustering rate of sub-lineages with known SIT was 76.4%.Of the 122 culture-positive isolates tested, 16.4% were resistant to rifampicin (RIF) and/or isoniazid (INH). Multidrug-resistant TB (MDR-TB) was detected in 12.3% of isolates, five of which were fluoroquinolones (FLQs) resistant. SIT149/T3-ETH and SIT21/CAS1-KILI sublineages showed a higher proportion of drug resistance. Conclusions Diverse MTBC spoligotypes were identified, with the T and CAS families and EA (lineage 4) predominating. A high prevalence of drug-resistant TB, with SIT149/T3-ETH and CAS1-KILI sublineages comprising a greater share, was observed. A study with large sample size and a sequencing method with stronger discriminatory power is warranted to understand better the genetic diversity of circulating MTBC in this cohort of study, which would help to adopt targeted interventions.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Halima M. Said
- National Institute for Communicable Diseases (NICD), Centre for Tuberculosis, Johannesburg, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Gizachew Yismaw Wubetu
- Amhara Public Health Institute (APHI), Bahir Dar, Ethiopia
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Reta MA, Maningi NE, Wubetu GY, Olorunju SAS, Fourie PB. Spiritual Holy Water Sites in Ethiopia: Unrecognized High-Risk Settings for Transmission of Pulmonary Tuberculosis. Int J Microbiol 2024; 2024:3132498. [PMID: 38623557 PMCID: PMC11018379 DOI: 10.1155/2024/3132498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Ethiopia is a high-tuberculosis (TB) burden country with 157 new cases per 100,000 people, with 23,800 TB-related deaths in 2020. In Ethiopia, TB patients have different healthcare-seeking behaviors. They frequently visit spiritual places, such as holy water sites (HWSs), to seek treatment for their illness spiritually. This study examined the prevalence of pulmonary TB (PTB) and drug susceptibility profiles of Mycobacterium tuberculosis (MTB) isolates among spiritual HWS attendees in Northwest Ethiopia. A cross-sectional study was conducted from June 2019 to March 2020. Sputum samples were collected, processed, and cultured using Löwenstein-Jensen (LJ) culture medium. Second-generation line probe assays (LPAs), GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0, were used to detect anti-TB drug-resistant isolates. STATA 17 was utilized to perform descriptive statistics, bivariate, and multivariate regression analyses. Of 560 PTB-symptomatic participants, 21.8% ((95% confidence interval (95 CI): 18.4-25.2%)) were culture-positive, resulting in a point prevalence of 1,183/100,000 attendees. Amongst HWS attendees, culture-positive TB occurred most commonly in persons 18-33 years of age (28.5% (95 CI 23.4-34.3%)). Other participant characteristics significantly associated with culture-positive PTB were as follows: rural residents (adjusted odds ratio (aOR) 2.65; 95 CI 1.38-5.10), married participants (aOR 2.43; 95 CI 1.28-4.63), family members >5 per household (aOR 1.84; 95 CI 1.04-3.24), and sharing living space (aOR 10.57; 95 CI 3.60-31.13). Also, among 438 participants followed for 12 months after showing negative TB culture results while at the HWS, 6.8% (95 CI 4.4-9.4%) developed or contracted culture-positive TB post-residency at the HWSs. Of the 122 tested isolates, 20 (16.4%) were isoniazid (INH) and/or rifampicin (RIF) resistant. Multidrug-resistant (MDR) TB was detected in 15 cases (12.3%), five of which were fluoroquinolones (FLQs) resistant. The findings from this study should raise a concern about HWSs as potential high-risk settings for TB transmission. It is recommended that appropriate control measures be instituted that include compulsory TB testing and tightened infection control at HWSs, where an increased risk exists for transmission of TB.
Collapse
Affiliation(s)
- Melese Abate Reta
- Research Centre for Tuberculosis and Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Pretoria 0084, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O. Box 400, Woldia, Ethiopia
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Gizachew Yismaw Wubetu
- Amhara Public Health Institute, Bahir Dar, Ethiopia
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Steve A. S. Olorunju
- South African Medical Research Council, Biostatistics Unit, Pretoria, South Africa
| | - P. Bernard Fourie
- Research Centre for Tuberculosis and Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Pretoria 0084, South Africa
| |
Collapse
|
3
|
Reta MA, Maningi NE, Fourie PB. Patterns and profiles of drug resistance-conferring mutations in Mycobacterium tuberculosis genotypes isolated from tuberculosis-suspected attendees of spiritual holy water sites in Northwest Ethiopia. Front Public Health 2024; 12:1356826. [PMID: 38566794 PMCID: PMC10985251 DOI: 10.3389/fpubh.2024.1356826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Traoré AN, Rikhotso MC, Mphaphuli MA, Patel SM, Mahamud HA, Kachienga LO, Kabue JP, Potgieter N. Isoniazid and Rifampicin Resistance-Conferring Mutations in Mycobacterium tuberculosis Isolates from South Africa. Pathogens 2023; 12:1015. [PMID: 37623975 PMCID: PMC10458554 DOI: 10.3390/pathogens12081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), remains a significant global health issue, with high morbidity and mortality rates. The emergence of drug-resistant strains, particularly multidrug-resistant TB (MDR-TB), poses difficult challenges to TB control efforts. This comprehensive review and meta-analysis investigated the prevalence of and molecular insights into isoniazid (INH) and rifampicin (RIF) resistance-conferring mutations in M. tb isolates from South Africa. Through systematic search and analysis of 11 relevant studies, we determined the prevalence of gene mutations associated with RIF and INH resistance, such as rpoB, katG, and inhA. The findings demonstrated a high prevalence of specific mutations, including S450L in rpoB, and S315T, which are linked to resistance against RIF and INH, respectively. These results contribute to the understanding of drug resistance mechanisms and provide valuable insights for the development of targeted interventions against drug-resistant TB.
Collapse
Affiliation(s)
- Afsatou Ndama Traoré
- Department of Biochemistry and Microbiology, Faculty of Sciences, Engineering & Agriculture, University of Venda, Thohoyandou 0950, South Africa; (M.C.R.); (M.A.M.); (S.M.P.); (H.A.M.); (L.O.K.); (J.-P.K.); (N.P.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
7
|
Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor2010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present study aimed at analyzing the treatment outcomes and risk factors associated with fluoroquinolone drug resistance having mutations in the gyrA and gyrB genes. A total of 258 pulmonary tuberculosis samples with first-line drug-resistant (H, R, or HR) were subjected to GenoType MTBDRsl assay for the molecular detection of mutations. Among the 258 samples, 251 were drug-resistant tuberculosis and seven were sensitive to all first-line TB drugs. Out of 251 DR-TB cases, 42 cases were MDR TB, 200 were INH mono-resistant and nine cases were RIF mono-resistant tuberculosis. Out of 251 DR-TB cases performed with a MTBDRsl assay, 14 had Pre-XDR-FQ, one patient had pre-XDR-SLID, one had extensively drug-resistant tuberculosis (XDR-TB) and 235 cases were sensitive to both FQ and SLID drugs. The study group had a mean average of 42.7 ± 16.4 years. The overall successful treatment outcomes among the MDR, INH mono-resistant, and pre-XRD patients were 70.6%, 82.0%, and 51%, respectively. The percentage of risk for the unfavorable outcomes in the pre-XDR, INH -mono-resistant, and XDR cases were 113.84% increased risk with RR 2.14; 95% CI 0.7821–5.8468. The independent risk factor associated with the unfavorable outcomes to failure was 77.78% increased risk with RR 1.78; 95% CI 0.3375–9.3655. Logistic regression analysis revealed that the percentage relative risk among MDR-TB patients for gender, male (RR: 1.85), age ≥ 61 years (RR: 1.96), and diabetics (RR: 1.05) were 84.62%, 95.83%, and 4.76%, respectively. The independent risk factors associated with INH mono-resistant cases of age 16–60 (RR: 1.86), ≥61 year (RR: 1.18), and treated cases (RR: 5.06). This study presaged the significant risk of INH mono-resistant, pre-XDR, and MDR among males, young adults, diabetics, and patients with previous treatment failure. Timely identification of high-risk patients will give pronounced advantages to control drug resistance tuberculosis diseases.
Collapse
|
8
|
Exploratory development of PCR-fluorescent probes in rapid detection of mutations associated with extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 2021; 40:1851-1861. [PMID: 33792806 DOI: 10.1007/s10096-021-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
This study aims to evaluate the clinical value of PCR-fluorescent probes for detecting the mutation gene associated with extensively drug-resistant tuberculosis (XDR-TB). The molecular species identification of 900 sputum specimens was performed using polymerase chain reaction (PCR)-fluorescent probe. The mutations of the drug resistance genes rpoB, katG, inhA, embB, rpsL, rrs, and gyrA were detected. The conventional drug susceptibility testing (DST) and PCR-directed sequencing (PCR-DS) were carried out as control. DST demonstrated that there were 501 strains of rifampicin resistance, 451 strains of isoniazid resistance, 293 strains of quinolone resistance, 425 strains of streptomycin resistance, 235 strains of ethambutol resistance, and 204 strains of amikacin resistance. Furthermore, 427 (47.44%) or 146 (16.22%) strains were MDR-TB or XDR-TB, respectively. The mutations of the rpoB, katG, inhA, embB, rpsL, rrs, and gyrA genes were detected in 751 of 900 TB patients by PCR-fluorescent probe method, and the rate of drug resistance was 751/900 (83.44%). No mutant genes were detected in the other 149 patients. Compared with DST, the mutant rates of rpoB, katG/inhA, rpsL, rrs, embB, and gyrA of six drugs were higher than 88%; five of six drugs were higher than 90% except for SM (88.11%). The MDR and XDR mutant gene types were found in 398 (42.22%) and 137 (15.22%) samples. PCR-DS was also employed and confirmed the PCR-fluorescent probe method with the accordance rate of 100%. The PCR-fluorescent probe method is rapid and straightforward in detecting XDR-TB genotypes and is worthy of being applied in hospitals.
Collapse
|
9
|
Sibandze DB, Magazi BT, Malinga LA, Maningi NE, Shey BA, Pasipanodya JG, Mbelle NN. Machine learning reveals that Mycobacterium tuberculosis genotypes and anatomic disease site impacts drug resistance and disease transmission among patients with proven extra-pulmonary tuberculosis. BMC Infect Dis 2020; 20:556. [PMID: 32736602 PMCID: PMC7393820 DOI: 10.1186/s12879-020-05256-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/14/2020] [Indexed: 11/10/2022] Open
Abstract
Background There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane metropolitan area, in South Africa. Methods Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable risk (AR) and corresponding 95% confidence intervals (CI). Results Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56–116). Lymphadenitis, meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95% CI: 1.82–141.60) and AR = 0.25 (95% CI: 0.06–0.43) when compared with other EPTB sites, which suggests that poor rifampin penetration might be a contributing factor. Conclusions The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of resistance.
Collapse
Affiliation(s)
- Doctor B Sibandze
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,National Tuberculosis Control Program, Ministry of Health, Manzini, Kingdom of Eswatini
| | - Beki T Magazi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tuberculosis Platform, South African Medical Research Council, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Bong-Akee Shey
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Jotam G Pasipanodya
- Center For Infectious Diseases Research and Experimental Therapeutics, Texas Tech University Health Sciences Center, 5920 Forest Park Road, Dallas, TX, 75235, USA. .,Praedicare Laboratories, 14830 Venture Drive, Dallas, TX, 75234, USA.
| | - Nontombi N Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| |
Collapse
|
10
|
16S and 23S rRNA Gene Mutation Independent Multidrug Resistance of Non-Tuberculous Mycobacteria Isolated from South Korean Soil. Microorganisms 2020; 8:microorganisms8081114. [PMID: 32722306 PMCID: PMC7465728 DOI: 10.3390/microorganisms8081114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous microorganisms that have the potential to cause disease in both humans and animals. Recently, NTM infections have rapidly increased in South Korea, especially in urbanized areas. However, the distribution of species and the antibiotic resistance profile of NTM in environmental sources have not yet been investigated. Therefore, we analyzed the distribution of species and the antibiotic resistance profile of NTM in soil within urban areas of South Korea. A total of 132 isolates of NTM were isolated from soil samples from 1 municipal animal shelter and 4 urban area parks. Among the 132 isolates, 105 isolates were identified as slowly growing mycobacteria (SGM) and 27 isolates as rapidly growing mycobacteria (RGM) based on the sequences of the rpoB and hsp65 genes. The antibiotic resistance patterns of NTM isolates differed from species to species. Additionally, a mutation in the rrs gene found in this study was not associated with aminoglycoside resistance. In conclusion, our results showed that NTM isolates from South Korean soil exhibit multidrug resistance to streptomycin, amikacin, azithromycin, ethambutol, isoniazid, and imipenem. These results suggest that NTM may pose a public threat.
Collapse
|
11
|
Wan L, Liu H, Li M, Jiang Y, Zhao X, Liu Z, Wan K, Li G, Guan CX. Genomic Analysis Identifies Mutations Concerning Drug-Resistance and Beijing Genotype in Multidrug-Resistant Mycobacterium tuberculosis Isolated From China. Front Microbiol 2020; 11:1444. [PMID: 32760357 PMCID: PMC7373740 DOI: 10.3389/fmicb.2020.01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
Development of modern genomics provides us an effective method to understand the molecular mechanism of drug resistance and diagnose drug-resistant Mycobacterium tuberculosis. In this study, mutations in 18 genes or intergenic regions acquired by whole-genome sequencing (WGS) of 183 clinical M. tuberculosis strains, including 137 multidrug-resistant and 46 pan-susceptible isolates from China, were identified and used to analyze their associations with resistance of isoniazid, rifampin, ethambutol, and streptomycin. Using the proportional method as the gold standard method, the accuracy values of WGS to predict resistance were calculated. The association between synonymous or lineage definition mutations with different genotypes were also analyzed. The results show that, compared to the phenotypic proportional method, the sensitivity and specificity of WGS for resistance detection were 94.2 and 100.0% for rifampicin (based on mutations in rpoB), 90.5 and 97.8% for isoniazid (katG), 83.0 and 97.8% for streptomycin (rpsL combined with rrs 530 loop and 912 loop), and 90.9 and 65.1% for ethambutol (embB), respectively. WGS data also showed that mutations in the inhA promoter increased only 2.2% sensitivity for INH based on mutations in katG. Synonymous mutation rpoB A1075A was confirmed to be associated with the Beijing genotype. This study confirmed that mutations in rpoB, katG, rrs 530 loop and 912 loop, and rpsL were excellent biomarkers for predicting rifampicin, isoniazid, and streptomycin resistance, respectively, and provided clues in clarifying the drug-resistance mechanism of M. tuberculosis isolates from China.
Collapse
Affiliation(s)
- Li Wan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
Tatara MB, Perdigão J, Viveiros M, Kritski A, Silva KED, Sacchi FPC, de Lima CC, Dos Santos PCP, Diniz JDLDCG, Almeida Silva PE, Gomes P, Gomes MMQ, Cunha EAT, Lapa E Silva JR, Portugal I, Croda J, Andrade MKDN. Genetic Diversity and Molecular Epidemiology of Mycobacterium tuberculosis in Roraima State, Brazil. Am J Trop Med Hyg 2020; 101:774-779. [PMID: 31392954 DOI: 10.4269/ajtmh.19-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
National border areas are special places for the spread of Mycobacterium tuberculosis (MTB). These regions concentrate vulnerable populations and constant population movements. Understanding the dynamics of the transmission of MTB is fundamental to propose control measures and to monitor drug resistance. We conducted a population-based prospective study of tuberculosis (TB) to evaluate molecular characteristics of MTB isolates circulating in Roraima, a state on the border of Venezuela and Guyana. Eighty isolates were genotyped by IS6110-RFLP (restriction fragment length polymorphism), spoligotyping, and 24-locus mycobacterial interspersed repetitive unit-variable number of repeats tandem (MIRU-VNTR). Drug susceptibility tests were performed by using the proportion method and GeneXpert® MTB/RIF (Cepheid, Sunnyvale, CA). Isolates showing a phenotypic resistance profile were submitted to polymerase chain reaction (PCR) and sequencing. Spoligotyping showed 40 distinct patterns with a high prevalence of Latin-American and Mediterranean (LAM), Haarlem (H), and the "ill-defined" T clades. Mycobacterial interspersed repetitive unit -VNTR and IS6110-RFLP showed clustering rates of 21.3% and 30%, respectively. Drug resistance was detected in 11 (15.1%) isolates, and all were found to have primary resistance; among these, six (8.2%) isolates were streptomycin mono-resistant, four (5.4%) isoniazid mono-resistant, and one (1.3%) multidrug resistant. This is the first study on the molecular epidemiology and drug resistance profile of MTB from Roraima. Herein, we describe high diversity of genetic profiles circulating in this region that may be driven by the introduction of new strain types because of large population flow in this region. In summary, our results showed that analyses of these circulating strains can contribute to a better understanding of TB epidemiology in the northern Brazilian border and be useful to establish public health policies on TB prevention.
Collapse
Affiliation(s)
- Mariana Bento Tatara
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Miguel Viveiros
- Institute of Hygiene and Tropical Medicine (IHMT), Global Health and Tropical Medicine (GHTM), University NOVA of Lisbon, Lisbon, Portugal
| | - Afrânio Kritski
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kesia Esther da Silva
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Camila Camioli de Lima
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo César Pereira Dos Santos
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Pedro Eduardo Almeida Silva
- Nucleus of Research in Medical Microbiology, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
| | - Pedro Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | - Isabel Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Oswaldo Cruz Foundation, Campo Grande, Brazil
| | | |
Collapse
|
13
|
Antibiotic resistance of Mycobacterium tuberculosis complex in Africa: A systematic review of current reports of molecular epidemiology, mechanisms and diagnostics. J Infect 2019; 79:550-571. [DOI: 10.1016/j.jinf.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
|
14
|
Osei Sekyere J, Maphalala N, Malinga LA, Mbelle NM, Maningi NE. A Comparative Evaluation of the New Genexpert MTB/RIF Ultra and other Rapid Diagnostic Assays for Detecting Tuberculosis in Pulmonary and Extra Pulmonary Specimens. Sci Rep 2019; 9:16587. [PMID: 31719625 PMCID: PMC6851384 DOI: 10.1038/s41598-019-53086-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Studies evaluating the new GeneXpert Ultra with other rapid diagnostic assays are limited, particularly in different geographical settings. The performance of the GeneXpert Ultra, the GeneXpert G4, the Line probe assays (LPA) and auramine smear microscopy in detecting TB in pulmonary and extra-pulmonary samples were thus evaluated. Remnants (n = 205 samples) of pulmonary (n = 125 samples) and extra-pulmonary (n = 80 samples) specimens from TB suspects were prospectively collected. Each sample was divided for diagnosis using microscopy, GeneXpert MTB/RIF assays, and LPA; these were all comparatively evaluated, using the MGIT 960 culture as a gold standard. The sensitivity and specificity of microscopy, Xpert Ultra, Xpert G4 and MTBDRplus (ver 2) in pulmonary samples were respectively: 82.00% and 90.28%; 88.00% and 58.57%; 79.59% and 90.28%; 80.00% and 11.11%. For extra-pulmonary specimen, the sensitivity and specificity were respectively: 53.85% and 98.51%; 69.23% and 49.25%; 50.00% and 97.01%; 69.23% and 25.37%. The new and improved GeneXpert Ultra assay was more sensitive than GeneXpert G4 and LPA in both pulmonary and extra pulmonary samples, albeit with lower specificity than the GeneXpert G4. The auramine and LPA tests were also highly sensitive, although the LPA was less specific.
Collapse
Affiliation(s)
- John Osei Sekyere
- Department of Medical Microbiology, University of Pretoria, 0084, Pretoria, South Africa
| | - Nontobeko Maphalala
- Department of Medical Microbiology, University of Pretoria, 0084, Pretoria, South Africa
| | - Lesibana A Malinga
- South African Medical Research Council, TB Platform Unit, 0084, Pretoria, South Africa.,Department of Internal Medicine, University of Pretoria, 0084, Pretoria, South Africa
| | - Nontombi M Mbelle
- Department of Medical Microbiology, University of Pretoria, 0084, Pretoria, South Africa.,National Health Laboratory Services, Tshwane Academic Division, 0084, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Department of Medical Microbiology, University of Pretoria, 0084, Pretoria, South Africa.
| |
Collapse
|
15
|
Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 2019; 128:1547-1567. [PMID: 31595643 DOI: 10.1111/jam.14478] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) along with acquired immune deficiency syndrome and malaria rank among the top three fatal infectious diseases which pose threat to global public health, especially in middle and low income countries. TB caused by Mycobacterium tuberculosis (Mtb) is an airborne infectious disease and one-third of the world's population gets infected with TB leading to nearly 1·6 million deaths annually. TB drugs are administered in different combinations of four first-line drugs (rifampicin, isoniazid, pyrazinamide and ethambutol) which form the core of treatment regimens in the initial treatment phase of 6-9 months. Several reasons account for the failure of TB therapy such as (i) late diagnosis, (ii) lack of timely and proper administration of effective drugs, (iii) lower availability of less toxic, inexpensive and effective drugs, (iv) long treatment duration, (v) nonadherence to drug regimen and (vi) evolution of drug-resistant TB strains. Drug-resistant TB poses a significant challenge to TB therapy and control programs. In the background of worldwide emergence of 558 000 new TB cases with resistance to rifampicin in the year 2017 and of them, 82% becoming multidrug-resistant TB (MDR-TB), it is essential to continuously update the knowledge on the mechanisms and molecular basis for evolution of Mtb drug resistance. This narrative and traditional review summarizes the progress on the anti-tubercular agents, their mode of action and drug resistance mechanisms in Mtb. The aim of this review is to provide recent updates on drug resistance mechanisms, newly developed/repurposed anti-TB agents in pipeline and international recommendations to manage MDR-TB. It is based on recent literature and WHO guidelines and aims to facilitate better understanding of drug resistance for effective TB therapy and clinical management.
Collapse
Affiliation(s)
- R Singh
- AIRF & Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S P Dwivedi
- IFTM University, Moradabad, Uttar Pradesh, India
| | - U S Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - R Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - P Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - T Prasad
- AIRF & Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|