1
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
2
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
3
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Uchida-Fujii E, Niwa H, Senoh M, Kato H, Kinoshita Y, Mita H, Ueno T. Clostridioides difficile infection in thoroughbred horses in Japan from 2010 to 2021. Sci Rep 2023; 13:13099. [PMID: 37567893 PMCID: PMC10421859 DOI: 10.1038/s41598-023-40157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
We encountered 34 Clostridioides difficile (C. difficile) infection (CDI) cases among Thoroughbred horses in Japan from 2010 to 2021. Among them, 79.4% (27/34) either died or were euthanised. The risk factors associated with CDI and mortality among Japanese Thoroughbred horses remain unclear. We used genetic methods to examine C. difficile strains and their relationships with prognosis. Twenty-two (64.7%) cases were hospitalised at the onset of colitis. Outcomes were balanced for hospitalisation rates at the onset of colitis. The mortality rates of cases treated with metronidazole (65.0%) were significantly lower than untreated cases (100%). The predominant genotype of C. difficile isolate was polymerase chain reaction ribotype (RT) 078, isolated from 12 cases (35.3%), followed by RT014 (six cases, 17.6%). Binary toxin (C. difficile transferase [CDT])-positive strains, including all RT078 strains, were isolated from 16 horses. Mortality rates in RT078 strain (75.0%) or CDT-positive strain (83.3%) cases were comparable to that in cases of other types. Sufficient infection control is needed to prevent CDI in Thoroughbred horses. A timely and prompt CDI diagnosis leading to metronidazole treatment would improve CDI outcomes.
Collapse
Affiliation(s)
- Eri Uchida-Fujii
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 329-0412, Japan
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 329-0412, Japan.
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Haru Kato
- Antimicrobial Resistance Center, National Institute of Infectious Diseases, Aoba-Cho 4-2-1, Higashimurayama, Tokyo, 189-0002, Japan
| | - Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 329-0412, Japan
| | - Hiroshi Mita
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 329-0412, Japan
| | - Takanori Ueno
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 329-0412, Japan
| |
Collapse
|
5
|
Tsai BY, Chien CC, Huang SH, Zheng JY, Hsu CY, Tsai YS, Hung YP, Ko WC, Tsai PJ. The emergence of Clostridioides difficile PCR ribotype 127 at a hospital in northeastern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:896-909. [PMID: 35042668 DOI: 10.1016/j.jmii.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/27/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several studies have highlighted the incidence of Clostridioides difficile infections (CDIs) in Taiwan and certain ribotypes have been related to severe clinical diseases. A study was conducted to investigate the polymerase chain reaction (PCR) ribotypes and genetic relatedness of clinical C. difficile strains collected from January 2009 to December 2015 at a hospital in northeastern Taiwan. MATERIAL AND METHODS A modified two-step typing algorithm for C. difficile was used by combining a modified 8-plex and 3'-truncated tcdA screening PCR. In addition, MLVA typing was adopted for investigation of bacterial clonality and transmission. RESULTS Among a total of 86 strains, 24 (28%) were nontoxigenic and 62 (72%) had both tcdA and tcdB (A + B+). No tcdA-negative and tcdB-positive (A-B+) strains were identified. Binary toxin (CDT)-producing (cdtA+/cdtB+) strains were started to be identified in 2013. The 21 (34%) A+B+ clinical strains with binary toxin and tcdC deletion were identified as RT127 strains, which contained both RT078-lineage markers and fluoroquinolone (FQ)-resistant mutations (Thr82Ile in gyrA). Multiple loci variable-number tandem repeat analysis (MLVA) for phylogenetic relatedness of RT127 strains indicated that 20 of 21 strains belonged to a clonal complex that was identical to a clinical strain collected from southern Taiwan in 2011, suggestive of a clonal expansion in Taiwan. CONCLUSION A two-step typing method could rapidly confirm species identification and define the toxin gene profile of C. difficile isolates. The clonal expansion of RT127 strains in Taiwan indicates monitoring and surveillance of toxigenic C. difficile isolates from human, animal, and environment are critical to develop One Health prevention strategies.
Collapse
Affiliation(s)
- Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Chih Chien
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan.
| | - Shu-Huan Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Kee-Lung, Keelung, Taiwan.
| | - Jun-Yuan Zheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan.
| | - Chih-Yu Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Departments of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Khun PA, Riley TV. Epidemiology of Clostridium (Clostridioides) difficile Infection in Southeast Asia. Am J Trop Med Hyg 2022; 107:tpmd211167. [PMID: 35940201 PMCID: PMC9490644 DOI: 10.4269/ajtmh.21-1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
This review describes the current understanding of Clostridium (Clostridioides) difficile infection (CDI) in southeast Asia regarding the prevalence of CDI, C. difficile detection methods, antimicrobial susceptibility profiles, and the potential significance of a One Health approach to prevention and control. Our initial focus had been the Indochina region, however, due to limited studies/surveillance of CDI in Indochina, other studies in southeast Asian countries and neighboring Chinese provinces are presented here for comparison. Clostridium (Clostridioides) difficile infection is one of the most common causes of hospital-acquired gastroenteritis worldwide. Since its discovery as a cause of pseudomembranous colitis in 1978, C. difficile-related disease has been more prevalent in high-income rather than low-income countries. This may be because of a lack of knowledge and awareness about the significance of C. difficile and CDI, resulting in underreporting of true rates. Moreover, the abuse of antimicrobials and paucity of education regarding appropriate usage remain important driving factors in the evolution of CDI worldwide. The combination of underreporting of true CDI rates, along with continued misuse of antimicrobial agents, poses an alarming threat for regions like Indochina. C. difficile ribotype (RT) 027 has caused outbreaks in North America and European countries, however, C. difficile RT 017 commonly occurs in Asia. Toxin A-negative/toxin B-positive (A-B+) strains of RT 017 have circulated widely and caused outbreaks throughout the world and, in southeast Asia, this strain is endemic.
Collapse
Affiliation(s)
- Peng An Khun
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia
| | - Thomas V. Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| |
Collapse
|
7
|
Systems biology approach to functionally assess the Clostridioides difficile pangenome reveals genetic diversity with discriminatory power. Proc Natl Acad Sci U S A 2022; 119:e2119396119. [PMID: 35476524 PMCID: PMC9170149 DOI: 10.1073/pnas.2119396119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceClostridioides difficile infections are the most common source of hospital-acquired infections and are responsible for an extensive burden on the health care system. Strains of the C. difficile species comprise diverse lineages and demonstrate genome variability, with advantageous trait acquisition driving the emergence of endemic lineages. Here, we present a systems biology analysis of C. difficile that evaluates strain-specific genotypes and phenotypes to investigate the overall diversity of the species. We develop a strain typing method based on similarity of accessory genomes to identify and contextualize genetic loci capable of discriminating between strain groups.
Collapse
|
8
|
Brajerova M, Zikova J, Krutova M. Clostridioides difficile epidemiology in the Middle and the Far East. Anaerobe 2022; 74:102542. [PMID: 35240336 DOI: 10.1016/j.anaerobe.2022.102542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Clostridioides difficile is an important pathogen of healthcare-associated gastrointestinal infections. Recently, an increased number of C. difficile infection (CDI) surveillance data has been reported from Asia. The aim of this review is to summarize the data on the prevalence, distribution and molecular epidemiology of CDI in the Middle and the Far East. METHODS Literature was drawn from a search of PubMed up to September 30, 2021. RESULTS The meta-analysis of data from 111 studies revealed the pooled CDI prevalence rate in the Middle and the Far East of 12.4% (95% CI 11.4-13.3); 48 studies used PCR for CDI laboratory diagnoses. The predominant types (RT)/sequence type (ST) differ between individual countries (24 studies, 14 countries). Frequently found RTs were 001, 002, 012, 017, 018 and 126; RT017 was predominant in the Far East. The epidemic RT027 was detected in 8 countries (22 studies), but its predominance was reported only in three studies (Israel and Iran). The contamination of vegetable and meat or meat products and/or intestinal carriage of C. difficile in food and companion animals have been reported; the C. difficile RTs/STs identified overlapped with those identified in humans. CONCLUSIONS A large number of studies on CDI prevalence in humans from the Middle and the Far East have been published; countries with no available data were identified. The number of studies on C. difficile from non-human sources is limited. Comparative genomic studies of isolates from different sources are needed.
Collapse
Affiliation(s)
- Marie Brajerova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Jaroslava Zikova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic.
| |
Collapse
|
9
|
Imwattana K, Putsathit P, Collins DA, Leepattarakit T, Kiratisin P, Riley TV, Knight DR. Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microb Genom 2022; 8:000792. [PMID: 35316173 PMCID: PMC9176289 DOI: 10.1099/mgen.0.000792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three decades, it has caused outbreaks on four continents, more than other ‘epidemic’ strains, but our understanding of the genomic epidemiology underpinning the spread of C. difficile RT 017 is limited. Here, we performed high-resolution phylogenomic and Bayesian evolutionary analyses on an updated and more representative dataset of 282 non-clonal C. difficile RT 017 isolates collected worldwide between 1981 and 2019. These analyses place an estimated time of global dissemination between 1953 and 1983 and identified the acquisition of the ermB-positive transposon Tn6194 as a key factor behind global emergence. This coincided with the introduction of clindamycin, a key inciter of C. difficile infection, into clinical practice in the 1960s. Based on the genomic data alone, the origin of C. difficile RT 017 could not be determined; however, geographical data and records of population movement suggest that C. difficile RT 017 had been moving between Asia and Europe since the Middle Ages and was later transported to North America around 1860 (95 % confidence interval: 1622–1954). A focused epidemiological study of 45 clinical C. difficile RT 017 genomes from a cluster in a tertiary hospital in Thailand revealed that the population consisted of two groups of multidrug-resistant (MDR) C. difficile RT 017 and a group of early, non-MDR C. difficile RT 017. The significant genomic diversity within each MDR group suggests that although they were all isolated from hospitalized patients, there was probably a reservoir of C. difficile RT 017 in the community that contributed to the spread of this pathogen.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Australia
- Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Deirdre A. Collins
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | | | | | - Thomas V. Riley
- School of Biomedical Sciences, The University of Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- *Correspondence: Daniel R. Knight,
| |
Collapse
|
10
|
Senoh M, Kato H. Molecular epidemiology of endemic Clostridioides difficile infection in Japan. Anaerobe 2022; 74:102510. [DOI: 10.1016/j.anaerobe.2021.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
11
|
Wickramage I, Spigaglia P, Sun X. Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 2021; 76:3077-3090. [PMID: 34297842 DOI: 10.1093/jac/dkab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (CD) is one of the top five urgent antibiotic resistance threats in USA. There is a worldwide increase in MDR of CD, with emergence of novel strains which are often more virulent and MDR. Antibiotic resistance in CD is constantly evolving with acquisition of novel resistance mechanisms, which can be transferred between different species of bacteria and among different CD strains present in the clinical setting, community, and environment. Therefore, understanding the antibiotic resistance mechanisms of CD is important to guide optimal antibiotic stewardship policies and to identify novel therapeutic targets to combat CD as well as other bacteria. Epidemiology of CD is driven by the evolution of antibiotic resistance. Prevalence of different CD strains and their characteristic resistomes show distinct global geographical patterns. Understanding epidemiologically driven and strain-specific characteristics of antibiotic resistance is important for effective epidemiological surveillance of antibiotic resistance and to curb the inter-strain and -species spread of the CD resistome. CD has developed resistance to antibiotics with diverse mechanisms such as drug alteration, modification of the antibiotic target site and extrusion of drugs via efflux pumps. In this review, we summarized the most recent advancements in the understanding of mechanisms of antibiotic resistance in CD and analysed the antibiotic resistance factors present in genomes of a few representative well known, epidemic and MDR CD strains found predominantly in different regions of the world.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Xu X, Bian Q, Luo Y, Song X, Lin S, Chen H, Liang Q, Wang M, Ye G, Zhu B, Chen L, Tang YW, Wang X, Jin D. Comparative Whole Genome Sequence Analysis and Biological Features of Clostridioides difficile Sequence Type 2 ‡. Front Microbiol 2021; 12:651520. [PMID: 34290677 PMCID: PMC8287029 DOI: 10.3389/fmicb.2021.651520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile sequence type 2 (ST2) has been increasingly recognized as one of the major genotypes in China, while the genomic characteristics and biological phenotypes of Chinese ST2 strains remain to be determined. We used whole-genome sequencing and phylogenetic analysis to investigate the genomic features of 182 ST2 strains, isolated between 2011 and 2017. PCR ribotyping (RT) was performed, and antibiotic resistance, toxin concentration, and sporulation capacity were measured. The core genome Maximum-likelihood phylogenetic analysis showed that ST2 strains were distinctly segregated into two genetically diverse lineages [L1 (67.0% from Northern America) and L2], while L2 further divided into two sub-lineages, SL2a and SL2b (73.5% from China). The 36 virulence-related genes were widely distributed in ST2 genomes, but in which only 11 antibiotic resistance-associated genes were dispersedly found. Among the 25 SL2b sequenced isolates, RT014 (40.0%, n = 10) and RT020 (28.0%, n = 7) were two main genotypes with no significant difference on antibiotic resistance (χ2 = 0.024-2.667, P > 0.05). A non-synonymous amino acid substitution was found in tcdB (Y1975D) which was specific to SL2b. Although there was no significant difference in sporulation capacity between the two lineages, the average toxin B concentration (5.11 ± 3.20 ng/μL) in SL2b was significantly lower in comparison to those in L1 (10.49 ± 15.82 ng/μL) and SL2a (13.92 ± 2.39 ng/μL) (χ2 = 12.30, P < 0.05). This study described the genomic characteristics of C. difficile ST2, with many virulence loci and few antibiotic resistance elements. The Chinese ST2 strains with the mutation in codon 1975 of the tcdB gene clustering in SL2b circulating in China express low toxin B, which may be associated with mild or moderate C. difficile infection.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Qiao Bian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Qian Liang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Meixia Wang
- Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Guangyong Ye
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, Untied States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, Untied States
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Xianjun Wang
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China.,Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Xu X, Luo Y, Chen H, Song X, Bian Q, Wang X, Liang Q, Zhao J, Li C, Song G, Yang J, Sun L, Jiang J, Wang H, Zhu B, Ye G, Chen L, Tang YW, Jin D. Genomic evolution and virulence association of Clostridioides difficile sequence type 37 (ribotype 017) in China. Emerg Microbes Infect 2021; 10:1331-1345. [PMID: 34125660 PMCID: PMC8253194 DOI: 10.1080/22221751.2021.1943538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Clostridioides difficile sequence type (ST) 37 (ribotype 017) is one of the most prevalent genotypes circulating in China. However, its genomic evolution and virulence determinants were rarely explored. Whole-genome sequencing, phylogeographic and phylogenetic analyses were conducted for C. difficile ST37 isolates. The 325 ST37 genomes from six continents, including North America (n = 66), South America (n = 4), Oceania (n = 7), Africa (n = 9), Europe (n = 138) and Asia (n = 101), were clustered into six major lineages, with region-dependent distributions, harbouring an array of antibiotic-resistance genes. The ST37 strains from China were divided into four distinct sublineages, showing five importation times and international sources. Isolates associated with severe infections exhibited significantly higher toxin productions, tcdB mRNA levels, and sporulation capacities (P < 0.001). Kyoto Encyclopedia of Genes and Genomes analysis showed 10 metabolic pathways were significantly enriched in the mutations among isolates associated with severe CDI (P < 0.05). Gene mutations in glycometabolism, amino acid metabolism and biosynthesis virtually causing instability in protein activity were correlated positively to the transcription of tcdR and negatively to the expression of toxin repressor genes, ccpA and codY. In summary, our study firstly presented genomic insights into genetic characteristics and virulence association of C. difficile ST37 in China. Gene mutations in certain important metabolic pathways are associated with severe symptoms and correlated with higher virulence in C. difficile ST37 isolates.
Collapse
Affiliation(s)
- Xingxing Xu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yuo Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Huan Chen
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiao Bian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Qian Liang
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Jianhong Zhao
- Department of Clinical Microbiology, Second Hospital of Hebei Medical University, Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, People's Republic of China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Guangzhong Song
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Jun Yang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Lingli Sun
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Huanying Wang
- Key Laboratory of Microorganism technology and bioinformatics research of Zhejiang Province, Hangzhou, People's Republic of China.,NMPA Key Laboratory For Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, People's Republic of China
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Guangyong Ye
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, People's Republic of China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China.,Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Imwattana K, Knight DR, Riley TV. Can sequencing improve the diagnosis and management of Clostridioides difficile infection? Expert Rev Mol Diagn 2021; 21:429-431. [PMID: 33843381 DOI: 10.1080/14737159.2021.1915774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
15
|
Chang FC, Liu CP, Sun FJ, Lin CC. Optimizing laboratory workflow for the diagnosis of Clostridiodes difficile infection in a medical center in Northern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:284-289. [DOI: 10.1016/j.jmii.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 01/24/2023]
|
16
|
van Rossen TM, van Prehn J, Koek A, Jonges M, van Houdt R, van Mansfeld R, Kuijper EJ, Vandenbroucke-Grauls CMJE, Budding AE. Simultaneous detection and ribotyping of Clostridioides difficile, and toxin gene detection directly on fecal samples. Antimicrob Resist Infect Control 2021; 10:23. [PMID: 33514422 PMCID: PMC7845108 DOI: 10.1186/s13756-020-00881-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background Clostridioides difficile is the most common cause of nosocomial diarrhea. Ribotyping of cultured strains by a PCR-based test is used to study potential transmission between patients. We aimed to develop a rapid test that can be applied directly on fecal samples for simultaneous detection and ribotyping of C. difficile, as well as detection of toxin genes. Methods We developed a highly specific and sensitive primer set for simultaneous detection and ribotyping of C. difficile directly on total fecal DNA. Toxin genes were detected with primers adapted from Persson et al. (Clin Microbiol Infect 14(11):1057–1064). Our study set comprised 130 fecal samples: 65 samples with positive qPCR for C. difficile toxin A/B genes and 65 C. difficile qPCR negative samples. PCR products were analyzed by capillary gel electrophoresis. Results Ribosomal DNA fragment peak profiles and toxin genes were detected in all 65 C. difficile positive fecal samples and in none of the 65 C. difficile negative samples. The 65 samples were assigned to 27 ribotypes by the Dutch reference laboratory. Our peak profiles corresponded to these ribotypes, except for two samples. During a C. difficile outbreak, patients were correctly allocated to the outbreak-cluster based on the results of direct fecal ribotyping, before C. difficile isolates were cultured and conventionally typed. Conclusion C. difficile ribotyping directly on fecal DNA is feasible, with sensitivity and specificity comparable to that of diagnostic toxin gene qPCR and with ribotype assignment similar to that obtained by conventional typing on DNA from cultured isolates. This supports simultaneous diagnosis and typing to recognize an outbreak.
Collapse
Affiliation(s)
- Tessel M van Rossen
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Joffrey van Prehn
- Center for Infectious Diseases, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Alex Koek
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Robin van Houdt
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Rosa van Mansfeld
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ed J Kuijper
- Center for Infectious Diseases, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, PK 2X132, De Boelelaan 1117, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Werner A, Mölling P, Fagerström A, Dyrkell F, Arnellos D, Johansson K, Sundqvist M, Norén T. Whole genome sequencing of Clostridioides difficile PCR ribotype 046 suggests transmission between pigs and humans. PLoS One 2020; 15:e0244227. [PMID: 33347506 PMCID: PMC7751860 DOI: 10.1371/journal.pone.0244227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Background A zoonotic association has been suggested for several PCR ribotypes (RTs) of Clostridioides difficile. In central parts of Sweden, RT046 was found dominant in neonatal pigs at the same time as a RT046 hospital C. difficile infection (CDI) outbreak occurred in the southern parts of the country. Objective To detect possible transmission of RT046 between pig farms and human CDI cases in Sweden and investigate the diversity of RT046 in the pig population using whole genome sequencing (WGS). Methods WGS was performed on 47 C. difficile isolates from pigs (n = 22), the farm environment (n = 7) and human cases of CDI (n = 18). Two different core genome multilocus sequencing typing (cgMLST) schemes were used together with a single nucleotide polymorphisms (SNP) analysis and the results were related to time and location of isolation of the isolates. Results The pig isolates were closely related (≤6 cgMLST alleles differing in both cgMLST schemes) and conserved over time and were clearly separated from isolates from the human hospital outbreak (≥76 and ≥90 cgMLST alleles differing in the two cgMLST schemes). However, two human isolates were closely related to the pig isolates, suggesting possible transmission. The SNP analysis was not more discriminate than cgMLST. Conclusion No general pattern suggesting zoonotic transmission was apparent between pigs and humans, although contrasting results from two isolates still make transmission possible. Our results support the need for high resolution WGS typing when investigating hospital and environmental transmission of C. difficile.
Collapse
Affiliation(s)
- Anders Werner
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden
- * E-mail:
| | - Paula Mölling
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | - Anna Fagerström
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | | | | | - Karin Johansson
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | - Martin Sundqvist
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | - Torbjörn Norén
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
Janezic S, Dingle K, Alvin J, Accetto T, Didelot X, Crook DW, Lacy DB, Rupnik M. Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microb Genom 2020; 6:mgen000449. [PMID: 33030421 PMCID: PMC7660249 DOI: 10.1099/mgen.0.000449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Kate Dingle
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - Joseph Alvin
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomaž Accetto
- Biotechnical Faculty, Animal Science Department, University of Ljubljana, Domzale, Slovenia
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Derrick W. Crook
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - D. Borden Lacy
- Vanderbilt University School of Medicine, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
19
|
Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M, Riedel T, Bunk B, Spröer C, Overmann J, Blaschitz M, Indra A, von Müller L, Kohl TA, Niemann S, Seyboldt C, Klawonn F, Kumar N, Lawley TD, García-Fernández S, Cantón R, del Campo R, Zimmermann O, Groß U, Achtman M, Nübel U. A publicly accessible database for Clostridioides difficile genome sequences supports tracing of transmission chains and epidemics. Microb Genom 2020; 6:mgen000410. [PMID: 32726198 PMCID: PMC7641423 DOI: 10.1099/mgen.0.000410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10-4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.
Collapse
Affiliation(s)
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, UK
| | - Matthias Steglich
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | | | | | - Thomas Riedel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Jörg Overmann
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Marion Blaschitz
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Alexander Indra
- AGES-Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Thomas A. Kohl
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | - Stefan Niemann
- Research Center Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | | | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbüttel, Germany
| | | | | | - Sergio García-Fernández
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | | | - Uwe Groß
- University Medical Center Göttingen, Germany
| | - Mark Achtman
- Warwick Medical School, University of Warwick, UK
| | - Ulrich Nübel
- Leibniz Institute DSMZ, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| |
Collapse
|
20
|
Molecular epidemiology and antimicrobial resistance of Clostridioides difficile detected in chicken, soil and human samples from Zimbabwe. Int J Infect Dis 2020; 96:82-87. [DOI: 10.1016/j.ijid.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023] Open
|
21
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
22
|
Shaw HA, Preston MD, Vendrik KEW, Cairns MD, Browne HP, Stabler RA, Crobach MJT, Corver J, Pituch H, Ingebretsen A, Pirmohamed M, Faulds-Pain A, Valiente E, Lawley TD, Fairweather NF, Kuijper EJ, Wren BW. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin Microbiol Infect 2020; 26:492-498. [PMID: 31525517 PMCID: PMC7167513 DOI: 10.1016/j.cmi.2019.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Clostridium difficile is a major global human pathogen divided into five clades, of which clade 3 is the least characterized and consists predominantly of PCR ribotype (RT) 023 strains. Our aim was to analyse and characterize this clade. METHODS In this cohort study the clinical presentation of C. difficile RT023 infections was analysed in comparison with known 'hypervirulent' and non-hypervirulent strains, using data from the Netherlands national C. difficile surveillance programme. European RT023 strains of diverse origin were collected and whole-genome sequenced to determine the genetic similarity between isolates. Distinctive features were investigated and characterized. RESULTS Clinical presentation of C. difficile RT023 infections show severe infections akin to those seen with 'hypervirulent' strains from clades 2 (RT027) and 5 (RT078) (35%, 29% and 27% severe CDI, respectively), particularly with significantly more bloody diarrhoea than RT078 and non-hypervirulent strains (RT023 8%, other RTs 4%, p 0.036). The full genome sequence of strain CD305 is presented as a robust reference. Phylogenetic comparison of CD305 and a further 79 previously uncharacterized European RT023 strains of diverse origin revealed minor genetic divergence with >99.8% pairwise identity between strains. Analyses revealed distinctive features among clade 3 strains, including conserved pathogenicity locus, binary toxin and phage insertion toxin genotypes, glycosylation of S-layer proteins, presence of the RT078 four-gene trehalose cluster and an esculinase-negative genotype. CONCLUSIONS Given their recent emergence, virulence and genomic characteristics, the surveillance of clade 3 strains should be more highly prioritized.
Collapse
Affiliation(s)
- H A Shaw
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Division of Bacteriology, National Institute for Biological Standards and Controls, South Mimms, Potters Bar, UK
| | - M D Preston
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Analytical Biological Service Division, National Institute for Biological Standards and Controls, Potters Bar, UK
| | - K E W Vendrik
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - M D Cairns
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Public Health Laboratory London, Division of Infection, The Royal London Hospital, London, UK
| | - H P Browne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - R A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - M J T Crobach
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Corver
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - H Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - A Ingebretsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Infection Prevention, Oslo University Hospital, Oslo, Norway
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - A Faulds-Pain
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - E Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - T D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - E J Kuijper
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - B W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
23
|
Luo Y, Cheong E, Bian Q, Collins DA, Ye J, Shin JH, Yam WC, Takata T, Song X, Wang X, Kamboj M, Gottlieb T, Jiang J, Riley TV, Tang YW, Jin D. Different molecular characteristics and antimicrobial resistance profiles of Clostridium difficile in the Asia-Pacific region. Emerg Microbes Infect 2020; 8:1553-1562. [PMID: 31662120 PMCID: PMC6830245 DOI: 10.1080/22221751.2019.1682472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular epidemiology of Clostridium difficile infection (CDI) has been extensively studied in North America and Europe; however, limited data on CDI are available in the Asia-Pacific region. A multicentre retrospective study was conducted in this region. C. difficile isolates were subjected to multilocus sequence typing (ST) and antimicrobial susceptibility testing. Totally, 394 isolates were collected from Hangzhou, Hong Kong, China; Busan, South Korea; Fukuoka, Japan; Singapore; Perth, Sydney, Australia; New York, the United States. C. difficile isolates included 337 toxin A-positive/B-positive/binary toxin-negative (A+B+CDT-), 48 A-B+CDT-, and nine A+B+CDT+. Distribution of dominant STs varied geographically with ST17 in Fukuoka (18.6%), Busan (56.0%), ST2 in Sydney (20.4%), Perth (25.8%). The antimicrobial resistance patterns were significantly different among the eight sites (χ2 = 325.64, p < 0.001). Five major clonal complexes correlated with unique antimicrobial resistances. Healthcare-associated (HA) CDI was mainly from older patients with more frequent antimicrobial use and higher A-B+ positive rates. Higher resistance to gatifloxacin, tetracycline, and erythromycin were observed in HA-CDI patients (χ2 = 4.76-7.89, p = 0.005-0.029). In conclusion, multiple C. difficile genotypes with varied antimicrobial resistance patterns have been circulating in the Asia-Pacific region. A-B+ isolates from older patients with prior antimicrobial use were correlated with HA-CDI.
Collapse
Affiliation(s)
- Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Elaine Cheong
- Department of Infectious Diseases & Microbiology, Concord Repatriation General Hospital, Concord, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tohru Takata
- Department of Infection Control, Fukuoka University Hospital, Fukuoka, Japan.,Division of Infectious Diseases, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Mini Kamboj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas Gottlieb
- Department of Infectious Diseases & Microbiology, Concord Repatriation General Hospital, Concord, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jianmin Jiang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Australia
| | - Yi-Wei Tang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Collins DA, Sohn KM, Wu Y, Ouchi K, Ishii Y, Elliott B, Riley TV, Tateda K. Clostridioides difficile infection in the Asia-Pacific region. Emerg Microbes Infect 2019; 9:42-52. [PMID: 31873046 PMCID: PMC6968625 DOI: 10.1080/22221751.2019.1702480] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridioides difficile causes healthcare-related diarrhoea in high-income countries. Highly resistant spores persist in healthcare facilities, primarily infecting patients who have recently received antimicrobials. C. difficile infection (CDI) has been studied in detail in North America and Europe; however, the epidemiology of CDI elsewhere, including the Asia-Pacific region, is largely unknown. A survey of CDI was performed in 13 Asia-Pacific countries. Epidemiological data on 600 cases were collected and molecular typing undertaken on 414 C. difficile isolates. Healthcare facility-associated CDI comprised 53.6% of cases, while community-associated CDI was 16.5%. The median age of cases was 63.0 years and 45.3% were female, 77.5% had used antibiotics in the previous 8 weeks, most frequently third-generation cephalosporins (31.7%), and 47.3% had used proton pump inhibitors. Recurrence (9.1%) and mortality (5.2%) rates were low, while complications including colitis or pseudomembranous colitis (13.8%), colectomy (0.4%), and toxic megacolon (0.2%) were uncommon. Common C. difficile strains were ribotypes 017 (16.7%), 014/020 (11.1%) and 018 (9.9%), with wide variation between countries. Binary toxin-positive strains of C. difficile were detected rarely. Overall, disease severity appeared mild, and mortality and recurrence were low. Continued education about, and surveillance of, CDI in Asia are required to reduce the burden of disease.
Collapse
Affiliation(s)
- Deirdre A Collins
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kentaro Ouchi
- Medical Affairs, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.,Department of Infection Control, Toho University Medical Center, Omori Hospital, Tokyo, Japan
| | - Briony Elliott
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.,Department of Microbiology, PathWest Laboratory Medicine (WA), Perth, Australia
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.,Department of Infection Control, Toho University Medical Center, Omori Hospital, Tokyo, Japan.,Laboratory Microbiological Section, Toho University Medical Center, Omori Hospital, Tokyo, Japan
| | | |
Collapse
|
25
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 2019; 18:17-25. [PMID: 31800331 DOI: 10.1080/14787210.2020.1701436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Antimicrobial resistance (AMR) played an important role in the initial outbreaks of Clostridium difficile infection (CDI) in the 1970s. C. difficile ribotype (RT) 017 has emerged as the major strain of C. difficile in Asia, where antimicrobial use is poorly regulated. This strain has also caused CDI outbreaks around the world for almost 30 years. Many of these outbreaks were associated with clindamycin and fluoroquinolone resistance. AMR and selective pressure is likely to be responsible for the success of this RT and may drive future outbreaks.Areas covered: This narrative review summarizes the prevalence and mechanisms of AMR in C. difficile RT 017 and transmission of these AMR mechanisms. To address these topics, reports of outbreaks due to C. difficile RT 017, epidemiologic studies with antimicrobial susceptibility results, studies on resistance mechanisms found in C. difficile and related publications available through Pubmed until September 2019 were collated and the findings discussed.Expert opinion: Primary prevention is the key to control CDI. This should be achieved by developing antimicrobial stewardship in medical, veterinary and agricultural practices. AMR is the key factor that drives CDI outbreaks, and methods for the early detection of AMR can facilitate the control of outbreaks.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
26
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect 2019; 8:796-807. [PMID: 31138041 PMCID: PMC6542179 DOI: 10.1080/22221751.2019.1621670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance.
Collapse
Affiliation(s)
- Korakrit Imwattana
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Daniel R Knight
- c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia
| | - Brian Kullin
- d Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| | - Deirdre A Collins
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Papanin Putsathit
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Pattarachai Kiratisin
- b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Thomas V Riley
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia.,e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia.,f PathWest Laboratory Medicine , Queen Elizabeth II Medical Centre , Nedlands , Australia
| |
Collapse
|
27
|
Kumar N, Browne HP, Viciani E, Forster SC, Clare S, Harcourt K, Stares MD, Dougan G, Fairley DJ, Roberts P, Pirmohamed M, Clokie MRJ, Jensen MBF, Hargreaves KR, Ip M, Wieler LH, Seyboldt C, Norén T, Riley TV, Kuijper EJ, Wren BW, Lawley TD. Adaptation of host transmission cycle during Clostridium difficile speciation. Nat Genet 2019; 51:1315-1320. [PMID: 31406348 DOI: 10.1038/s41588-019-0478-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
Bacterial speciation is a fundamental evolutionary process characterized by diverging genotypic and phenotypic properties. However, the selective forces that affect genetic adaptations and how they relate to the biological changes that underpin the formation of a new bacterial species remain poorly understood. Here, we show that the spore-forming, healthcare-associated enteropathogen Clostridium difficile is actively undergoing speciation. Through large-scale genomic analysis of 906 strains, we demonstrate that the ongoing speciation process is linked to positive selection on core genes in the newly forming species that are involved in sporulation and the metabolism of simple dietary sugars. Functional validation shows that the new C. difficile produces spores that are more resistant and have increased sporulation and host colonization capacity when glucose or fructose is available for metabolism. Thus, we report the formation of an emerging C. difficile species, selected for metabolizing simple dietary sugars and producing high levels of resistant spores, that is adapted for healthcare-mediated transmission.
Collapse
Affiliation(s)
- Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Elisa Viciani
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | - Derek J Fairley
- Belfast Health and Social Care Trust, Belfast, Northern, Ireland
| | | | | | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Margaret Ip
- Department of Microbiology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lothar H Wieler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Robert Koch Institute, Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut), Jena, Germany
| | - Torbjörn Norén
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Laboratory Medicine, Örebro University Hospital Örebro, Örebro, Sweden
| | - Thomas V Riley
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,School of Pathology & Laboratory Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Ed J Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
28
|
Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M, Poquet I, Martin-Verstraete I, Dupuy B, Soutourina O. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 2019. [PMID: 29529286 PMCID: PMC5961336 DOI: 10.1093/nar/gky124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile, a major human enteropathogen, must cope with foreign DNA invaders and multiple stress factors inside the host. We have recently provided an experimental evidence of defensive function of the C. difficile CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system important for its survival within phage-rich gut communities. Here, we describe the identification of type I toxin-antitoxin (TA) systems with the first functional antisense RNAs in this pathogen. Through the analysis of deep-sequencing data, we demonstrate the general co-localization with CRISPR arrays for the majority of sequenced C. difficile strains. We provide a detailed characterization of the overlapping convergent transcripts for three selected TA pairs. The toxic nature of small membrane proteins is demonstrated by the growth arrest induced by their overexpression. The co-expression of antisense RNA acting as an antitoxin prevented this growth defect. Co-regulation of CRISPR-Cas and type I TA genes by the general stress response Sigma B and biofilm-related factors further suggests a possible link between these systems with a role in recurrent C. difficile infections. Our results provide the first description of genomic links between CRISPR and type I TA systems within defense islands in line with recently emerged concept of functional coupling of immunity and cell dormancy systems in prokaryotes.
Collapse
Affiliation(s)
- Anna Maikova
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Pierre Boudry
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Eliane Hajnsdorf
- UMR8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas Kint
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, J1E 4K8, Sherbrooke, QC, Canada
| | - Isabelle Poquet
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,INRA, UMR1319 Micalis (Microbiologie de l'Alimentation au service de la Santé), Domaine de Vilvert, 78352, Jouy-en-Josas Cedex, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
29
|
Sekulovic O, Bourgeois J, Shen A, Camilli A. Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile. Anaerobe 2019; 60:102073. [PMID: 31323290 DOI: 10.1016/j.anaerobe.2019.102073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Recent genomic analysis of an epidemic ribotype 027 (RT027) Clostridioides difficile strain revealed the presence of several chromosomal site-specific invertible sites hypothesized to control the expression of adjacent genes in a bimodal on-off mode. This process, named phase variation, is thought to enhance phenotypic variability under homogeneous conditions ultimately increasing population fitness in unpredictable environmental fluctuations. The full extent of phase variation mediated by DNA-inversions in C. difficile is currently unknown. Here, we sought to expand our previous analysis by screening for site-specific inversions in isolates that belong to the rapidly emerging ribotypes RT017 and RT078. We report the finding of one novel inversion site for which we demonstrate the inversion potential and quantify inversion proportions during exponential and stationary growth in both historic and modern isolates of the same ribotype. We then employ a computational approach to assess the prevalence of all sites identified so far in a large collection of sequenced C. difficile isolates. We show that phase-variable loci are widespread with some sites being present in virtually all analyzed strains. Furthermore, in our small subset of RT017 and RT078 strains, we detect no evidence of gain or loss of invertible sites in historic versus modern isolates demonstrating the relative stability of those genomic elements. Overall, our results support the idea that C. difficile has adopted phase variation mediated by DNA inversions as its major generator of diversity which could be beneficial during the pathogenesis process.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
31
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
32
|
Clostridioides (Clostridium) difficile infection burden in Japan: A multicenter prospective study. Anaerobe 2019; 60:102011. [PMID: 30872073 DOI: 10.1016/j.anaerobe.2019.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 01/16/2023]
Abstract
Clostridioides (Clostridium) difficile is the leading cause of healthcare-associated infectious diarrhea in the developed world. Retrospective studies have shown a lower incidence of C. difficile infection (CDI) in Japan than in Europe or North America. Prospective studies are needed to determine if this is due lack of testing for C. difficile or a true difference in CDI epidemiology. A prospective cohort study of CDI was conducted from May 2014 to May 2015 at 12 medical facilities (20 wards) in Japan. Patients with at least three diarrheal bowel movements (Bristol stool grade 6-7) in the preceding 24 h were enrolled. CDI was defined by positive result on enzyme immunoassay for toxins A/B, nucleic acid amplification test for the toxin B gene or toxigenic culture. C. difficile isolates were subjected to PCR-ribotyping (RT), slpA-sequence typing (slpA-ST), and antimicrobial susceptibility testing. The overall incidence of CDI was 7.4/10,000 patient-days (PD). The incidence was highest in the five ICU wards (22.2 CDI/10,000 PD; range: 13.9-75.5/10,000 PD). The testing frequency and CDI incidence rate were highly correlated (R2 = 0.91). Of the 146 isolates, RT018/018″ was dominant (29%), followed by types 014 (23%), 002 (12%), and 369 (11%). Among the 15 non-ICU wards, two had high CDI incidence rates (13.0 and 15.9 CDI/10,000 PD), with clusters of RT018/slpA-ST smz-02 and 018"/smz-01, respectively. Three non-RT027 or 078 binary toxin-positive isolates were found. All RT018/018" isolates were resistant to moxifloxacin, gatifloxacin, clindamycin, and erythromycin. This study identified a higher CDI incidence in Japanese hospitals than previously reported by actively identifying and testing patients with clinically significant diarrhea. This suggests numerous patients with CDI are being overlooked due to inadequate diagnostic testing in Japan.
Collapse
|
33
|
Imwattana K, Wangroongsarb P, Riley TV. High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe 2019; 57:4-10. [PMID: 30862468 DOI: 10.1016/j.anaerobe.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Studies on the prevalence and diversity of Clostridium difficile in Thailand have been limited to those derived from a few tertiary hospitals in Central Thailand. In this study, 145 C. difficile isolates collected in 13 provinces in Thailand during 2006-2018 were characterized by ribotyping and detection of toxin genes. Minimum inhibitory concentrations of eight antimicrobial agents were determined also for all 100 C. difficile strains collected from 2006 until 2015. Of the 145 strains of C. difficile, 71 (49%) were non-toxigenic, 46 (32%) were toxin A-negative, toxin B-positive (A-B+) and 28 (19%) were A+B+. No binary toxin-positive strain was found. The most common ribotype (RT) was RT 017 (A-B+CDT-, 19%, 28/145). Besides RT 017, 20 novel non-toxigenic and A-B+ ribotyping profiles, which may be related to RT 017 by the similarity of ribotyping profile, were identified. All C. difficile strains remained susceptible to metronidazole and vancomycin, however, a slight increase in MIC for metronidazole was seen in both toxigenic and non-toxigenic strains (overall MIC50/90 0.25/0.25 mg/L during 2006-2010 compared to overall MIC50/90 1.0/2.0 mg/L during 2011-2015). There was a high rate of fluoroquinolone resistance among RT 017 strains (77%), but there was little resistance among non-toxigenic strains. These results suggest that RT 017 is endemic in Thailand, and that the misuse of fluoroquinolones may lead to outbreaks of RT 017 infection in this country. Further studies on non-toxigenic C. difficile are needed to understand whether they have a role in the pathogenesis of C. difficile infection in Asia.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia
| | - Piyada Wangroongsarb
- The National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, 6027, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, 6009, Australia.
| |
Collapse
|
34
|
Endres BT, Begum K, Sun H, Walk ST, Memariani A, Lancaster C, Gonzales-Luna AJ, Dotson KM, Bassères E, Offiong C, Tupy S, Kuper K, Septimus E, Arafat R, Alam MJ, Zhao Z, Hurdle JG, Savidge TC, Garey KW. Epidemic Clostridioides difficile Ribotype 027 Lineages: Comparisons of Texas Versus Worldwide Strains. Open Forum Infect Dis 2019; 6:ofz013. [PMID: 30793006 PMCID: PMC6368847 DOI: 10.1093/ofid/ofz013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background The epidemic Clostridioides difficile ribotype 027 strain resulted from the dissemination of 2 separate fluoroquinolone-resistant lineages: FQR1 and FQR2. Both lineages were reported to originate in North America; however, confirmatory large-scale investigations of C difficile ribotype 027 epidemiology using whole genome sequencing has not been undertaken in the United States. Methods Whole genome sequencing and single-nucleotide polymorphism (SNP) analysis was performed on 76 clinical ribotype 027 isolates obtained from hospitalized patients in Texas with C difficile infection and compared with 32 previously sequenced worldwide strains. Maximum-likelihood phylogeny based on a set of core genome SNPs was used to construct phylogenetic trees investigating strain macro- and microevolution. Bayesian phylogenetic and phylogeographic analyses were used to incorporate temporal and geographic variables with the SNP strain analysis. Results Whole genome sequence analysis identified 2841 SNPs including 900 nonsynonymous mutations, 1404 synonymous substitutions, and 537 intergenic changes. Phylogenetic analysis separated the strains into 2 prominent groups, which grossly differed by 28 SNPs: the FQR1 and FQR2 lineages. Five isolates were identified as pre-epidemic strains. Phylogeny demonstrated unique clustering and resistance genes in Texas strains indicating that spatiotemporal bias has defined the microevolution of ribotype 027 genetics. Conclusions Clostridioides difficile ribotype 027 lineages emerged earlier than previously reported, coinciding with increased use of fluoroquinolones. Both FQR1 and FQR2 ribotype 027 epidemic lineages are present in Texas, but they have evolved geographically to represent region-specific public health threats.
Collapse
Affiliation(s)
- Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Khurshida Begum
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Hua Sun
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Ali Memariani
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Chris Lancaster
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Kierra M Dotson
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Eugénie Bassères
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | | | - Shawn Tupy
- Texas Department of State Health Services, Austin
| | - Kristi Kuper
- Center for Pharmacy Practice Excellence, Vizient, Houston, Texas
| | - Edward Septimus
- Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | | | - M Jahangir Alam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston
| | - Tor C Savidge
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Texas
| |
Collapse
|
35
|
Clostridium difficile in Asia: Opportunities for One Health Management. Trop Med Infect Dis 2018; 4:tropicalmed4010007. [PMID: 30597880 PMCID: PMC6473466 DOI: 10.3390/tropicalmed4010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a ubiquitous spore-forming bacterium which causes toxin-mediated diarrhoea and colitis in people whose gut microflora has been depleted by antimicrobial use, so it is a predominantly healthcare-associated disease. However, there are many One Health implications to C. difficile, given high colonisation rates in food production animals, contamination of outdoor environments by use of contaminated animal manure, increasing incidence of community-associated C. difficile infection (CDI), and demonstration of clonal groups of C. difficile shared between human clinical cases and food animals. In Asia, the epidemiology of CDI is not well understood given poor testing practices in many countries. The growing middle-class populations of Asia are presenting increasing demands for meat, thus production farming, particularly of pigs, chicken and cattle, is rapidly expanding in Asian countries. Few reports on C. difficile colonisation among production animals in Asia exist, but those that do show high prevalence rates, and possible importation of European strains of C. difficile like ribotype 078. This review summarises our current understanding of the One Health aspects of the epidemiology of CDI in Asia.
Collapse
|
36
|
Riley TV, Collins DA, Karunakaran R, Kahar MA, Adnan A, Hassan SA, Zainul NH, Rustam FRM, Wahab ZA, Ramli R, Lee YY, Hassan H. High Prevalence of Toxigenic and Nontoxigenic Clostridium difficile Strains in Malaysia. J Clin Microbiol 2018; 56:e00170-18. [PMID: 29563206 PMCID: PMC5971540 DOI: 10.1128/jcm.00170-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence shows a high prevalence of Clostridium difficile in Southeast Asia associated with a range of clinical presentations. However, severe infections are rarely reported. We investigated C. difficile infection (CDI) across four hospitals in Kuala Lumpur and Kota Bharu, Malaysia. Enzyme immunoassays for glutamate dehydrogenase (GDH) and toxin A or B were performed on diarrheal stool specimens collected from patients in 2015 and 2016. Specimens were also cultured and isolates of C. difficile characterized by PCR ribotyping and detection of toxin genes. In total, 437 specimens were collected and fecal toxin was detected in 3.0%. A further 16.2% of specimens were GDH positive and toxin negative. After culture, toxigenic strains were isolated from 10.3% and nontoxigenic strains from 12.4% of specimens. The most prevalent PCR ribotypes (RTs) were RT 017 (20.0%) and RT 043 (10.0%). The high prevalence of RT 017 and nontoxigenic strains in Malaysia and in neighboring Thailand and Indonesia suggests that they localize to the region of Southeast Asia, with an implication that they may mediate the burden of CDI in the region.
Collapse
Affiliation(s)
- Thomas V Riley
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Deirdre A Collins
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
| | - Rina Karunakaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maria Abdul Kahar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ariza Adnan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Asma Hassan
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | | | - Z Abd Wahab
- Sungai Buloh Hospital, Sungai Buloh, Malaysia
| | - Ramliza Ramli
- Department of Microbiology and Immunology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hamimah Hassan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular Characterization of Clostridium difficile Isolates in China From 2010 to 2015. Front Microbiol 2018; 9:845. [PMID: 29760687 PMCID: PMC5936795 DOI: 10.3389/fmicb.2018.00845] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile infection (CDI) has become a worldwide public health problem causing high mortality and a large disease burden. Molecular typing and analysis is important for surveillance and infection control of CDI. However, molecular characterization of C. difficile across China is extremely rare. Here, we report on the toxin profiles, molecular subtyping with multilocus sequence typing (MLST) and PCR ribotyping, and epidemiological characteristics of 199 C. difficile isolates collected between 2010 through 2015 from 13 participating centers across China. We identified 35 STs and 27 ribotypes (RTs) among the 199 C. difficile isolates: ST35 (15.58%), ST3 (15.08%), ST37 (12.06%), and RT017 (14.07%), RT001 (12.06%), RT012 (11.56%) are the most prevalent. One isolate with ST1 and 8 isolates with ST 11 were identified. We identified a new ST in this study, denoted ST332. The toxin profile tcdA+tcdB+tcdC+tcdR+tcdE+CDT- (65.83%) was the predominant profile. Furthermore, 11 isolates with positive binary toxin genes were discovered. According to the PCR ribotyping, one isolate with RT 027, and 6 isolates with RT 078 were confirmed. The epidemiological characteristics of C. difficile in China shows geographical differences, and both the toxin profile and molecular types exhibit great diversity across the different areas.
Collapse
Affiliation(s)
- Xiao-Shu Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Zhu Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
38
|
Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify MLST clade 4 Clostridium difficile isolates. Diagn Microbiol Infect Dis 2018; 92:19-24. [PMID: 29789190 DOI: 10.1016/j.diagmicrobio.2018.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is the leading cause of health care-associated infections. Previous studies suggest that C. difficile MLST clade 4 strains with higher drug resistance rates constitute the major clone spreading in China. Thus development of a rapid and accurate typing method for these strains is needed to monitor the epidemiology of this clone and to guide clinical treatment. A total of 160 non-duplicate C. difficile isolates recovered from three large teaching hospitals in Beijing were studied. All the 41 clade 4 C. difficile isolates clustered together on the PCA dendrogram. Spectra peak statistics revealed that five markers (2691.43Da, 2704.91Da, 2711.93Da, 3247.27Da and 3290.76Da) can easily and reliably distinguish between clade 4 and non-clade 4 isolates, with area under the curve (AUC) values of 0.991, 0.997, 0.973, 1 and 1, respectively. In conclusion, MALDI-TOF MS is a very simple and accurate method for identifying C. difficile MLST clade 4 strains.
Collapse
|
39
|
Riley TV, Kimura T. The Epidemiology of Clostridium difficile Infection in Japan: A Systematic Review. Infect Dis Ther 2018; 7:39-70. [PMID: 29441500 PMCID: PMC5840105 DOI: 10.1007/s40121-018-0186-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/02/2023] Open
Abstract
Abstract To increase understanding of the epidemiology, risks, consequences and resource utilization of Clostridium difficile infection (CDI) in Japan, a systematic literature review was undertaken of relevant publications from January 2006 to November 2017. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and methods, 55 articles met the criteria for full review. The majority (58%) of studies were from a single site, with the most recent data from 2015. The incidence, reported prevalence and recurrence rate of CDI in Japan were 0.8–4.71/10,000 patient-days, 0.3–5.5/1000 patients and 3.3–27.3%, respectively, and varied according to setting, population, CDI definition and detection method. Most C. difficile isolates associated with CDI in Japan were toxin A+B+, with a low level of C. difficile binary toxin-positive (CDT+) strains (0–6.8% reported across studies). The most common C. difficile PCR ribotypes associated with infection in Japan were smz/018, 002, 052 and 369. Data regarding the impact of CDI on length of hospital stay were limited. Reported all-cause mortality in patients with CDI ranged from 3.4 to 15.1% between 2007 and 2013. Two studies assessed risk factors for CDI recurrence, identifying malignant disease, intensive care unit hospitalization and use of proton pump inhibitors as factors increasing the risk of initial and/or recurrent CDI. No study analyzed initial CDI treatment in relation to recurrence. More comprehensive surveillance and coordinated studies are needed to map trends, understand risk factors, and recognize the extent and impact of CDI in Japanese patients. Funding Astellas Pharma, Inc. Plain Language Summary Plain language summary available for this article. Electronic supplementary material The online version of this article (10.1007/s40121-018-0186-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas V Riley
- Murdoch University, Murdoch, Australia. .,Edith Cowan University, Joondalup, Australia. .,PathWest Laboratory Medicine, Nedlands, Australia.
| | | |
Collapse
|
40
|
High Prevalence and Genetic Diversity of Large phiCD211 (phiCDIF1296T)-Like Prophages in Clostridioides difficile. Appl Environ Microbiol 2018; 84:AEM.02164-17. [PMID: 29150513 DOI: 10.1128/aem.02164-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a pathogenic bacterium displaying great genetic diversity. A significant proportion of this diversity is due to the presence of integrated prophages. Here, we provide an in-depth analysis of phiCD211, also known as phiCDIF1296T, the largest phage identified in C. difficile so far, with a genome of 131 kbp. It shares morphological and genomic similarity with other large siphophages, like phage 949, infecting Lactococcus lactis, and phage c-st, infecting Clostridium botulinum A PhageTerm analysis indicated the presence of 378-bp direct terminal repeats at the phiCD211 genome termini. Among striking features of phiCD211, the presence of several transposase and integrase genes suggests past recombination events with other mobile genetic elements. Several gene products potentially influence the bacterial lifestyle and fitness, including a putative AcrB/AcrD/AcrF multidrug resistance protein, an EzrA septation ring formation regulator, and a spore protease. We also identified a CRISPR locus and a cas3 gene. We screened 2,584 C. difficile genomes available and detected 149 prophages sharing ≥80% nucleotide identity with phiCD211 (5% prevalence). Overall, phiCD211-like phages were detected in C. difficile strains corresponding to 21 different multilocus sequence type groups, showing their high prevalence. Comparative genomic analyses revealed the existence of several clusters of highly similar phiCD211-like phages. Of note, large chromosome inversions were observed in some members, as well as multiple gene insertions and module exchanges. This highlights the great plasticity and gene coding potential of the phiCD211/phiCDIF1296T genome. Our analyses also suggest active evolution involving recombination with other mobile genetic elements.IMPORTANCEClostridioides difficile is a clinically important pathogen representing a serious threat to human health. Our hypothesis is that genetic differences between strains caused by the presence of integrated prophages could explain the apparent differences observed in the virulence of different C. difficile strains. In this study, we provide a full characterization of phiCD211, also known as phiCDIF1296T, the largest phage known to infect C. difficile so far. Screening 2,584 C. difficile genomes revealed the presence of highly similar phiCD211-like phages in 5% of the strains analyzed, showing their high prevalence. Multiple-genome comparisons suggest that evolution of the phiCD211-like phage community is dynamic, and some members have acquired genes that could influence bacterial biology and fitness. Our study further supports the relevance of studying phages in C. difficile to better understand the epidemiology of this clinically important human pathogen.
Collapse
|
41
|
Antibiotic Resistances of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:137-159. [PMID: 29383668 DOI: 10.1007/978-3-319-72799-8_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid evolution of antibiotic resistance in Clostridium difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances and most of epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways and biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, recent data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
|
42
|
Comparative Genomics of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:59-75. [PMID: 29383664 DOI: 10.1007/978-3-319-72799-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clostridium difficile, a gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of genome sequences in large numbers, mainly due to the use of next-generation sequencing methods, have undoubtedly shown their immense advantages in the determination of the C. difficile population structure. The implementation of fine-scale comparative genomic approaches have paved the way to global transmission and recurrence studies, but also more targeted studies such as the PaLoc or the CRISPR/Cas systems. In this chapter, we provide an overview of the recent and significant findings on C. difficile using comparative genomics studies with implication for the epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
|
43
|
Krutova M, Kinross P, Barbut F, Hajdu A, Wilcox MH, Kuijper EJ. How to: Surveillance of Clostridium difficile infections. Clin Microbiol Infect 2017; 24:469-475. [PMID: 29274463 DOI: 10.1016/j.cmi.2017.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The increasing incidence of Clostridium difficile infections (CDI) in healthcare settings in Europe since 2003 has affected both patients and healthcare systems. The implementation of effective CDI surveillance is key to enable monitoring of the occurrence and spread of C. difficile in healthcare and the timely detection of outbreaks. AIMS The aim of this review is to provide a summary of key components of effective CDI surveillance and to provide some practical recommendations. We also summarize the recent and current national CDI surveillance activities, to illustrate strengths and weaknesses of CDI surveillance in Europe. SOURCES For the definition of key components of CDI surveillance, we consulted the current European Society of Clinical Microbiology and Infectious Diseases (ESCMID) CDI-related guidance documents and the European Centre for Disease Prevention and Control (ECDC) protocol for CDI surveillance in acute care hospitals. To summarize the recent and current national CDI surveillance activities, we discussed international multicentre CDI surveillance studies performed in 2005-13. In 2017, we also performed a new survey of existing CDI surveillance systems in 33 European countries. CONTENT Key components for CDI surveillance are appropriate case definitions of CDI, standardized CDI diagnostics, agreement on CDI case origin definition, and the presentation of CDI rates with well-defined numerators and denominators. Incorporation of microbiological data is required to provide information on prevailing PCR ribotypes and antimicrobial susceptibility to first-line CDI treatment drugs. In 2017, 20 European countries had a national CDI surveillance system and 21 countries participated in ECDC-coordinated CDI surveillance. Since 2014, the number of centres with capacity for C. difficile typing has increased to 35 reference or central laboratories in 26 European countries. IMPLICATIONS Incidence rates of CDI, obtained from a standardized CDI surveillance system, can be used as an important quality indicator of healthcare at hospital as well as country level.
Collapse
Affiliation(s)
- M Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridium difficile (ESGCD).
| | - P Kinross
- Surveillance and Response Support Unit, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - F Barbut
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridium difficile (ESGCD)
| | - A Hajdu
- Department of Hospital Hygiene and Communicable Disease Control, Ministry of Human Capacities, Budapest, Hungary
| | - M H Wilcox
- Leeds Teaching Hospitals NHS Trust & University of Leeds, Leeds, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridium difficile (ESGCD)
| | - E J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridium difficile (ESGCD)
| | | |
Collapse
|
44
|
Kachrimanidou M, Tsachouridou O, Ziogas IA, Christaki E, Protonotariou E, Metallidis S, Skoura L, Kuijper E. Clostridium difficile infections in a university hospital in Greece are mainly associated with PCR ribotypes 017 and 126. J Med Microbiol 2017; 66:1774-1781. [PMID: 29087273 DOI: 10.1099/jmm.0.000623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Data regarding the incidence and molecular epidemiology of Clostridium difficile infections (CDIs) in Greece are limited. METHODOLOGY A retrospective study of all laboratory-confirmed CDI cases in a university hospital during a 9-month period. Stool samples from inpatients with diarrhoea were tested with a combined glutamate dehydrogenase (GDH) and toxin enzyme immunoassay (EIA) test, as part of a two-step algorithm for CDI testing. All GDH-positive samples were cultured and isolates were further tested for the presence of toxin genes and characterized by PCR ribotyping. RESULTS The incidence of CDI in our hospital was 25 per 10 000 hospital admissions. Of 33 CDI cases, 72.7 % were hospital-acquired. Fourteen different PCR ribotypes were identified, of which 017 (21.2 %), 078/126 (15.1 %) and RT202 and RT106 (9 %) were the most prevalent. Most patients had a risk profile of recent antibiotic use, older age and comorbidities. Despite mild CDI clinical characteristics, six cases showed complications and led to 18.2 % mortality. CONCLUSION The CDI incidence was comparable to that in other European countries. The hypervirulent PCR ribotype 027 was not found, whereas ribotypes 017 and 126 predominated. Most CDI cases were in patients who used antibiotics, emphasizing that antimicrobial stewardship should be considered as a cornerstone for the prevention of CDI.
Collapse
Affiliation(s)
- Melina Kachrimanidou
- First Department of Microbiology, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Olga Tsachouridou
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Ziogas
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Symeon Metallidis
- First Internal Medicine Department, Infectious Diseases Division, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ed Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Michael Dunne W, Pouseele H, Monecke S, Ehricht R, van Belkum A. Epidemiology of transmissible diseases: Array hybridization and next generation sequencing as universal nucleic acid-mediated typing tools. INFECTION GENETICS AND EVOLUTION 2017; 63:332-345. [PMID: 28943408 DOI: 10.1016/j.meegid.2017.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/05/2023]
Abstract
The magnitude of interest in the epidemiology of transmissible human diseases is reflected in the vast number of tools and methods developed recently with the expressed purpose to characterize and track evolutionary changes that occur in agents of these diseases over time. Within the past decade a new suite of such tools has become available with the emergence of the so-called "omics" technologies. Among these, two are exponents of the ongoing genomic revolution. Firstly, high-density nucleic acid probe arrays have been proposed and developed using various chemical and physical approaches. Via hybridization-mediated detection of entire genes or genetic polymorphisms in such genes and intergenic regions these so called "DNA chips" have been successfully applied for distinguishing very closely related microbial species and strains. Second and even more phenomenal, next generation sequencing (NGS) has facilitated the assessment of the complete nucleotide sequence of entire microbial genomes. This technology currently provides the most detailed level of bacterial genotyping and hence allows for the resolution of microbial spread and short-term evolution in minute detail. We will here review the very recent history of these two technologies, sketch their usefulness in the elucidation of the spread and epidemiology of mostly hospital-acquired infections and discuss future developments.
Collapse
Affiliation(s)
- W Michael Dunne
- Data Analytics Unit, bioMerieux, 100 Rodolphe Street, Durham, NC 27712, USA.
| | - Hannes Pouseele
- Data Analytics Unit, bioMerieux, 100 Rodolphe Street, Durham, NC 27712, USA; Applied Maths NV, Keistraat 120, 9830 Sint-Martens-Latem, Belgium.
| | - Stefan Monecke
- Alere Technologies GmbH, Jena, Germany; InfectoGnostics Research Campus, Jena, Germany; Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany; InfectoGnostics Research Campus, Jena, Germany.
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux, 3, Route de Port Michaud, 38390 La Balme Les Grottes, France.
| |
Collapse
|
46
|
BEZLOTOXUMAB: A NEW DRUG FOR THE TOXIC EFFECTS OF CLOSTRIDIUM DIFFICILE. Gastroenterol Nurs 2017; 40:325-326. [PMID: 28746119 DOI: 10.1097/sga.0000000000000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|