1
|
López MG, Campos-Herrero MI, Torres-Puente M, Cañas F, Comín J, Copado R, Wintringer P, Iqbal Z, Lagarejos E, Moreno-Molina M, Pérez-Lago L, Pino B, Sante L, García de Viedma D, Samper S, Comas I. Deciphering the Tangible Spatio-Temporal Spread of a 25-Year Tuberculosis Outbreak Boosted by Social Determinants. Microbiol Spectr 2023; 11:e0282622. [PMID: 36786614 PMCID: PMC10100973 DOI: 10.1128/spectrum.02826-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Outbreak strains of Mycobacterium tuberculosis are promising candidates as targets in the search for intrinsic determinants of transmissibility, as they are responsible for many cases with sustained transmission; however, the use of low-resolution typing methods and restricted geographical investigations represent flaws in assessing the success of long-lived outbreak strains. We can now address the nature of outbreak strains by combining large genomic data sets and phylodynamic approaches. We retrospectively sequenced the whole genome of representative samples assigned to an outbreak circulating in the Canary Islands (the GC strain) since 1993, which accounts for ~20% of local tuberculosis cases. We selected a panel of specific single nucleotide polymorphism (SNP) markers for an in-silico search for additional outbreak-related sequences within publicly available tuberculosis genomic data. Using this information, we inferred the origin, spread, and epidemiological parameters of the GC strain. Our approach allowed us to accurately trace the historical and more recent dispersion of the GC strain. We provide evidence of a highly successful nature within the Canarian archipelago but limited expansion abroad. Estimation of epidemiological parameters from genomic data disagree with a distinctive biology of the GC strain. With the increasing availability of genomic data allowing for the accurate inference of strain spread and critical epidemiological parameters, we can now revisit the link between Mycobacterium tuberculosis genotypes and transmission, as is routinely carried out for SARS-CoV-2 variants of concern. We demonstrate that social determinants rather than intrinsically higher bacterial transmissibility better explain the success of the GC strain. Importantly, our approach can be used to trace and characterize strains of interest worldwide. IMPORTANCE Infectious disease outbreaks represent a significant problem for public health. Tracing outbreak expansion and understanding the main factors behind emergence and persistence remain critical to effective disease control. Our study allows researchers and public health authorities to use Whole-Genome Sequencing-based methods to trace outbreaks, and shows how available epidemiological information helps to evaluate the factors underpinning outbreak persistence. Taking advantage of all the freely available information placed in public repositories, researchers can accurately establish the expansion of an outbreak beyond original boundaries, and determine the potential risk of a strain to inform health authorities which, in turn, can define target strategies to mitigate expansion and persistence. Finally, we show the need to evaluate strain transmissibility in different geographic contexts to unequivocally associate spread to local or pathogenic factors, an important lesson taken from genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Mariana G. López
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Ma Isolina Campos-Herrero
- Servicio de Microbiología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Manuela Torres-Puente
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Fernando Cañas
- Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Fundación IIS Aragón, Zaragoza, Spain
| | - Rodolfo Copado
- Hospital José Molina Orosa, Las Palmas de Gran Canaria, Spain
| | - Penelope Wintringer
- European Molecular Biology Laboratory – European Bioinformatics Institute, Hinxton, UK
| | - Zamin Iqbal
- European Molecular Biology Laboratory – European Bioinformatics Institute, Hinxton, UK
| | - Eduardo Lagarejos
- Servicio de Microbiología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Miguel Moreno-Molina
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Laura Pérez-Lago
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Berta Pino
- Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Laura Sante
- Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Darío García de Viedma
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Fundación IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Pérez-Lago L, Monteserin J, Paul R, Maus SR, Yokobori N, Herranz M, Sicilia J, Acosta F, Fajardo S, Chiner-Oms Á, Matteo M, Simboli N, Comas I, Muñoz P, López B, Ritacco V, García de Viedma D. Recurrences of multidrug-resistant tuberculosis: Strains involved, within-host diversity, and fine-tuned allocation of reinfections. Transbound Emerg Dis 2021; 69:327-336. [PMID: 33411991 DOI: 10.1111/tbed.13982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 11/27/2022]
Abstract
Recurrent tuberculosis occurs due to exogenous reinfection or reactivation/persistence. We analysed 90 sequential MDR Mtb isolates obtained in Argentina from 27 patients with previously diagnosed MDR-TB that recurred in 2018 (1-10 years, 2-10 isolates per patient). Three long-term predominant strains were responsible for 63% of all MDR-TB recurrences. Most of the remaining patients were infected by strains different from each other. Reactivation/persistence of the same strain caused all but one recurrence, which was due to a reinfection with a predominant strain. One of the prevalent strains showed marked stability in the recurrences, while in another strain higher SNP-based diversity was observed. Comparisons of intra- versus inter-patient SNP distances identified two possible reinfections with closely related variants circulating in the community. Our results show a complex scenario of MDR-TB infections in settings with predominant MDR Mtb strains.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Johana Monteserin
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Roxana Paul
- Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Sandra R Maus
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Noemí Yokobori
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Marta Herranz
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Jon Sicilia
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Fermín Acosta
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sandra Fajardo
- Centro Regional de estudios Bioquñimicos de la Tuberculosis, Rosario, Argentina
| | - Álvaro Chiner-Oms
- Centro Superior de Investigación en Salud Pública (FISABIO), Universitat de València, Valencia, Spain
| | - Mario Matteo
- Laboratorio Cetrángolo, Hospital Muñiz/Instituto de Tisioneumonología Raúl Vaccarezza, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norberto Simboli
- Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.,CIBER Salud Pública (CIBERESP), Spain
| | - Patricia Muñoz
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Beatriz López
- Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Viviana Ritacco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto Nacional de Enfermedades Infecciosas ANLIS Carlos G Malbrán, Buenos Aires, Argentina
| | - Darío García de Viedma
- Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Spain
| |
Collapse
|
3
|
Matsumoto M, Kubota T, Fujita S, Shiozaki K, Kishida S, Yamamoto A. Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infect Immun 2019; 87:e00459-19. [PMID: 31501250 PMCID: PMC6803335 DOI: 10.1128/iai.00459-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular bacterial infections affect all vertebrates. Cultured fish are particularly vulnerable because no effective protection measures have been established since such infections emerged approximately 50 years ago. As in other vertebrates, the induction of cell-mediated immunity (CMI) plays an important role in protecting fish against infection. However, details of the mechanism of CMI induction in fish have not been clarified. In the present study, we focused on the production of interleukin 12 (IL-12), an important factor in CMI induction in fish. Using several different approaches, we investigated IL-12 regulation in amberjack (Seriola dumerili), the species most vulnerable to intracellular bacterial disease. The results of promoter assays and transcription factor gene expression analyses showed that the expression of interferon regulatory factor-1 (IRF-1) and activator protein-1 (AP-1) is necessary for IL-12 production. Phagocytosis of living cells (LCs) of Nocardia seriolae bacteria induced IL-12 production in neutrophils, accompanied by IRF-1 and AP-1 gene expression. Bacteria in which the exported repetitive protein (Erp)-like gene was deleted (Δerp-L) could not establish intracellular parasitism or induce IRF-1 and AP-1 expression or IL-12 production, despite being phagocytosed by neutrophils. These data suggest that IL-12 production is regulated by (i) two transcription factors, IRF-1 and AP-1, (ii) phagocytosis of LCs by neutrophils, and (iii) one or more cell components of LCs. Our results enhance the understanding of the immune response to intracellular bacterial infections in vertebrates and could facilitate the discovery of new agents to prevent intracellular bacterial disease.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Taisei Kubota
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Sinsuke Fujita
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Shosei Kishida
- Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev 2019; 83:83/2/e00062-18. [PMID: 30918049 DOI: 10.1128/mmbr.00062-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Mycobacterium tuberculosis genome is more heterogenous and less genetically stable within the host than previously thought. Currently, only limited data exist on the within-host microevolution, diversity, and genetic stability of M. tuberculosis As a direct consequence, our ability to infer M. tuberculosis transmission chains and to understand the full complexity of drug resistance profiles in individual patients is limited. Furthermore, apart from the acquisition of certain drug resistance-conferring mutations, our knowledge on the function of genetic variants that emerge within a host and their phenotypic impact remains scarce. We performed a systematic literature review of whole-genome sequencing studies of serial and parallel isolates to summarize the knowledge on genetic diversity and within-host microevolution of M. tuberculosis We identified genomic loci of within-host emerged variants found across multiple studies and determined their functional relevance. We discuss important remaining knowledge gaps and finally make suggestions on the way forward.
Collapse
|
5
|
A Mycobacterium tuberculosis Beijing strain persists at high rates and extends its geographic boundaries 20 years after importation. Sci Rep 2019; 9:4687. [PMID: 30886337 PMCID: PMC6423232 DOI: 10.1038/s41598-019-40525-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Transmission of Beijing Mycobacterium tuberculosis can be investigated based on genotypic analysis of clinical isolates. A Beijing strain began to spread on Gran Canaria Island, Spain, at the end of the last century. In 1996, only 3 years after its importation to the island, its frequency had increased to 27.1% of all the isolates. The strain was tracked during the following years, and the most recent data obtained corresponded to 2007-8, when its presence continued to be alarming (21%). In the current study, we updated data on the distribution of this strain 20 years (2013–2014) after it was first detected on the island and extended the analysis for the first time to all the mycobacteriology laboratories covering the population of the Canary Island archipelago. Rapid updating was enabled by means of 2 different strain-specific PCRs: one targeting a peculiar feature of the strain, which was identified based on an IS6110 copy mapping in the Rv2180c gene, and a newly defined strain-specific single nucleotide polymorphism, which was identified by whole-genome sequencing. The results showed that the strain has remained highly prevalent (20.90% of all isolates), has spread throughout the neighbouring islands, and has also reached high representativeness in them (11–32%).
Collapse
|
6
|
Sologuren I, Martínez-Saavedra MT, Solé-Violán J, de Borges de Oliveira E, Betancor E, Casas I, Oleaga-Quintas C, Martínez-Gallo M, Zhang SY, Pestano J, Colobran R, Herrera-Ramos E, Pérez C, López-Rodríguez M, Ruiz-Hernández JJ, Franco N, Ferrer JM, Bilbao C, Andújar-Sánchez M, Álvarez Fernández M, Ciancanelli MJ, Rodríguez de Castro F, Casanova JL, Bustamante J, Rodríguez-Gallego C. Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. J Clin Immunol 2018; 38:513-526. [PMID: 29882021 PMCID: PMC6429553 DOI: 10.1007/s10875-018-0512-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
The pathogenesis of life-threatening influenza A virus (IAV) disease remains elusive, as infection is benign in most individuals. We studied two relatives who died from influenza. We Sanger sequenced GATA2 and evaluated the mutation by gene transfer, measured serum cytokine levels, and analyzed circulating T- and B-cells. Both patients (father and son, P1 and P2) died in 2011 of H1N1pdm IAV infection at the ages of 54 and 31 years, respectively. They had not suffered from severe or moderately severe infections in the last 17 (P1) and 15 years (P2). A daughter of P1 had died at 20 years from infectious complications. Low B-cell, NK- cell, and monocyte numbers and myelodysplastic syndrome led to sequence GATA2. Patients were heterozygous for a novel, hypomorphic, R396L mutation leading to haplo-insufficiency. B- and T-cell rearrangement in peripheral blood from P1 during the influenza episode showed expansion of one major clone. No T-cell receptor excision circles were detected in P1 and P3 since they were 35 and 18 years, respectively. Both patients presented an exuberant, interferon (IFN)-γ-mediated hypercytokinemia during H1N1pdm infection. No data about patients with viremia was available. Two previously reported adult GATA2-deficient patients died from severe H1N1 IAV infection; GATA2 deficiency may predispose to life-threatening influenza in adulthood. However, a role of other genetic variants involved in immune responses cannot be ruled out. Patients with GATA2 deficiency can reach young adulthood without severe infections, including influenza, despite long-lasting complete B-cell and natural killer (NK) cell deficiency, as well as profoundly diminished T-cell thymic output.
Collapse
Affiliation(s)
- Ithaisa Sologuren
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | | | - Jordi Solé-Violán
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Edgar de Borges de Oliveira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | - Eva Betancor
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Casas
- National Influenza Center-Madrid, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | | | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Jose Pestano
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Roger Colobran
- Department of Immunology, Vall d'Hebrón University Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Estefanía Herrera-Ramos
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Carmen Pérez
- Department of Microbiology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Marta López-Rodríguez
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - José Juan Ruiz-Hernández
- Department of Internal Medicine, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Nieves Franco
- Intensive Care Unit, Mostoles University Hospital, Madrid, Spain
| | - José María Ferrer
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bilbao
- Department of Hematology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Miguel Andújar-Sánchez
- Department of Pathology, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | | | - Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
7
|
Herranz M, Pole I, Ozere I, Chiner-Oms Á, Martínez-Lirola M, Pérez-García F, Gijón P, Serrano MJR, Romero LC, Cuevas O, Comas I, Bouza E, Pérez-Lago L, García-de-Viedma D. Mycobacterium tuberculosis Acquires Limited Genetic Diversity in Prolonged Infections, Reactivations and Transmissions Involving Multiple Hosts. Front Microbiol 2018; 8:2661. [PMID: 29403447 PMCID: PMC5780704 DOI: 10.3389/fmicb.2017.02661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Background:Mycobacterium tuberculosis (MTB) has limited ability to acquire variability. Analysis of its microevolution might help us to evaluate the pathways followed to acquire greater infective success. Whole-genome sequencing (WGS) in the analysis of the transmission of MTB has elucidated the magnitude of variability in MTB. Analysis of transmission currently depends on the identification of clusters, according to the threshold of variability (<5 SNPs) between isolates. Objective: We evaluated whether the acquisition of variability in MTB, was more frequent in situations which could favor it, namely intrapatient, prolonged infections or reactivations and interpatient transmissions involving multiple sequential hosts. Methods: We used WGS to analyze the accumulation of variability in sequential isolates from prolonged infections or translations from latency to reactivation. We then measured microevolution in transmission clusters with prolonged transmission time, high number of involved cases, simultaneous involvement of latency and active transmission. Results: Intrapatient and interpatient acquisition of variability was limited, within the ranges expected according to the thresholds of variability proposed, even though bursts of variability were observed. Conclusions: The thresholds of variability proposed for MTB seem to be valid in most circumstances, including those theoretically favoring acquisition of variability. Our data point to multifactorial modulation of microevolution, although further studies are necessary to elucidate the factors underlying this modulation.
Collapse
Affiliation(s)
- Marta Herranz
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ilva Pole
- Childhood Tuberculosis Department, Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Riga, Latvia.,Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Ozere
- Childhood Tuberculosis Department, Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Riga, Latvia.,Department of Infectology and Dermatology, Riga Stradinš University, Riga, Latvia
| | - Álvaro Chiner-Oms
- Unidad Mixta Genómica y Salud, Centro Superior de Investigación en Salud Pública (FISABIO)-Universitat de València, Valencia, Spain
| | | | - Felipe Pérez-García
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Paloma Gijón
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María Jesús Ruiz Serrano
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura Clotet Romero
- Servei de Vigilància Epidemiològica i Resposta a Emergències de Salut Pública al Vallès Occidental i Vallès Oriental, Subdirecció General de Vigilància i Resposta a Emergències de Salut Pública, Agència de Salut Pública de Catalunya, Barcelona, Spain
| | - Oscar Cuevas
- Servicio de Laboratorio, Institut d'Investigació i Innovació Parc Taulí, I3PT Parc Taulí Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Emilio Bouza
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Pérez-Lago
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Darío García-de-Viedma
- Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
8
|
A Highly Potent Class of Halogenated Phenazine Antibacterial and Biofilm-Eradicating Agents Accessed Through a Modular Wohl-Aue Synthesis. Sci Rep 2017; 7:2003. [PMID: 28515440 PMCID: PMC5435703 DOI: 10.1038/s41598-017-01045-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Unlike individual, free-floating planktonic bacteria, biofilms are surface-attached communities of slow- or non-replicating bacteria encased within a protective extracellular polymeric matrix enabling persistent bacterial populations to tolerate high concentrations of antimicrobials. Our current antibacterial arsenal is composed of growth-inhibiting agents that target rapidly-dividing planktonic bacteria but not metabolically dormant biofilm cells. We report the first modular synthesis of a library of 20 halogenated phenazines (HP), utilizing the Wohl-Aue reaction, that targets both planktonic and biofilm cells. New HPs, including 6-substituted analogues, demonstrate potent antibacterial activities against MRSA, MRSE and VRE (MIC = 0.003-0.78 µM). HPs bind metal(II) cations and demonstrate interesting activity profiles when co-treated in a panel of metal(II) cations in MIC assays. HP 1 inhibited RNA and protein biosynthesis while not inhibiting DNA biosynthesis using 3H-radiolabeled precursors in macromolecular synthesis inhibition assays against MRSA. New HPs reported here demonstrate potent eradication activities (MBEC = 0.59-9.38 µM) against MRSA, MRSE and VRE biofilms while showing minimal red blood cell lysis or cytotoxicity against HeLa cells. PEG-carbonate HPs 24 and 25 were found to have potent antibacterial activities with significantly improved water solubility. HP small molecules could have a dramatic impact on persistent, biofilm-associated bacterial infection treatments.
Collapse
|
9
|
Genomic Epidemiology of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:79-93. [DOI: 10.1007/978-3-319-64371-7_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Pérez-Lago L, Izco S, Herranz M, Tudó G, Carcelén M, Comas I, Sierra O, González-Martín J, Ruiz-Serrano MJ, Eyene J, Bouza E, García de Viedma D. A novel strategy based on genomics and specific PCR reveals how a multidrug-resistant Mycobacterium tuberculosis strain became prevalent in Equatorial Guinea 15 years after its emergence. Clin Microbiol Infect 2016; 23:92-97. [PMID: 27746398 DOI: 10.1016/j.cmi.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/19/2016] [Accepted: 10/06/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Molecular epidemiology techniques in tuberculosis (TB) can identify high-risk strains that are actively transmitted. We aimed to implement a novel strategy to optimize the identification and control of multidrug-resistant (MDR) TB in a specific population. METHODS We developed a strain-specific PCR tailored from whole genome sequencing (WGS) data to track a specific MDR prevalent strain in Equatorial Guinea (EG-MDR). RESULTS The PCR was applied prospectively on remnants of GeneXpert reaction mixtures owing to the lack of culture facilities in Equatorial Guinea. In 147 (93%) of 158 cases, we were able to differentiate between infection by the EG-MDR strain or by any other strain and found that 44% of all rifampicin-resistant TB cases were infected by EG-MDR. We also analysed 93 isolates obtained from Equatorial Guinea 15 years ago, before MDR-TB had become the problem it is today. We found that two of the scarce historical MDR cases were infected by EG-MDR. WGS revealed low variability-six single nucleotide polymorphisms acquired by this strain over 15 years-likely because of the lack in the country of a specific program to treat MDR-TB. CONCLUSIONS Our novel strategy, which integrated WGS analysis and strain-specific PCRs, represents a low-cost, rapid and transferable strategy that allowed a prospective efficient survey and fast historical analysis of MDR-TB in a population.
Collapse
Affiliation(s)
- L Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades respiratorias, CIBERES, Spain
| | - S Izco
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - M Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades respiratorias, CIBERES, Spain
| | - G Tudó
- Servei de Microbiologia, Hospital Clinic-CDB, Barcelona, Spain; IS Global, Barcelona, Spain
| | - M Carcelén
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - I Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - O Sierra
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - J González-Martín
- Servei de Microbiologia, Hospital Clinic-CDB, Barcelona, Spain; IS Global, Barcelona, Spain
| | - M J Ruiz-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades respiratorias, CIBERES, Spain
| | - J Eyene
- Programa Nacional TB y Lepra, Malabo, Equatorial Guinea
| | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades respiratorias, CIBERES, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades respiratorias, CIBERES, Spain.
| |
Collapse
|
11
|
Garrison AT, Abouelhassan Y, Norwood VM, Kallifidas D, Bai F, Nguyen MT, Rolfe M, Burch GM, Jin S, Luesch H, Huigens RW. Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis. J Med Chem 2016; 59:3808-25. [PMID: 27018907 DOI: 10.1021/acs.jmedchem.5b02004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Persistent bacteria, including persister cells within surface-attached biofilms and slow-growing pathogens lead to chronic infections that are tolerant to antibiotics. Here, we describe the structure-activity relationships of a series of halogenated phenazines (HP) inspired by 2-bromo-1-hydroxyphenazine 1. Using multiple synthetic pathways, we probed diverse substitutions of the HP scaffold in the 2-, 4-, 7-, and 8-positions, providing critical information regarding their antibacterial and bacterial eradication profiles. Halogenated phenazine 14 proved to be the most potent biofilm-eradicating agent (≥99.9% persister cell killing) against MRSA (MBEC < 10 μM), MRSE (MBEC = 2.35 μM), and VRE (MBEC = 0.20 μM) biofilms while 11 and 12 demonstrated excellent antibacterial activity against M. tuberculosis (MIC = 3.13 μM). Unlike antimicrobial peptide mimics that eradicate biofilms through the general lysing of membranes, HPs do not lyse red blood cells. HPs are promising agents that effectively target persistent bacteria while demonstrating negligible toxicity against mammalian cells.
Collapse
Affiliation(s)
- Aaron T Garrison
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Verrill M Norwood
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Fang Bai
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Minh Thu Nguyen
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Melanie Rolfe
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Gena M Burch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Shouguang Jin
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Robert W Huigens
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| |
Collapse
|
12
|
Ultrafast Assessment of the Presence of a High-Risk Mycobacterium tuberculosis Strain in a Population. J Clin Microbiol 2015; 54:779-81. [PMID: 26719445 DOI: 10.1128/jcm.02851-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023] Open
Abstract
A persistent 8-year infection by a Beijing Mycobacterium tuberculosis strain from a previous outbreak after importation from West Africa obliged us to investigate secondary cases. We developed a multiplex PCR method based on whole-genome sequencing to target strain-specific single nucleotide polymorphisms (SNPs). In 1 week, we analyzed 868 isolates stored over 6 years. Only 2 cases (immigrants from Guinea Conakry) harbored the strain, which ruled out transmission-despite opportunities-and challenged some of the advantages associated with Beijing strains.
Collapse
|