1
|
Xu X. Modelling the rapid detection of Carbapenemase-resistant Klebsiella pneumoniae based on machine learning and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2024; 110:116467. [PMID: 39096663 DOI: 10.1016/j.diagmicrobio.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
In this study, 80 carbapenem-resistant Klebsiella pneumoniae (CR-KP) and 160 carbapenem-susceptible Klebsiella pneumoniae (CS-KP) strains detected in the clinic were selected and their matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peaks were collected. K-means clustering was performed on the MS peak data to obtain the best "feature peaks", and four different machine learning models were built to compare the area under the ROC curve, specificity, sensitivity, test set score, and ten-fold cross-validation score of the models. By adjusting the model parameters, the test efficacy of the model is increased on the basis of reducing model overfitting. The area under the ROC curve of the Random Forest, Support Vector Machine, Logistic Regression, and Xgboost models used in this study are 0.99, 0.97, 0.96, and 0.97, respectively; the model scores on the test set are 0.94, 0.91, 0.90, and 0.93, respectively; and the results of the ten-fold cross-validation are 0.84, 0.81, 0.81, and 0.85, respectively. Based on the machine learning algorithms and MALDI-TOF MS assay data can realize rapid detection of CR-KP, shorten the in-laboratory reporting time, and provide fast and reliable identification results of CR-KP and CS-KP.
Collapse
Affiliation(s)
- Xiaobo Xu
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China.
| |
Collapse
|
2
|
Cuello L, Alvarez Otero J, Greenwood-Quaintance KE, Chen L, Hanson B, Reyes J, Komarow L, Ge L, Lancaster ZD, Gordy GG, Schuetz AN, Patel R. Poor Sensitivity of the MALDI Biotyper ® MBT Subtyping Module for Detection of Klebsiella pneumoniae Carbapenemase (KPC) in Klebsiella Species. Antibiotics (Basel) 2023; 12:1465. [PMID: 37760762 PMCID: PMC10525285 DOI: 10.3390/antibiotics12091465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid detection of Klebsiella pneumoniae carbapenemase (KPC) in the Klebsiella species is desirable. The MALDI Biotyper® MBT Subtyping Module (Bruker Daltonics) uses an algorithm that detects a peak at ~11,109 m/z corresponding to a protein encoded by the p019 gene to detect KPC simultaneously with organism identification by a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-ToF MS). Here, the subtyping module was evaluated using 795 clinical Klebsiella isolates, with whole genome sequences used to assess for blaKPC and p019. For the isolates identified as KPC positive by sequencing, the overall sensitivity of the MALDI-ToF MS subtyping module was 239/574 (42%) with 100% specificity. For the isolates harboring p019, the subtyping module showed a sensitivity of 97% (239/246) and a specificity of 100%. The subtyping module had poor sensitivity for the detection of blaKPC-positive Klebsiella isolates, albeit exhibiting excellent specificity. The poor sensitivity was a result of p019 being present in only 43% of the blaKPC-positive Klebsiella isolates.
Collapse
Affiliation(s)
- Luz Cuello
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Blake Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Lizhao Ge
- The Biostatistics Center, The George Washington University, Rockville, MD 20852, USA
| | - Zane D. Lancaster
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Garrett G. Gordy
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Audrey N. Schuetz
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin Patel
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Costa A, Figueroa-Espinosa R, Martínez JA, Fernández-Canigia L, Maldonado MI, Bergese SA, Schneider AE, Vay C, Rodriguez CH, Nastro M, Gutkind GO, Di Conza JA. MALDI-TOF MS-Based KPC Direct Detection from Patients' Positive Blood Culture Bottles, Short-Term Cultures, and Colonies at the Hospital. Pathogens 2023; 12:865. [PMID: 37513712 PMCID: PMC10385308 DOI: 10.3390/pathogens12070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carbapenemase resistance in Enterobacterales is a global public health problem and rapid and effective methods for detecting these resistance mechanisms are needed urgently. Our aim was to evaluate the performance of a MALDI-TOF MS-based "Klebsiella pneumoniae carbapenemase" (KPC) detection protocol from patients' positive blood cultures, short-term cultures, and colonies in healthcare settings. Bacterial identification and KPC detection were achieved after protein extraction with organic solvents and target spot loading with suitable organic matrices. The confirmation of KPC production was performed using susceptibility tests and blaKPC amplification using PCR and sequencing. The KPC direct detection (KPC peak at approximately 28.681 Da) from patients' positive blood cultures, short-term cultures, and colonies, once bacterial identification was achieved, showed an overall sensibility and specificity of 100% (CI95: [95%, 100%] and CI95: [99%, 100%], respectively). The concordance between hospital routine bacterial identification protocol and identification using this new methodology from the same extract used for KPC detection was ≥92%. This study represents the pioneering effort to directly detect KPC using MALDI-TOF MS technology, conducted on patient-derived samples obtained from hospitals for validation purposes, in a multi-resistance global context that requires concrete actions to preserve the available therapeutic options and reduce the spread of antibiotic resistance markers.
Collapse
Affiliation(s)
- Agustina Costa
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - Roque Figueroa-Espinosa
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - Jerson A Martínez
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | | | | | | | - Ana E Schneider
- Hospital Alemán de Buenos Aires, Buenos Aires 1113, Argentina
| | - Carlos Vay
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Carlos H Rodriguez
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Marcela Nastro
- Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires 1118, Argentina
| | - Gabriel O Gutkind
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| | - José A Di Conza
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033, Argentina
| |
Collapse
|
4
|
Moreira NK, Wilhelm CM, Echevarria AD, Volpato FCZ, Wink PL, Barth AL, Caierão J. Direct Detection of KPC Peak from Positive Blood Cultures Using MALDI-TOF MS: Are We There Yet? Antibiotics (Basel) 2023; 12:antibiotics12030601. [PMID: 36978468 PMCID: PMC10045339 DOI: 10.3390/antibiotics12030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Detecting carbapenemase-associated carbapenem resistance is a subject of major clinical and epidemiological concern as it influences therapeutic choice. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a means to assess bacterial resistance mechanisms. We aimed to detect the KPC enzyme directly from positive blood cultures using MALDI-TOF MS. To do so, 102 clinical Enterobacteria were evaluated, including 59 blaKPC positives. Proteins were extracted using formic acid, isopropyl alcohol, and water (17:33:50) and spotted onto a steel target plate using the double-layer sinapinic acid technique. Two parameters were considered: (i) the visual detection of a clear peak with the expected KPC m/z and (ii) the evaluation of the relative intensity of the ions in the peak. A peak was observed in 56/59 blaKPC-positive isolates (94.9% sensitivity), with no false-positive results (100% specificity). When considering intensity, with a cut-off ≥120 (a.u.), sensitivity was 94.9% and specificity was 95.3%. We proposed a “buffer” zone, with intermediate values of intensity (115 to 125) reaching 100% sensitivity and specificity. The detection of KPC peaks directly from positive blood cultures using MALDI-TOF MS is feasible and rapid, which may improve appropriate patient therapy and antimicrobial stewardship.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Bacteriologia Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
- Correspondence: ; Tel.: +55-5133032139 or +55-51982516752
| | - Camila Mörschbächer Wilhelm
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
| | - Aymê Duarte Echevarria
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
- Graduação em Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, Rio Grande do Sul, Brazil
| | - Fabiana Caroline Zempulski Volpato
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
| | - Priscila Lamb Wink
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
| | - Afonso Luís Barth
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035007, Rio Grande do Sul, Brazil
| | - Juliana Caierão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
- Laboratório de Pesquisa em Bacteriologia Clínica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610000, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Wang C, Wang Z, Wang HY, Chung CR, Horng JT, Lu JJ, Lee TY. Large-Scale Samples Based Rapid Detection of Ciprofloxacin Resistance in Klebsiella pneumoniae Using Machine Learning Methods. Front Microbiol 2022; 13:827451. [PMID: 35356528 PMCID: PMC8959214 DOI: 10.3389/fmicb.2022.827451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae is one of the most common causes of hospital- and community-acquired pneumoniae. Resistance to the extensively used quinolone antibiotic, such as ciprofloxacin, has increased in Klebsiella pneumoniae, which leads to the increase in the risk of initial antibiotic selection for Klebsiella pneumoniae treatment. Rapid and precise identification of ciprofloxacin-resistant Klebsiella pneumoniae (CIRKP) is essential for clinical therapy. Nowadays, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is another approach to discover antibiotic-resistant bacteria due to its shorter inspection time and lower cost than other current methods. Machine learning methods are introduced to assist in discovering significant biomarkers from MALDI-TOF MS data and construct prediction models for rapid antibiotic resistance identification. This study examined 16,997 samples taken from June 2013 to February 2018 as part of a longitudinal investigation done by Change Gung Memorial Hospitals (CGMH) at the Linkou branch. We applied traditional statistical approaches to identify significant biomarkers, and then a comparison was made between high-importance features in machine learning models and statistically selected features. Large-scale data guaranteed the statistical power of selected biomarkers. Besides, clustering analysis analyzed suspicious sub-strains to provide potential information about their influences on antibiotic resistance identification performance. For modeling, to simulate the real antibiotic resistance predicting challenges, we included basic information about patients and the types of specimen carriers into the model construction process and separated the training and testing sets by time. Final performance reached an area under the receiver operating characteristic curve (AUC) of 0.89 for support vector machine (SVM) and extreme gradient boosting (XGB) models. Also, logistic regression and random forest models both achieved AUC around 0.85. In conclusion, models provide sensitive forecasts of CIRKP, which may aid in early antibiotic selection against Klebsiella pneumoniae. The suspicious sub-strains could affect the model performance. Further works could keep on searching for methods to improve both the model accuracy and stability.
Collapse
Affiliation(s)
- Chunxuan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.,School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
6
|
Huang Y, Li J, Wang Q, Tang K, Li C. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J Microbiol Methods 2021; 192:106385. [PMID: 34843862 DOI: 10.1016/j.mimet.2021.106385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) represent a serious threat to public health and their timely detection is essential for patient management and the prevention of nosocomial infections. Here, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to rapidly identify dominant KPC-Kp in China, by using an automated detection of a KPC-specific peak (at 4521 m/z) by a genetic algorithm using ClinProTools software. Whole-genome sequencing (WGS) was used to understand the genetic environment of the blaKPC-2 gene. In this study, we analyzed 235 K. pneumoniae Chinese clinical isolates, of which 175 (93 KPC-positive isolates and 82 KPC-negative isolates) isolates were used to build a model to select a KPC-specific peak, and another 60 isolates for external validation. In addition, all the spectra were visually inspected by the FlexAnalysis software to evaluate the accuracy of the automated detection. The results showed a 4521 m/z peak found in all blaKPC-2-positive isolates but absent in blaKPC-2-negative isolates. Interestingly, all KPC-Kp belonged to ST11, the dominant clone in China. WGS analysis of a representative isolate showed that the genetic environment of KPC-2 was IS26-ISKpn27-blaKPC-2-ΔISKpn6-Tn1721, similar to the KPC-2 genetic environment of ST11 KPC-Kp previously reported in China. Therefore, the 4521 m/z peak is closely related to ST11 KPC-Kp. In summary, we used MALDI-TOF MS to quickly detect KPC-Kp in the process of routine bacterial identification without increasing costs or requiring further knowledge, which has broad application prospects in drug resistance analysis and infection control.
Collapse
Affiliation(s)
- Yun Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Juan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qianyu Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kewen Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
7
|
Tenover FC. Using Molecular Diagnostics to Develop Therapeutic Strategies for Carbapenem-Resistant Gram-Negative Infections. Front Cell Infect Microbiol 2021; 11:715821. [PMID: 34650933 PMCID: PMC8505994 DOI: 10.3389/fcimb.2021.715821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
Infections caused by multidrug-resistant Gram-negative organisms have become a global threat. Such infections can be very difficult to treat, especially when they are caused by carbapenemase-producing organisms (CPO). Since infections caused by CPO tend to have worse outcomes than non-CPO infections, it is important to identify the type of carbapenemase present in the isolate or at least the Ambler Class (i.e., A, B, or D), to optimize therapy. Many of the newer beta-lactam/beta-lactamase inhibitor combinations are not active against organisms carrying Class B metallo-enzymes, so differentiating organisms with Class A or D carbapenemases from those with Class B enzymes rapidly is critical. Using molecular tests to detect and differentiate carbapenem-resistance genes (CRG) in bacterial isolates provides fast and actionable results, but utilization of these tests globally appears to be low. Detecting CRG directly in positive blood culture bottles or in syndromic panels coupled with bacterial identification are helpful when results are positive, however, even negative results can provide guidance for anti-infective therapy for key organism-drug combinations when linked to local epidemiology. This perspective will focus on the reluctance of laboratories to use molecular tests as aids to developing therapeutic strategies for infections caused by carbapenem-resistant organisms and how to overcome that reluctance.
Collapse
|
8
|
Yoon EJ, Jeong SH. MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10080982. [PMID: 34439032 PMCID: PMC8388893 DOI: 10.3390/antibiotics10080982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Species identification by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a routine diagnostic process for infectious diseases in current clinical settings. The rapid, low-cost, and simple to conduct methodology is expanding its application in clinical microbiology laboratories to diagnose the antimicrobial resistance (AMR) in microorganisms. Primarily, antimicrobial susceptibility testing is able to be carried out either by comparing the area under curve of MALDI spectra of bacteria grown in media with antimicrobial drugs or by identifying the shift peaks of bacteria grown in media including 13C isotope with antimicrobial drugs. Secondly, the antimicrobial resistance is able to be determined through identifying (i) the antimicrobial-resistant clonal groups based on the fingerprints of the clone, (ii) the shift peak of the modified antimicrobial drug, which is inactivated by the resistance determinant, (iii) the shift peak of the modified antimicrobial target, (iv) the peak specific for the antimicrobial determinant, and (v) the biomarkers that are coproduced proteins with AMR determinants. This review aims to present the current usage of the MALDI-TOF MS technique for diagnosing antimicrobial resistance in bacteria, varied approaches for AMR diagnostics using the methodology, and the future applications of the methods for the accurate and rapid identification of AMR in infection-causing bacterial pathogens.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Division of Antimicrobial Resistance, Center for Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Korea;
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence:
| |
Collapse
|
9
|
Chen XF, Hou X, Xiao M, Zhang L, Cheng JW, Zhou ML, Huang JJ, Zhang JJ, Xu YC, Hsueh PR. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021; 9:microorganisms9071536. [PMID: 34361971 PMCID: PMC8304613 DOI: 10.3390/microorganisms9071536] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used in the field of clinical microbiology since 2010. Compared with the traditional technique of biochemical identification, MALDI-TOF MS has many advantages, including convenience, speed, accuracy, and low cost. The accuracy and speed of identification using MALDI-TOF MS have been increasing with the development of sample preparation, database enrichment, and algorithm optimization. MALDI-TOF MS has shown promising results in identifying cultured colonies and rapidly detecting samples. MALDI-TOF MS has critical research applications for the rapid detection of highly virulent and drug-resistant pathogens. Here we present a scientific review that evaluates the performance of MALDI-TOF MS in identifying clinical pathogenic microorganisms. MALDI-TOF MS is a promising tool in identifying clinical microorganisms, although some aspects still require improvement.
Collapse
Affiliation(s)
- Xin-Fei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Xin Hou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Wei Cheng
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China;
| | - Meng-Lan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Jing Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Jia Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
- Correspondence: (Y.-C.X.); (P.-R.H.)
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 40447, Taiwan;
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (Y.-C.X.); (P.-R.H.)
| |
Collapse
|
10
|
Occurrence of the p019 Gene in the blaKPC-Harboring Plasmids: Adverse Clinical Impact for Direct Tracking of KPC-Producing Klebsiella pneumoniae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2021; 59:e0023821. [PMID: 33980650 DOI: 10.1128/jcm.00238-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been used for the direct detection of KPC-producing isolates by analysis of the 11,109 Da mass peak representing the P019 protein. In this study, we evaluate the presence of the 11,109 Da mass peak in a collection of 435 unduplicated Klebsiella pneumoniae clinical isolates. The prevalence of the P019 peak in the blaKPC K. pneumoniae isolates was 49.2% (32/65). The 11,109 Da mass peak was not observed in any of the other carbapenemase (319) or noncarbapenemase producers (116). Computational analysis of the presence of the p019 gene was performed in the aforementioned carbapenemase-producing K. pneumoniae isolates fully characterized by whole-genome sequencing (WGS) and in a further collection of 1,649 K. pneumoniae genomes included in EuSCAPE. Herein, we have demonstrated that the p019 gene is not exclusively linked to the pKpQil plasmid but that it is present in the following plasmids: IncFIB(K)/IncFII(K)/ColRNAI, IncFIB(pQil), IncFIB(pQil)/ColRNAI, IncFIB(pQil)/IncFII(K), IncFIB(K)/IncFII(K), and IncX3. In addition, we have proven the independent movement of the Tn4401 and the ISKpn31, of which the p019 gene is a component. The absence of the p019 gene was obvious in Col440I, Col(pHAD28), IncFIB(K)/IncX3/IncFII(K), and IncFIB(K)/IncFII(K) plasmids. In addition, we also observed another plasmid in which neither Tn4401 nor ISKpn31 was found, IncP6. In the EuSCAPE, the occurrence of p019 varied from 0% to 100% among the different geographical locations. The adverse clinical impact of the diminished prevalence of the p019 gene within the plasmid encoding KPC-producing Klebsiella pneumoniae puts forward the need for reconsideration when applying this technique in a clinical setting.
Collapse
|
11
|
Wilhelm CM, Forni GDR, Carneiro MDS, Barth AL. Establishing a quantitative index of meropenem hydrolysis for the detection of KPC- and NDM-producing bacteria by MALDI-TOF MS. J Microbiol Methods 2021; 187:106268. [PMID: 34118333 DOI: 10.1016/j.mimet.2021.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), commonly used for microorganism identification, can also be applied for the detection of carbapenemase-producing bacteria by the evaluation of carbapenem hydrolysis. Since KPC- and NDM-producing bacteria are related to high mortality rates, diagnostic assays for its detection are essential. The aim of this study was to develop and evaluate a method to establish a quantitative measure (hydrolysis index - HI) to detect meropenem hydrolysis by MLADI-TOF MS. METHODS blaKPC and blaNDM positive and negative Klebsiella pneumoniae isolates and Escherichia coli ATCC 25922 (control) were incubated in a meropenem solution for 2 h. Protein extraction from these suspensions were submitted to MALDI-TOF MS analysis. The intensity of peaks at 384 m/z and 379 m/z of each isolate were used to establish the HI as follows: HI = (Peak intensity384 Test / Peak intensity379 Test) / (Peak intensity384 Control / Peak intensity379 Control). Receiver Operating Characteristic curve was used to determine a cutoff value to differentiate carbapenemase-producing from carbapenemase non-producing bacteria. RESULTS As all carbapenemase-producing K. pneumoniae presented HI ≤0.55 and all carbapenemase non-producing isolates presented a HI ≥0.57, the index of 0.56 was established as a cutoff value to differentiate carbapenemase (KPC and NDM) producing and non-producing bacteria.
Collapse
Affiliation(s)
- Camila Mörschbächer Wilhelm
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovanna de Ross Forni
- Graduação em Biomedicina, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maiara Dos Santos Carneiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Wang G, Song G, Xu Y. A Rapid Antimicrobial Susceptibility Test for Klebsiella pneumoniae Using a Broth Micro-Dilution Combined with MALDI TOF MS. Infect Drug Resist 2021; 14:1823-1831. [PMID: 34025124 PMCID: PMC8132464 DOI: 10.2147/idr.s305280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a novel method that can be used to identify pathogens and has potential applications in the detection of drug-resistant bacteria. Purpose To evaluate the ability of a MALDI-TOF MS-based broth micro-dilution method in detecting the minimum inhibitory concentration (MIC) values of Klebsiella pneumoniae to ceftriaxone and imipenem. Materials and Methods Sixty strains of K. pneumoniae with different levels of resistance to carbapenems and cephalosporins were randomly collected. The 0.5 McFarland (Mc) concentration of the bacterial suspension was inoculated in cation-adjusted Mueller-Hinton broth (CAMHB) with a final cell turbidity of 5×105 CFU/mL. The broth was incubated with serial concentrations of antibiotics. After centrifuging the bacterial suspensions, the lysed cells were analyzed by MALDI-TOF MS to identify the growth-promoting or inhibitory effects on K. pneumoniae. The molecular mechanisms of resistance were investigated by PCR and DNA sequencing analysis. Results The expression of known resistance genes (blaKPC, blaFOX, blaDHA, blaCTX-M and blaTEM) was detected in the 30 carbapenems-resistant strains. The agreement between the MIC values derived from the MALDI-TOF MS analysis and from the broth micro-dilution method was 61.7% for ceftriaxone and 71.7% for imipenem. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoint of resistance to ceftriaxone and imipenem, the 60 isolates were accurately classified as resistant or susceptible isolates with 100% sensitivity and 100% specificity. Conclusion The transmission and infection of multidrug-resistant bacteria could be better managed and treated with the rapid identification of strains and antimicrobial susceptibility. A MALDI-TOF MS-based susceptibility test could be used to identify resistance of K. pneumoniae within a short time-frame. This approach could potentially be used as a supplementary antimicrobial susceptibility test that could be investigated on more bacterial species combined with different antibiotics.
Collapse
Affiliation(s)
- Gang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Guobin Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
13
|
Epidemiology of Meropenem/Vaborbactam Resistance in KPC-Producing Klebsiella pneumoniae Causing Bloodstream Infections in Northern Italy, 2018. Antibiotics (Basel) 2021; 10:antibiotics10050536. [PMID: 34066420 PMCID: PMC8148119 DOI: 10.3390/antibiotics10050536] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
Meropenem/Vaborbactam (MEM-VAB) is a novel carbapenem- β-lactamase inhibitor active against KPC-producing Enterobacteria. Herein, we evaluate the incidence of meropenem/vaborbactam-resistance among KPC-producing K. pneumoniae (KPC-Kp) bloodstream infection in a large Italian hospital. Meropenem/vaborbactam-resistance was found in 8% (n = 5) KPC-Kp, while 5% (n = 3) strains exhibited cross-resistance to ceftazidime/avibactam (CAZ-AVI). Genomic analysis revealed that meropenem/vaborbactam-resistance was associated with truncated OmpK35 and insertion of glycine and aspartic acid within OmpK36 at position 134–135 (GD134–135). Notably, no specific mutation was associated to cross-resistance. No specific antimicrobial treatment was related to favorable clinical outcomes, while cross-resistance was not associated to higher clinical and/or microbiological failures. Our study indicated that resistance to meropenem/vaborbactam was due to porins mutations and is associated with reduced susceptibility to both ceftazidime/avibactam and carbapenems.
Collapse
|
14
|
Florio W, Baldeschi L, Rizzato C, Tavanti A, Ghelardi E, Lupetti A. Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front Cell Infect Microbiol 2020; 10:572909. [PMID: 33262954 PMCID: PMC7686347 DOI: 10.3389/fcimb.2020.572909] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023] Open
Abstract
Several MALDI-TOF MS-based methods have been proposed for rapid detection of antimicrobial resistance. The most widely studied methods include assessment of β-lactamase activity by visualizing the hydrolysis of the β-lactam ring, detection of biomarkers responsible for or correlated with drug-resistance/non-susceptibility, and the comparison of proteomic profiles of bacteria incubated with or without antimicrobial drugs. Antimicrobial-resistance to a number of antibiotics belonging to different classes has been successfully tested by MALDI-TOF MS in a variety of clinically relevant bacterial species including members of Enterobacteriaceae family, non-fermenting Gram-negative bacteria, Gram-positive cocci, anaerobic bacteria and mycobacteria, opening this field to further clinically important developments. Early detection of drug-resistance by MALDI-TOF MS can be particularly helpful for clinicians to streamline the antibiotic therapy for a better outcome of patients with systemic infection, in all cases where a prompt and effective antibiotic treatment is essential to preserve organ function and/or patient survival.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Lelio Baldeschi
- Department of Ophthalmology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Cosmeri Rizzato
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
15
|
Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019; 10:2711. [PMID: 31849870 PMCID: PMC6901965 DOI: 10.3389/fmicb.2019.02711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The two main pillars of clinical microbiological diagnostics are the identification of potentially pathogenic microorganisms from patient samples and the testing for antibiotic susceptibility (AST) to allow efficient treatment with active antimicrobial agents. While routine microbial species identification is increasingly performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routine AST still largely relies on conventional and molecular techniques such as broth microdilution or disk and gradient diffusion tests, PCR and automated variants thereof. However, shortly after the introduction of MALDI-TOF MS based routine identification, first attempts to perform AST on the same instruments were reported. Today, a number of different approaches to perform AST with MALDI-TOF MS and other MS techniques have been proposed, some restricted to particular microbial taxa and resistance mechanisms while others being more generic. Further, while some of the methods are in a stage of proof of principles, others are already commercialized. In this review we discuss the different principal approaches of mass spectrometry based AST and evaluate the advantages and disadvantages compared to conventional and molecular techniques. At present, the possibility that MS will soon become a routine tool for AST seems unlikely – still, the same was true for routine microbial identification a mere 15 years ago.
Collapse
Affiliation(s)
- Martin Welker
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| | - Alex van Belkum
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| |
Collapse
|
16
|
Rocco VG, Intra J, Sarto C, Tiberti N, Savarino C, Brambilla M, Brambilla P. Rapid Identification of Carbapenemase-producing Klebsiella pneumoniae strains by Matrix-Assisted Laser Desorption/Ionization-Time of Flight using Vitek ® Mass Spectrometry System. Eurasian J Med 2019; 51:209-213. [PMID: 31693719 DOI: 10.5152/eurasianjmed.2019.18405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective The analysis of the protein pattern of Klebsiella pneumoniae carbapenemase (KPC)-producing strains by Bruker Matrix-Assisted Laser Desorption Ionization (MALDI) Biotyper system has revealed the presence, in the majority of cases, of an 11.109 m/z peak. The peak corresponds to the gene product named p019 of the bla KPC-bearing plasmids and has been suggested as a candidate for a biomarker that is able to distinguish KPC-producers from non-KPC-producers. The aim of this study was to evaluate the rapid detection of the 11.109 m/z peak of KPC-producer strains in the clinical laboratory routine by Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) technique, using the Vitek® Research-User-Only (RUO) Mass Spectrometry (MS) system without changing the instrument parameters. Materials and Methods Globally, 373 K. pneumoniae isolates were investigated and identified by MALDI-TOF MS analysis. KPC-producers were distinguished from non-KPC-producers by Antimicrobial Susceptibility Testing (AST) and phenotypic carbapenemase resistance assays. Results The MALDI-TOF Vitek MS RUO detected the 11.109 m/z peak in 95.7% of KPC-producers with 100% specificity before traditional test results became available. Conclusion Our approach is appropriate as a first screening step for the rapid identification of KPC isolates, which will help to improve infection control in clinical practice and prevent the outbreak and dissemination of resistant bacteria.
Collapse
Affiliation(s)
- Vanessa Gaia Rocco
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| | - Jari Intra
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| | - Cecilia Sarto
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| | - Natalia Tiberti
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar (Verona), Italy
| | - Cinzia Savarino
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| | - Maura Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio (MB), Italy
| |
Collapse
|
17
|
Foschi C, Gaibani P, Lombardo D, Re MC, Ambretti S. Rectal screening for carbapenemase-producing Enterobacteriaceae: a proposed workflow. J Glob Antimicrob Resist 2019; 21:86-90. [PMID: 31639545 DOI: 10.1016/j.jgar.2019.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Active screening is a crucial element for the prevention of carbapenemase-producing Enterobacteriaceae (CPE) transmission in healthcare settings. Here we propose a culture-based protocol for rectal swab CPE screening that combines CPE detection with identification of the carbapenemase type. METHODS The workflow integrates an automatic digital analysis of selective chromogenic media (WASPLab®; Copan), with subsequent rapid tests for the confirmation of carbapenemase production [i.e. detection of Klebsiella pneumoniae carbapenemase (KPC)-specific peak by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) or a multiplex immunochromatographic assay identifying the five commonest carbapenemase types]. To evaluate the performance of this protocol in depth, data for 21 162 rectal swabs submitted for CPE screening to the Microbiology Unit of S. Orsola-Malpighi Hospital (Bologna, Italy) were analysed. RESULTS Considering its ability to correctly segregate plates with/without Enterobacteriaceae, WASPLab Image Analysis Software showed globally a sensitivity and specificity of 100% and 79.4%, respectively. Of the plates with bacterial growth (n = 901), 693 (76.9%) were found to be positive for CPE by MALDI-TOF/MS (KPC-specific peak for K. pneumoniae) or by immunochromatographic assay. Only 2.8% (16/570) of KPC-positive K. pneumoniae strains were missed by the specific MALDI-TOF/MS algorithm, being detected by the immunochromatographic assay. The mean turnaround time needed from sample arrival to the final report ranged between 18 and 24 h, representing a significant time saving compared with manual reading. CONCLUSION This workflow proved to be fast and reliable, being particularly suitable for areas endemic for KPC-producing K. pneumoniae and for high-throughput laboratories.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology Unit, DIMES, University of Bologna, via Massarenti 9, Bologna, Italy; Microbiology Unit, S. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy.
| | - Paolo Gaibani
- Microbiology Unit, S. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| | - Donatella Lombardo
- Microbiology Unit, S. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| | - Maria Carla Re
- Microbiology Unit, DIMES, University of Bologna, via Massarenti 9, Bologna, Italy; Microbiology Unit, S. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| | - Simone Ambretti
- Microbiology Unit, S. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| |
Collapse
|
18
|
Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: therapeutic implications. Clin Microbiol Infect 2019; 26:713-722. [PMID: 31610299 DOI: 10.1016/j.cmi.2019.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Treating severe infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB) is one of the most important challenges for clinicians worldwide, partly because resistance may remain unrecognized until identification of the causative agent and/or antimicrobial susceptibility testing (AST). Recently, some novel rapid test for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with bloodstream infections (BSIs) have become available. OBJECTIVES The objective of this narrative review is to discuss the advantages and limitations of different rapid tests for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with BSI, as well as the available evidence on their possible role to improve therapeutic decisions and antimicrobial stewardship. SOURCES Inductive PubMed search for publications relevant to the topic. CONTENT The present review is structured in the following way: (a) rapid tests on positive blood cultures; (b) rapid tests directly on whole blood; (c) therapeutic implications. IMPLICATIONS Novel molecular and phenotypic rapid tests for identification and AST show the potential for favourably influencing patients' outcomes and results of antimicrobial stewardship interventions by reducing both the time to effective treatment and the misuse of antibiotics, although the interpretation about their impact on actual therapeutic decisions and patients' outcomes is still complex. Factors such as feasibility and personnel availability, as well as the detailed knowledge of the local microbiological epidemiology, need to be considered very carefully when implementing novel rapid tests in laboratory workflows and algorithms. Providing high-level, comparable evidence on the clinical impact of rapid identification and AST is becoming of paramount importance for MDR-GNB infections, since in the near future rapid identification of specific resistance mechanisms could be crucial for guiding rapid, effective, and targeted therapy against specific resistance mechanisms.
Collapse
|
19
|
Neonakis IK, Spandidos DA. Detection of carbapenemase producers by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis 2019; 38:1795-1801. [PMID: 31254128 DOI: 10.1007/s10096-019-03620-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently applied in detection of carbapenemase-producing Gram-negative isolates. In the present study, we review the latest developments in this field.
Collapse
Affiliation(s)
- Ioannis K Neonakis
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 71201, Heraklion, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
20
|
Hou TY, Chiang-Ni C, Teng SH. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal 2019; 27:404-414. [PMID: 30987712 PMCID: PMC9296205 DOI: 10.1016/j.jfda.2019.01.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Mass spectrometry (MS) is a type of analysis used to determine what molecules make up a sample, based on the mass spectrum that are created by the ions. Mass spectrometers are able to perform traditional target analyte identification and quantitation; however, they may also be used within a clinical setting for the rapid identification of bacteria. The causative agent in sepsis is changed over time, and clinical decisions affecting the management of infections are often based on the outcomes of bacterial identification. Therefore, it is essential that such identifications are performed quickly and interpreted correctly. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer is one of the most popular MS instruments used in biology, due to its rapid and precise identification of genus and species of an extensive range of Gram-negative and-positive bacteria. Microorganism identification by Mass spectrometry is based on identifying a characteristic spectrum of each species and then matched with a large database within the instrument. The present review gives a contemporary perspective on the challenges and opportunities for bacterial identification as well as a written report of how technological innovation has advanced MS. Future clinical applications will also be addressed, particularly the use of MALDI-TOF MS in the field of microbiology for the identification and the analysis of antibiotic resistance.
Collapse
Affiliation(s)
- Tsung-Yun Hou
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei,
Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei,
Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan,
Taiwan
| | - Shih-Hua Teng
- Bruker Taiwan Co., Ltd., Taipei,
Taiwan
- Corresponding author. 4F, 107 Yanshou Street, Songshan District, Taipei City 105, Taiwan. Fax: +886 2 2761 5335. E-mail address: (S.-H. Teng)
| |
Collapse
|
21
|
MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods 2019; 159:120-127. [PMID: 30849422 DOI: 10.1016/j.mimet.2019.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/22/2022]
Abstract
In this study, we identified specific carbapenemase-producing isolates applying an easy and rapid protocol for the detection of mature KPC-2 β-lactamase by MALDI-TOF MS from colony and positive blood culture bottles. In addition, we evaluated the correlation of the ~11,109 Da signal as a biomarker associated with KPC-2 production. A collection of 126 well-characterized clinical isolates were evaluated (including 60 KPC-2-producing strains). Presence of KPC-2 was assessed by MALDI-TOF MS on protein extracts. Samples were prepared using the double layer sinapinic acid technique. In order to identify mature KPC-2, raw spectra were analyzed focusing on the range between m/z 25,000-30,000 Da. A single distinctive peak, at approximately m/z 28,544 Da was found in all clinical and control KPC-2-producing strains, and consistently absent in the control groups (ESBL producers and susceptible strains). This peak was detected in all species independently of where the gene blaKPC-2 was embedded. Statistical results showed 100% sensitivity, CI95%: [94.0%; 100%] and 100% specificity, CI95%: [94.6%; 100%], indicating a promising test with a high discriminative power. KPC-2 β-lactamase could be directly detected from both colonies and blood culture bottles. On the other hand, the m/z 11,109 Da signal determinant was only associated with 32% of Klebsiella pneumoniae and Escherichia coli KPC positive isolates. This MALDI-TOF MS methodology has the potential to detect directly the widespread and clinically relevant carbapenemase, KPC-2, in Enterobacterales with a straightforward, low cost process, assuming MALDI-TOF MS is already adopted as the main identification tool, with clear clinical implications on antibiotic stewardship for early infection treatment.
Collapse
|
22
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin Microbiol Rev 2018; 32:32/1/e00037-18. [PMID: 30487165 DOI: 10.1128/cmr.00037-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied in recent years for first-line identification of pathogens in clinical microbiology because it is simple to use, rapid, and accurate and has economic benefits in hospital management. The range of clinical applications of MALDI-TOF MS for bacterial isolates is increasing constantly, from species identification to the two most promising applications in the near future: detection of antimicrobial resistance and strain typing for epidemiological studies. The aim of this review is to outline the contribution of previous MALDI-TOF MS studies in relation to detection of antimicrobial resistance and to discuss potential future challenges in this field. Three main approaches are ready (or almost ready) for clinical use, including the detection of antibiotic modifications due to the enzymatic activity of bacteria, the detection of antimicrobial resistance by analysis of the peak patterns of bacteria or mass peak profiles, and the detection of resistance by semiquantification of bacterial growth in the presence of a given antibiotic. This review provides an expert guide for MALDI-TOF MS users to new approaches in the field of antimicrobial resistance detection, especially possible applications as a routine diagnostic tool in microbiology laboratories.
Collapse
|
23
|
Cordovana M, Kostrzewa M, Glandorf J, Bienia M, Ambretti S, Pranada AB. A Full MALDI-Based Approach to Detect Plasmid-Encoded KPC-Producing Klebsiella pneumoniae. Front Microbiol 2018; 9:2854. [PMID: 30542332 PMCID: PMC6277887 DOI: 10.3389/fmicb.2018.02854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022] Open
Abstract
KPC-producing Klebsiella pneumoniae represents a severe public health concern worldwide. The rapid detection of these isolates is of fundamental importance for the adoption of proper antibiotic treatment and infection control measures, and new applications of MALDI-TOF MS technology fit this purpose. In this study, we present a full MALDI-based approach to detect plasmid-encoded KPC-producing strains, accomplished by the automated detection of a KPC-specific peak (at 11,109 m/z) by a specific algorithm integrated into the MALDI Biotyper system (Bruker Daltonik), and the confirmation of carbapenemase activity by STAR-Carba imipenem hydrolysis assay. A total of 6209 K. pneumoniae isolates from Italy and Germany were investigated for the presence of the KPC-related peak, and a subset of them (n = 243) underwent confirmation of carbapenemase activity by STAR-Carba assay. The novel approach was further applied directly to positive blood culture bottles (n = 204), using the bacterial pellet obtained with Sepsityper kit (Bruker Daltonik). The novel approach enabled a reliable and very fast detection of KPC-producing K. pneumoniae strains, from colonies as well as directly from positive blood cultures. The automated peak detection enabled the instant detection of KPC-producing K. pneumoniae during the routine identification process, with excellent specificity (100%) and a good sensitivity (85.1%). The sensitivity is likely mainly related to the prevalence of the specific plasmid harboring clones among all the KPC-producing circulating strains. STAR-Carba carbapenemase confirmation showed 100% sensitivity and specificity, both from colonies and from positive blood cultures.
Collapse
Affiliation(s)
- Miriam Cordovana
- Laboratory of Bacteriology, Operative Unit of Microbiology, University Hospital of Bologna Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | | | | | - Michael Bienia
- Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Simone Ambretti
- Laboratory of Bacteriology, Operative Unit of Microbiology, University Hospital of Bologna Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Arthur B Pranada
- Department of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
24
|
Florio W, Tavanti A, Ghelardi E, Lupetti A. MALDI-TOF MS Applications to the Detection of Antifungal Resistance: State of the Art and Future Perspectives. Front Microbiol 2018; 9:2577. [PMID: 30425693 PMCID: PMC6218422 DOI: 10.3389/fmicb.2018.02577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
MALDI-TOF MS technology has made possible revolutionary advances in the diagnosis of infectious diseases. Besides allowing rapid and reliable identification of bacteria and fungi, this technology has been recently applied to the detection of antimicrobial resistance. Several approaches have been proposed and evaluated for application of MALDI-TOF MS to antimicrobial susceptibility testing of bacteria, and some of these have been or might be applied also to yeasts. In this context, the comparison of proteomic profiles of bacteria/yeasts incubated with or without antimicrobial drugs is a very promising method. Another recently proposed MALDI-TOF MS-based approach for antifungal susceptibility testing is the application of the semi-quantitative MALDI Biotyper antibiotic susceptibility test rapid assay, which was originally designed for antimicrobial susceptibility testing of bacteria, to yeast isolates. Increasingly effective and accurate MS tools and instruments as well as the possibility to optimize analytical parameter settings for targeted applications have generated an expanding area in the field of clinical microbiology diagnostics, paving the way for the development and/or optimization of rapid methods for antifungal susceptibility testing in the near future. In the present study, the state of the art of MALDI-TOF MS applications to antifungal susceptibility testing is reviewed, and cutting-edge developments are discussed, with a particular focus on methods allowing rapid detection of drug resistance in pathogenic fungi causing systemic mycoses.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
25
|
Centonze AR, Bertoncelli A, Savio C, Orza P, Bedenić B, Mazzariol A. Evaluation of rapid KPC carbapenemase detection method based on MALDI-TOF VITEK MS spectra analysis. J Med Microbiol 2018; 67:1474-1479. [DOI: 10.1099/jmm.0.000831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anna Rita Centonze
- 1Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Anna Bertoncelli
- 1Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Chiara Savio
- 2Laboratorio di Analisi Cliniche e Microbiologiche, Ospedale Sacro Cuore-Don Calabria, Negrar, Italy
| | - Pierantonio Orza
- 2Laboratorio di Analisi Cliniche e Microbiologiche, Ospedale Sacro Cuore-Don Calabria, Negrar, Italy
| | - Branka Bedenić
- 3School of Medicine, University of Zagreb University Hospital Center Zagreb, Zagreb, Croatia
| | - Annarita Mazzariol
- 1Department of Diagnostics and Public Health, Verona University, Verona, Italy
| |
Collapse
|
26
|
Burckhardt I, Zimmermann S. Susceptibility Testing of Bacteria Using Maldi-Tof Mass Spectrometry. Front Microbiol 2018; 9:1744. [PMID: 30127772 PMCID: PMC6088204 DOI: 10.3389/fmicb.2018.01744] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was introduced into the microbiological routine more than 10 years ago. Since then it has almost replaced biochemical identification. It is unrivaled in terms of accuracy and cost. From a laboratory's perspective it would be an ideal method to replace classic susceptibility testing, that is Kirby-Baur agardiffusion or determination of minimal inhibitory concentrations (MICs). First reports on possible assays for susceptibility testing are more than 10 years old. However, the developments during the last 5 years were substantial. This review focuses with some exceptions on the progress, which was achieved during the last decade.
Collapse
Affiliation(s)
- Irene Burckhardt
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Fast and easy detection of CMY-2 in Escherichia coli by direct MALDI-TOF mass spectrometry. J Microbiol Methods 2018; 148:22-28. [DOI: 10.1016/j.mimet.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022]
|
28
|
Gaibani P, Ambretti S, Tamburini MV, Vecchio Nepita E, Re MC. Clinical application of Bruker Biotyper MALDI-TOF/MS system for real-time identification of KPC production in Klebsiella pneumoniae clinical isolates. J Glob Antimicrob Resist 2018; 12:169-170. [PMID: 29412181 DOI: 10.1016/j.jgar.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022] Open
Affiliation(s)
- Paolo Gaibani
- Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Simone Ambretti
- Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Edoardo Vecchio Nepita
- Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy; University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Kostrzewa M. Application of the MALDI Biotyper to clinical microbiology: progress and potential. Expert Rev Proteomics 2018; 15:193-202. [DOI: 10.1080/14789450.2018.1438193] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Markus Kostrzewa
- Microbiology and Diagnostics, Bruker Daltonik GmbH, Bremen, Germany
| |
Collapse
|
30
|
Bassetti M, Giacobbe DR, Giamarellou H, Viscoli C, Daikos GL, Dimopoulos G, De Rosa FG, Giamarellos-Bourboulis EJ, Rossolini GM, Righi E, Karaiskos I, Tumbarello M, Nicolau DP, Viale PL, Poulakou G. Management of KPC-producing Klebsiella pneumoniae infections. Clin Microbiol Infect 2017; 24:133-144. [PMID: 28893689 DOI: 10.1016/j.cmi.2017.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) has become one of the most important contemporary pathogens, especially in endemic areas. AIMS To provide practical suggestion for physicians dealing with the management of KPC-KP infections in critically ill patients, based on expert opinions. SOURCES PubMed search for relevant publications related to the management of KPC-KP infections. CONTENTS A panel of experts developed a list of 12 questions to be addressed. In view of the current lack of high-level evidence, they were asked to provide answers on the bases of their knowledge and experience in the field. The panel identified several key aspects to be addressed when dealing with KPC-KP in critically ill patients (preventing colonization in the patient, preventing infection in the colonized patient and colonization of his or her contacts, reducing mortality in the infected patient by rapidly diagnosing the causative agent and promptly adopting the best therapeutic strategy) and provided related suggestions that were based on the available observational literature and the experience of panel members. IMPLICATIONS Diagnostic technologies could speed up the diagnosis of KPC-KP infections. Combination treatment should be preferred to monotherapy in cases of severe infections. For non-critically ill patients without severe infections, results from randomized clinical trials are needed for ultimately weighing benefits and costs of using combinations rather than monotherapy. Multifaceted infection control interventions are needed to decrease the rates of colonization and cross-transmission of KPC-KP.
Collapse
Affiliation(s)
- M Bassetti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Udine, Italy.
| | - D R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, University of Genoa (DISSAL), Genoa, Italy
| | - H Giamarellou
- 6th Department of Internal Medicine, Hygeia General Hospital, 4, Erythrou Stavrou Str & Kifisias, Marousi, Athens, Greece
| | - C Viscoli
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, University of Genoa (DISSAL), Genoa, Italy
| | - G L Daikos
- 1st Department of Propaedeutic Medicine, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Dimopoulos
- Department of Critical Care, University Hospital Attikon, Medical School, University of Athens, Athens, Greece
| | - F G De Rosa
- Department of Medical Science, University of Turin, Infectious Diseases Amedeo di Savoia Hospital, Turin, Italy
| | - E J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G M Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - E Righi
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Udine, Italy
| | - I Karaiskos
- 6th Department of Internal Medicine, Hygeia General Hospital, 4, Erythrou Stavrou Str & Kifisias, Marousi, Athens, Greece
| | - M Tumbarello
- Institute of Infectious Diseases Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - D P Nicolau
- Center for Anti-infective Research and Development, Hartford, CT, USA; Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - P L Viale
- Clinic of Infectious Diseases, Department of Internal Medicine, Geriatrics and Nephrologic Diseases, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - G Poulakou
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata, Presidio Ospedaliero Universitario Santa Maria della Misericordia, Udine, Italy
| | | | | |
Collapse
|
31
|
Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 2017; 43:1464-1475. [PMID: 28733718 DOI: 10.1007/s00134-017-4878-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE To describe the current standards of care and major recent advances with regard to antimicrobial resistance (AMR) and to give a prospective overview for the next 30 years in this field. METHODS Review of medical literature and expert opinion were used in the development of this review. RESULTS There is undoubtedly a large clinical and public health burden associated with AMR in ICU, but it is challenging to quantify the associated excess morbidity and mortality. In the last decade, antibiotic stewardship and infection prevention and control have been unable to prevent the rapid spread of resistant Gram-negative bacteria (GNB), in particular carbapenem-resistant Pseudomonas aeruginosa (and other non-fermenting GNB), extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae (CRE). The situation appears more optimistic currently for Gram-positive, where Staphylococcus aureus, and particularly methicillin-resistant S. aureus (MRSA), remains a cardinal cause of healthcare-associated infections worldwide. Recent advancements in laboratory techniques allow for a rapid identification of the infecting pathogen and antibiotic susceptibility testing. Their impact can be particularly relevant in settings with prevalence of MDR, since they may guide fine-tuning of empirically selected regimen, facilitate de-escalation of unnecessary antimicrobials, and support infection control decisions. Currently, antibiotics are the primary anti-infective solution for patients with known or suspected MDR bacteria in intensive care. Numerous incentives have been provided to encourage researchers to work on alternative strategies to reverse this trend and to provide a means to treat these pathogens. Although some promising antibiotics currently in phase 2 and 3 of development will soon be licensed and utilized in ICU, the continuous development of an alternative generation of compounds is extremely important. There are currently several promising avenues available to fight antibiotic resistance, such as faecal microbiota, and phage therapy.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Medicine, Infectious Diseases Clinic, University of Udine and Azienda Sanitaria Universitaria Integrata, Piazzale S. Maria Della Misericordia 15, 33100, Udine, Italy.
| | - Garyphallia Poulakou
- Fourth Department of Internal Medicine, School of Medicine, Attikon University General Hospital, Athens National and Kapodistrian University, 1 Rimini St, 12462, Athens, Greece
| | - Etienne Ruppe
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Sebastian J Van Hal
- Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Adrian Brink
- Ampath National Laboratory Services, Department of Clinical Microbiology, Milpark Hospital, Johannesburg, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|