1
|
Islam MR, Adam H, Akochy PM, Sharma M, McGurran A, Soualhine H. Draft genome sequences of clinical Mycobacterium canettii strains in Canada. Microbiol Resour Announc 2024; 13:e0062224. [PMID: 39297625 PMCID: PMC11465794 DOI: 10.1128/mra.00622-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024] Open
Abstract
Mycobacterium canettii is a rare pathogen causing tuberculosis in humans and presents a risk to public health. Here, we report the genome sequences of two M. canettii strains. The genomes will assist in creating sequence-based tools for M. canettii and serve as references for identification, surveillance, and epidemiological investigations.
Collapse
Affiliation(s)
- Md Rashedul Islam
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Heather Adam
- Shared Health, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Meenu Sharma
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alisa McGurran
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Hafid Soualhine
- National Reference Centre for Mycobacteriology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Huang HT, Lin WH, Chan TH, Jou R. Genetic surveillance and outcomes of pyrazinamide and fluoroquinolones-resistant tuberculosis in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1236-1244. [PMID: 37690869 DOI: 10.1016/j.jmii.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pyrazinamide (PZA) and fluoroquinolone (FQ), particularly moxifloxacin (MXF), are essential drugs in the World Health Organization (WHO) recommended short-course regimen to treat drug-susceptible tuberculosis (TB). METHODS To understand the extent of PZA and MXF susceptibility in general TB cases in Taiwan, we conducted retrospective analyses of 385 conservative Mycobacterium tuberculosis complex (MTBC) isolates identified from 4 TB laboratories in different regions of Taiwan. The case information was obtained from the TB registry. Genotypic drug susceptibility testing (DST) was performed by sequencing drug-resistance associated genes, PZA (pncA) and FQ (gyrA, and gyrB). Phenotypic DST was determined using the Bactec MGIT 960 system or the agar proportion method. Genotyping was carried out using spacer oligonucleotide typing. RESULTS In this study, 4.7% (18/385) cases' isolates harbored pncA mutations and 7.0% (27/385) cases' isolates harbored gyrA or gyrB mutation. Notably, pncA mutation was associated with Beijing family genotypes (P = 0.028), East African-Indian (EAI) genotypes (P = 0.047) and MDR-TB (P < 0.001). Whereas, gyrA or gyrB mutation was associated with EAI genotypes (P = 0.020) and MDR-TB (P = 0.006). In addition, a statistically significant difference was found between the favorable outcomes using active and inactive PZA (P = 0.009) in 38 case isolates with any pncA, gyrA, or gyrB mutation. CONCLUSION We concluded that routine PZA and FQ susceptibility tests are recommended for guiding the treatment of TB.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tai-Hua Chan
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
3
|
Alshabrmi FM, Alatawi EA. Deciphering the mechanism of resistance by novel double mutations in pncA in Mycobacterium tuberculosis using protein structural graphs (PSG) and structural bioinformatic approaches. Comput Biol Med 2023; 154:106599. [PMID: 36731361 DOI: 10.1016/j.compbiomed.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The evolution of MDR and XDR-TB is a growing concern and public health safety threat around the world. Gene mutations are the prime cause of drug resistance in tuberculosis, however the reports of double mutations further aggravated the situation. Despite the large-scale genomic sequencing and identification of novel mutations, structure investigation of the protein is still required to structurally and functionally characterize these novel mutations to design novel drugs for improved clinical outcome. Hence, we used structural bioinformatics approaches i.e. molecular modeling, residues communication and molecular simulation to understand the impact of novel double S59Y-L85P, D86G-V180F and S104G-V130 M mutation on the structure, function of pncA encoded Pyrazinamidase (PZase) and resistance of Pyrazinamide (PZA). Our results revealed that these mutations alter the binding paradigm and destabilize the protein to release the drug. Protein commination network (PCN) revealed variations in the hub residues and sub-networks which consequently alter the internal communication and signaling. The region 1-75 demonstrated higher flexibility in the mutant structures and minimal by the wild type which destabilize of the internally arranged beta-sheets which consequently reduce the binding of PZA and potentially Fe ion in the mutants. Hydrogen bonding analysis further validated the findings. The total binding free energy (ΔG) for each complex i.e. wild type -7.46 kcal/mol, S59Y-L85P -5.21 kcal/mol, S104G-V130 M -5.33 kcal/mol while for the D86G-V180F mutant the TBE was calculated to be -6.26 kcal/mol. This further confirms that these mutations reduce the binding energy of PZA for PZase and causes resistance in the effective therapy for TB. The trajectories motion was also observed to be affected by these mutations. In conclusion, these mutations use destabilizing approach to reduce the binding of PZA and causes resistance. These features can be used to design novel structure-based drugs against Tuberculosis.
Collapse
Affiliation(s)
- Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
4
|
Alatawi EA, Alshabrmi FM. Structural and Dynamic Insights into the W68L, L85P, and T87A Mutations of Mycobacterium tuberculosis Inducing Resistance to Pyrazinamide. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1615. [PMID: 35162636 PMCID: PMC8835092 DOI: 10.3390/ijerph19031615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
Tuberculosis (TB), the most frequent bacterium-mediated infectious disease caused by Mycobacterium tuberculosis, has been known to infect humans since ancient times. Although TB is common worldwide, the most recent report by the WHO (World Health Organization) listed the three countries of India, China, and Russia with 27%, 14%, and 8% of the global burden of TB, respectively. It has been reported that resistance to TB drugs, particularly by the pncA gene to the pyrazinamide drug due to mutations, significantly affects the effective treatment of TB. Understanding the mechanism of drug resistance using computational methods is of great interest to design effective TB treatment, exploring the structural features with these tools. Thus, keeping in view the importance of these methods, we employed state-of-the-art computational methods to study the mechanism of resistance caused by the W68L, L85P, and T87A mutations recently reported in 2021. We employed a molecular docking approach to predict the binding conformation and studied the dynamic properties of each complex using molecular dynamics simulation approaches. Our analysis revealed that compared to the wildtype, these three mutations altered the binding pattern and reduced the binding affinity. Moreover, the structural dynamic features also showed that these mutations significantly reduced the structural stability and packing, particularly by the W68L and L85P mutations. Moreover, principal component analysis, free energy landscape, and the binding free energy results revealed variation in the protein's motion and the binding energy. The total binding free energy was for the wildtype -9.61 kcal/mol, W68L -7.57 kcal/mol, L85P -6.99 kcal/mol, and T87A -7.77 kcal/mol. Our findings can help to design a structure-based drug against the MDR (multiple drug-resistant) TB.
Collapse
Affiliation(s)
- Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Bagheri M, Pormohammad A, Fardsanei F, Yadegari A, Arshadi M, Deihim B, Hajikhani B, Turner RJ, Khalili F, Mousavi SMJ, Dadashi M, Goudarzi M, Dabiri H, Goudarzi H, Mirsaeidi M, Nasiri MJ. Diagnostic Accuracy of Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis: A Systematic Review with Meta-Analysis. Microb Drug Resist 2021; 28:87-98. [PMID: 34582723 DOI: 10.1089/mdr.2021.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Pyrazinamide (PZA) susceptibility testing plays a critical role in determining the appropriate treatment regimens for multidrug-resistant tuberculosis. We conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of sequencing PZA susceptibility tests against culture-based susceptibility testing methods as the reference standard. Methods: We searched the MEDLINE/PubMed, Embase, and Web of Science databases for the relevant records. The QUADAS-2 tool was used to assess the quality of the studies. Diagnostic accuracy measures (i.e., sensitivity and specificity) were pooled with a random-effects model. All statistical analyses were performed with Meta-DiSc (version 1.4, Cochrane Colloquium, Barcelona, Spain), STATA (version 14, Stata Corporation, College Station, TX), and RevMan (version 5.3, The Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, Denmark) software. Results: A total of 72 articles, published between 2000 and 2019, comprising data for 8,701 isolates of Mycobacterium tuberculosis were included in the final analysis. The pooled sensitivity and specificity of the PZA sequencing test against all reference tests (the combination of BACTEC mycobacteria growth indicator tube 960 (MGIT 960), BACTEC 460, and proportion method) were 87% (95% CI: 85-88) and 94.7% (95% CI: 94-95). The positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the curve estimates were found to be 12.0 (95% CI: 9.0-16.0), 0.17 (95% CI: 0.13-0.21), 106 (95% CI: 71-158), and 96%, respectively. Deek's test result indicated a low likelihood for publication bias (p = 0.01). Conclusions: Our analysis indicated that PZA sequencing may be used in combination with conventional tests due to the advantage of the time to result and in scenarios where culture tests are not feasible. Further work to improve molecular tests would benefit from the availability of standardized reference standards and improvements to the methodology.
Collapse
Affiliation(s)
- Mohammad Bagheri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Yadegari
- School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ray J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Farima Khalili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li K, Yang Z, Gu J, Luo M, Deng J, Chen Y. Characterization of pncA Mutations and Prediction of PZA Resistance in Mycobacterium tuberculosis Clinical Isolates From Chongqing, China. Front Microbiol 2021; 11:594171. [PMID: 33505367 PMCID: PMC7832174 DOI: 10.3389/fmicb.2020.594171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pyrazinamide (PZA) is widely used to treat drug-sensitive or multidrug resistance tuberculosis. However, conventional PZA susceptibility tests of clinical isolates are rather difficult because of the requirement of acid pH. Since resistance to pyrazinamide is primary mediated by mutation of pncA, an alternative way of PZA susceptibility test is to analyze the pyrazinamidase activities of Mycobacterium tuberculosis clinical isolates. Therefore, a database containing the full spectrum of pncA mutations along with pyrazinamidase activities will be beneficial. To characterize mutations of pncA in M. tuberculosis from Chongqing, China, the pncA gene was sequenced and analyzed in 465 clinical isolates. A total of 124 types of mutations were identified in 424 drug-resistant isolates, while no mutation was identified in the 31 pan-susceptible isolates. Ninety-four of the 124 mutations had previously been reported, and 30 new mutations were identified. Based on reported literatures, 294 isolates could be predicted resistant to pyrazinamide. Furthermore, pyrazinamidase activities of the 30 new mutations were tested using the Escherichia coli pncA gene knockout strain. The results showed that 24 of these new mutations (28 isolates) led to loss of pyrazinamidase activity and six (8 isolates) of them did not. Taken together, 322 isolates with pncA mutations could be predicted to be PZA resistant among the 424 drug-resistant isolates tested. Analysis of pncA mutations and their effects on pyrazinamidase activity will not only enrich our knowledge of comprehensive pncA mutations related with PZA resistance but also facilitate rapid molecular diagnosis of pyrazinamide resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhongping Yang
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Luo
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
7
|
Briquet A, Vong R, Roseau JB, Javelle E, Cazes N, Rivière F, Aletti M, Otto MP, Ficko C, Duron S, Fabre M, Pourcel C, Simon F, Soler C. Clinical Features of Mycobacterium canettii Infection: A Retrospective Study of 20 Cases Among French Soldiers and Relatives. Clin Infect Dis 2020; 69:2003-2010. [PMID: 30753345 DOI: 10.1093/cid/ciz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mycobacterium canettii forms part of the Mycobacterium tuberculosis complex. Mycobacterium canettii infections are mainly described in the Horn of Africa. The permanent presence of French soldiers in Djibouti raises the question of the risk of being infected with M. canettii. Here, we describe M. canettii infections among French military and their families between 1998 and 2015. METHODS This retrospective study relied on 3 sources of data: the reference center for mycobacteria in the Biology Department at Percy Military Hospital in Paris, the French Military Center for Epidemiology and Public Health, and the scientific literature. After an exhaustive census of the strains, we studied the epidemiological data on 20 cases among French soldiers and their families. RESULTS Twenty cases of M. canettii infections are reported, including 5 unpublished cases. Adenitis predominates (n = 15), especially in the cervico facial area and among children; 1 case was observed 1 month after dental care in Djibouti. The pulmonary forms were less frequent (n = 6), and 3 atypical forms are described. All patients had stayed in Djibouti. CONCLUSIONS Cases of M. canettii infection among the French military consisted mainly of adenitis; disseminated forms were possible with immunodeficiency. Their evolution under specific treatments was comparable to that of tuberculosis. The presumed origin of the infection seemed to be environmental, possibly a water reservoir, and not due to human-to-human contagion.
Collapse
Affiliation(s)
- Anaïs Briquet
- Respiratory Department, Laveran Military Teaching Hospital, Marseille
| | - Rithy Vong
- Department of Biology, Percy Military Teaching Hospital, Clamart
| | | | - Emilie Javelle
- Department of Infectious Diseases, Laveran Military Teaching Hospital
| | - Nicolas Cazes
- Emergency Medical Department, Prehospital Emergency Medical Services of Marine Fire Battalion, Marseille
| | - Fréderic Rivière
- Respiratory Department, Percy Military Teaching Hospital, Clamart
| | - Marc Aletti
- Department of Infectious Diseases, Percy Military Teaching Hospital, Clamart
| | - Marie-Pierre Otto
- Department of Biology, Sainte-Anne Military Teaching Hospital, Toulon
| | - Cécile Ficko
- Department of Infectious Diseases, Bégin Military Teaching Hospital, Saint-Mandé l'Énergie Atomique, Centre National de la Recherche Scientifique, Univ. Paris Sud, Orsay, France
| | - Sandrine Duron
- French Military Center for Epidemiology and Public Health, Marseille
| | - Michel Fabre
- Department of Biology, Percy Military Teaching Hospital, Clamart
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), Commissariat á ľÉnergie Atomique, Centre National de la Recherche Scientifique, Univ. Paris Sud, Orsay, France
| | - Fabrice Simon
- Department of Infectious Diseases, Laveran Military Teaching Hospital
| | - Charles Soler
- Department of Biology, Percy Military Teaching Hospital, Clamart
| |
Collapse
|
8
|
R NV, G H T, R DV, M H, H H, N S. Lateral Flow Genochromatographic Strip for Naked-Eye Detection of Mycobacterium Tuberculosis PCR Products with Gold Nanoparticles as a Reporter. J Biomed Phys Eng 2020; 10:307-318. [PMID: 32637375 PMCID: PMC7321395 DOI: 10.31661/jbpe.v0i0.1912-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis (MTB) is a pathogen causing tuberculosis (TB) in human, and TB can cause enormous social and economic disruptions. Lateral flow test strips (LFTSs) are inexpensive, portable, disposable, rapid, and easy-to-use analytical tools. Objective LFTSs were prepared for the detection of MTB. LFTSs were fabricated using a new specific probe for MTB H37Rv, based on IS6110 sequence gene, and tailed with poly deoxyadenine (dA). Material and Methods In this experimental study, to create test and control zones, streptavidin (STP) and a 150-mer dA were dotted on a nitrocellolose membrane. Gold nanoparticles (GNPs) were conjugated with poly deoxythymidine sequence and placed on the conjugate pad. The composition of immersion buffers for sample pad and conjugate pad, running solution, solutions of GNPs-S-dT150 and STP were introduced. DNA genome of MTB and Mycobacterium bovis in clinical samples was amplified with PCR, and then detected by the LFTSs. During the assay, samples were firstly hybridized in two steps and then placed on a conjugate pad in a manner that positive and negative samples provided two and one red lines, respectively, on the detection pad. Results After PCR reaction with biotinylated primer, hybridization process with specific MTB probe-dA70-100 toke 10 min, and running process on the strip was performed within 5 min. Conclusion We showed that LFTS can discriminate a particular bacteria strain from others. The LFTSs can be redesigned for detection of other pathogenic genomes.
Collapse
Affiliation(s)
- Nazari-Vanani R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tondro G H
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dehdari Vais R
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haghkhah M
- PhD, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Heli H
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sattarahmady N
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Whitfield MG, Marras SAE, Warren RM, Van Rie A, Rice J, Wangh LJ, Kreiswirth BN. Rapid Pyrazinamide Drug Susceptibility Testing using a Closed-Tube PCR Assay of the Entire pncA gene. Sci Rep 2020; 10:4234. [PMID: 32144379 PMCID: PMC7060184 DOI: 10.1038/s41598-020-61286-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/18/2019] [Indexed: 11/23/2022] Open
Abstract
The continued use of pyrazinamide in the treatment of tuberculosis in the absence of a rapid, accurate and standardized pyrazinamide drug susceptibility assays is of great concern. While whole genome sequencing holds promise, it is not yet feasible option in low resource settings as it requires expensive instruments and bioinformatic analysis. We investigated the diagnostic performance of a closed-tube Linear-After-The-Exponential (LATE)-PCR assay for pyrazinamide susceptibility in Mycobacterium tuberculosis. Based on a set of 654 clinical Mycobacterium tuberculosis culture isolates with known mutations throughout the pncA gene as determined by Sanger sequencing, the assay displays excellent sensitivity of 96.9% (95% CI: 95.2-98.6) and specificity of 97.9% (95% CI: 96.1-99.7). In a subset of 384 isolates with phenotypic drug susceptibility testing, we also observed high sensitivity of 98.9% (95% CI: 97.5-100) but lower specificity of 91.8% (95% CI: 87.9-95.8) when compared to phenotypic drug susceptibility testing. We conclude that the LATE PCR assay offers both a rapid and accurate prediction of pyrazinamide susceptibility.
Collapse
Affiliation(s)
- Michael G Whitfield
- South African Medical Research Council Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa.
| | - Salvatore A E Marras
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Rob M Warren
- South African Medical Research Council Centre for Tuberculosis Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Annelies Van Rie
- Department of Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - John Rice
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Lawrence J Wangh
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Nutley, New Jersey, United States of America
| |
Collapse
|
10
|
Havlicek J, Dachsel B, Slickers P, Andres S, Beckert P, Feuerriegel S, Niemann S, Merker M, Labugger I. Rapid microarray-based assay for detection of pyrazinamide resistant Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2018; 94:147-154. [PMID: 30733004 PMCID: PMC6531379 DOI: 10.1016/j.diagmicrobio.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Pyrazinamide (PZA) is a key antibiotic for the treatment of drug susceptible tuberculosis. PZA-resistance is mainly mediated by mutations in the pncA gene; however the current gold standard is a phenotypic drug susceptibility test requiring a well-adjusted pH-value for reliable results. Our melting curve assay detects a non-wild type genotype in selected pncA regions in at least 3750 gene copies/mL within 2.5 hours. The prototype assay was further evaluated by analyzing 271 Mycobacterium tuberculosis complex isolates from Swaziland originating from a previously published drug resistance survey and including 118 isolates with pncA mutations. Sensitivity was 83% (95% CI 75-89%) and specificity was 100% (95% CI 98-100%). Under consideration of further improvements with regard to the target range our melting curve assay has the potential as a rapid rule-in test for PZA susceptibility (wild type pncA), however false resistant results (mutant pncA, but PZA susceptible) cannot be ruled out completely.
Collapse
Affiliation(s)
| | | | | | - Sönke Andres
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Patrick Beckert
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany; German Center for Infection Research, Partner site Hamburg-Lübeck-, Borstel, -Riems, Germany.
| | | |
Collapse
|
11
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
12
|
Comparative study of Mycobacterium tuberculosis and Mycobacterium bovis protein profiles. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.417158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Multi- and Extensively Drug Resistant Mycobacterium tuberculosis in South Africa: a Molecular Analysis of Historical Isolates. J Clin Microbiol 2018. [PMID: 29514936 DOI: 10.1128/jcm.01214-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modern advances in genomics provide an opportunity to reinterpret historical bacterial culture collections. In this study, genotypic antibiotic resistance profiles of Mycobacterium tuberculosis isolates from a historical 20-year-old multidrug-resistant tuberculosis (MDR-TB) culture collection in South Africa are described. DNA samples extracted from the phenotypically MDR-TB isolates (n = 240) were assayed by Hain line probe assay (LPA) for the confirmation of MDR-TB and by Illumina Miseq whole-genome sequencing (WGS) for the characterization of mutations in eight genes (rpoB, katG, inhA, rpsL, pncA, embB, gyrA, and rrs) that are known to code for resistance to commonly used anti-TB agents. LPA identified 71.3% of the TB isolates as MDR-TB, 18.3% as rifampin (RIF) monoresistant, 2% as isoniazid (INH) monoresistant, and 8.3% as susceptible to both RIF and INH (RIF+INH). In a subset of 42 randomly selected isolates designated as RIF+INH resistant by Löwenstein-Jensen (LJ) culture in 1993, LPA and WGS results confirmed MDR-TB. In all five INH-monoresistant isolates by LPA and in all but one (the wild type) of the 34 successfully sequenced RIF-monoresistant isolates, WGS revealed matching mutations. Only 26% of isolates designated as susceptible by LPA, however, were found to be wild type by WGS. Novel mutations were found in the rpoB (Thr480Ala, Gln253Arg, Val249Met, Val251Tyr, Val251Phe), katG (Trp477STOP, Gln88STOP, Trp198STOP, Trp412STOP), embB (Thr11Xaa, Gln59Pro), and pncA (Thr100Ile, Thr159Ala, Ala134Arg, Val163Ala, Thr153Ile, DelGpos7, Phe106Ser) genes. Three MDR-TB isolates showed mutations in both the gyrA and rrs genes, suggesting that extensively drug-resistant tuberculosis existed in South Africa well before its formal recognition in 2006.
Collapse
|
14
|
Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria. Clin Microbiol Rev 2018; 31:31/2/e00038-17. [PMID: 29386234 DOI: 10.1128/cmr.00038-17] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria are the causative organisms for diseases such as tuberculosis (TB), leprosy, Buruli ulcer, and pulmonary nontuberculous mycobacterial disease, to name the most important ones. In 2015, globally, almost 10 million people developed TB, and almost half a million patients suffered from its multidrug-resistant form. In 2016, a total of 9,287 new TB cases were reported in the United States. In 2015, there were 174,608 new case of leprosy worldwide. India, Brazil, and Indonesia reported the most leprosy cases. In 2015, the World Health Organization reported 2,037 new cases of Buruli ulcer, with most cases being reported in Africa. Pulmonary nontuberculous mycobacterial disease is an emerging public health challenge. The U.S. National Institutes of Health reported an increase from 20 to 47 cases/100,000 persons (or 8.2% per year) of pulmonary nontuberculous mycobacterial disease among adults aged 65 years or older throughout the United States, with 181,037 national annual cases estimated in 2014. This review describes contemporary methods for the laboratory diagnosis of mycobacterial diseases. Furthermore, the review considers the ever-changing health care delivery system and stresses the laboratory's need to adjust and embrace molecular technologies to provide shorter turnaround times and a higher quality of care for the patients who we serve.
Collapse
|
15
|
Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates. Emerg Microbes Infect 2017; 6:e86. [PMID: 29018250 PMCID: PMC5658769 DOI: 10.1038/emi.2017.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/16/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Pyrazinamide (PZA) is a key antibiotic in current anti-tuberculosis regimens. Although the WHO has stressed the urgent need to obtain data on PZA resistance, in high tuberculosis burden countries, little is known about the level of PZA resistance, the genetic basis of such resistance or its link with Mycobacterium tuberculosis families. In this context, this study assessed PZA resistance through the molecular analysis of 260 Vietnamese M. tuberculosis isolates. First-line drug susceptibility testing, pncA gene sequencing, spoligotyping and mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing were performed. Overall, the pncA mutation frequency was 38.1% (99 out of 260 isolates) but was higher than 72% (89 out of 123 isolates) in multidrug and quadruple-drug resistant isolates. Many different pncA mutations (71 types) were detected, of which 55 have been previously described and 50 were linked to PZA resistance. Among the 16 novel mutations, 14 are likely to be linked to PZA resistance because of their mutation types or codon positions. Genotype analysis revealed that PZA resistance can emerge in any M. tuberculosis cluster or family, although the mutation frequency was the highest in Beijing family isolates (47.7%, 62 out of 130 isolates). These data highlight the high rate of PZA resistance-associated mutations in M. tuberculosis clinical isolates in Vietnam and bring into question the use of PZA for current and future treatment regimens of multidrug-resistant tuberculosis without PZA resistance testing.
Collapse
|
16
|
Supply P, Brosch R. The Biology and Epidemiology of Mycobacterium canettii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:27-41. [PMID: 29116628 DOI: 10.1007/978-3-319-64371-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Genome-based insights into the evolution of Mycobacterium tuberculosis and other tuberculosis-causing mycobacteria are constantly increasing. In particular, the recent genomic and functional characterization of several Myocbacterium canettii strains, which are thought to resemble in many aspects the putative common ancestor of the members of the M. tuberculosis complex (MTBC), has consolidated a plausible scenario of the early evolution of tuberculosis-causing mycobacteria, in which the clonal MTBC, comprising numerous key pathogens of mammalian hosts, has evolved from a generalist mycobacterium living in the environment. These studies also have considerably enriched our knowledge on selected molecular events that likely have contributed to the incursion, maintenance and spread of the MTBC members in diverse mammalian hosts. Here, we summarize and discuss recently revealed molecular and evolutionary aspects and emphasize the vast utility of M. canettii strains for identifying the mechanisms that contributed to the global emergence of M. tuberculosis as one of the most important human pathogens.
Collapse
Affiliation(s)
- Philip Supply
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France.
| |
Collapse
|
17
|
Spinato J, Boivin É, Bélanger-Trudelle É, Fauchon H, Tremblay C, Soualhine H. Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002-2012. BMC Microbiol 2016; 16:164. [PMID: 27459848 PMCID: PMC4962473 DOI: 10.1186/s12866-016-0786-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
Background The increasing emergence of drug-resistant tuberculosis presents a threat to the effective control of tuberculosis (TB). Rapid detection of drug-resistance is more important than ever to address this scourge. The purpose of this study was to genotypically characterize the first-line antitubercular drug-resistant isolates collected over 11 years in Quebec. Results The main mutations found in our resistant strains collection (n = 225) include: the S315T substitution in katG (50.2 %), the -15 C/T mutation in the inhA promoter (29 %); the S531L substitution in rpoB (43 %); the deletion 8 bp 446 / + R140S in pncA (72.9 %); the M306I (35.7 %) and M306V (21.4 %) substitutions in embB. Ten of the mutations in katG and 4 mutations identified in pncA were previously undescribed. Conclusion Screening of mutations conferring resistance to first-line antituberculous drugs using DNA-sequencing approach seems to be feasible and would drastically shorten the time to determine the resistance profile compared to the proportion method.
Collapse
Affiliation(s)
- Joanna Spinato
- McGill University, Montreal, Quebec, Canada.,Present address: Public Health Ontario Laboratory, Toronto, Ontario, M5G 1 M1, Canada
| | - Élyse Boivin
- Laboratoire de santé publique du Quebec, 20045 chemin Sainte-Marie, Sainte-Anne de Bellevue, Quebec, H9X 3R5, Canada
| | - Émilie Bélanger-Trudelle
- Laboratoire de santé publique du Quebec, 20045 chemin Sainte-Marie, Sainte-Anne de Bellevue, Quebec, H9X 3R5, Canada
| | - Huguette Fauchon
- Laboratoire de santé publique du Quebec, 20045 chemin Sainte-Marie, Sainte-Anne de Bellevue, Quebec, H9X 3R5, Canada
| | | | - Hafid Soualhine
- Laboratoire de santé publique du Quebec, 20045 chemin Sainte-Marie, Sainte-Anne de Bellevue, Quebec, H9X 3R5, Canada.
| |
Collapse
|
18
|
Xu P, Wu J, Yang C, Luo T, Shen X, Zhang Y, Nsofor CA, Zhu G, Gicquel B, Gao Q. Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China. Tuberculosis (Edinb) 2016; 98:56-61. [PMID: 27156619 DOI: 10.1016/j.tube.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022]
Abstract
Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug, however, there are relatively few available data on PZA resistant (PZA-R) rate in China. From June 2009 to June 2012, we selected 493 isolates from five field settings in China to investigate PZA-R by pncA gene sequencing. The result showed that PZA-R rate was 1.0% (2/196) among pan-susceptible isolates, 3.1% (4/130) among isoniazid (INH) mono-resistant isolates, 14.0% (6/43) among rifampin (RIF) mono-resistant isolates and 43.5% (54/124) among multidrug resistant (MDR) isolates. MDR tuberculosis (TB), RIF mono-resistance, and retreatment were found to be risk factors for PZA-R. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA mutations indicate that transmission of PZA-R isolates plays an important role in emergence of PZA-R TB. The results suggest that, it is necessary to conduct PZA susceptibility test among MDR isolates and modify the treatment regimens accordingly.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Biomedical Sciences, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Jie Wu
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhong Shan Road, Shanghai 200336, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Biomedical Sciences, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Shen
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhong Shan Road, Shanghai 200336, China
| | - Yangyi Zhang
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhong Shan Road, Shanghai 200336, China
| | - Chijioke A Nsofor
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Biomedical Sciences, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Guofeng Zhu
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhong Shan Road, Shanghai 200336, China.
| | - Brigitte Gicquel
- Emerging Bacterial Pathogens Unit, Institut Pasteur of Shanghai, 411 Hefei Road, Shanghai 200025, China; Unité de Génétique Mycobactérienne, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France.
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Biomedical Sciences, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.
| |
Collapse
|
19
|
Pharmacokinetics and Pharmacodynamics of the Tuberculosis Drugs. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3323-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, van Helden PD, van Rie A. A Global Perspective on Pyrazinamide Resistance: Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0133869. [PMID: 26218737 PMCID: PMC4517823 DOI: 10.1371/journal.pone.0133869] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pyrazinamide (PZA) is crucial for tuberculosis (TB) treatment, given its unique ability to eradicate persister bacilli. The worldwide burden of PZA resistance remains poorly described. METHODS Systematic PubMed, Science Direct and Scopus searches for articles reporting phenotypic (liquid culture drug susceptibility testing or pyrazinamidase activity assays) and/or genotypic (polymerase chain reaction or DNA sequencing) PZA resistance. Global and regional summary estimates were obtained from random-effects meta-analysis, stratified by presence or risk of multidrug resistant TB (MDR-TB). Regional summary estimates were combined with regional WHO TB incidence estimates to determine the annual burden of PZA resistance. Information on single nucleotide polymorphisms (SNPs) in the pncA gene was aggregated to obtain a global summary. RESULTS Pooled PZA resistance prevalence estimate was 16.2% (95% CI 11.2-21.2) among all TB cases, 41.3% (29.0-53.7) among patients at high MDR-TB risk, and 60.5% (52.3-68.6) among MDR-TB cases. The estimated global burden is 1.4 million new PZA resistant TB cases annually, about 270,000 in MDR-TB patients. Among 1,815 phenotypically resistant isolates, 608 unique SNPs occurred at 397 distinct positions throughout the pncA gene. INTERPRETATION PZA resistance is ubiquitous, with an estimated one in six incident TB cases and more than half of all MDR-TB cases resistant to PZA globally. The diversity of SNPs across the pncA gene complicates the development of rapid molecular diagnostics. These findings caution against relying on PZA in current and future TB drug regimens, especially in MDR-TB patients.
Collapse
Affiliation(s)
- Michael G. Whitfield
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Heidi M. Soeters
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin M. Warren
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Talita York
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Samantha L. Sampson
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Elizabeth M. Streicher
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- SA MRC Centre for TB Research, Stellenbosch University, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, South Africa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa
- Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Annelies van Rie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Systematic review of mutations in pyrazinamidase associated with pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 2015; 59:5267-77. [PMID: 26077261 DOI: 10.1128/aac.00204-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Pyrazinamide (PZA) is an important first-line drug in the treatment of tuberculosis (TB) and of significant interest to the HIV-infected community due to the prevalence of TB-HIV coinfection in some regions of the world. The mechanism of resistance to PZA is unlike that of any other anti-TB drug. The gene pncA, encoding pyrazinamidase (PZase), is associated with resistance to PZA. However, because single mutations in PZase have a low prevalence, the individual sensitivities are low. Hundreds of distinct mutations in the enzyme have been associated with resistance, while some only appear in susceptible isolates. This makes interpretation of molecular testing difficult and often leads to the simplification that any PZase mutation causes resistance. This systematic review reports a comprehensive global list of mutations observed in PZase and its promoter region in clinical strains, their phenotypic association, their global frequencies and diversity, the method of phenotypic determination, their MIC values when given, and the method of MIC determination and assesses the strength of the association between mutations and phenotypic resistance to PZA. In this systematic review, we report global statistics for 641 mutations in 171 (of 187) codons from 2,760 resistant strains and 96 mutations from 3,329 susceptible strains reported in 61 studies. For diagnostics, individual mutations (or any subset) were not sufficiently sensitive. Assuming similar error profiles of the 5 phenotyping platforms included in this study, the entire enzyme and its promoter provide a combined estimated sensitivity of 83%. This review highlights the need for identification of an alternative mechanism(s) of resistance, at least for the unexplained 17% of cases.
Collapse
|
22
|
Tenosynovitis caused by a novel nontuberculous Mycobacterium species initially misidentified as a member of the Mycobacterium tuberculosis complex. J Clin Microbiol 2014; 52:4414-8. [PMID: 25253791 DOI: 10.1128/jcm.00967-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a case of tenosynovitis caused by a novel, slowly growing, nonchromogenic, nontuberculous mycobacterium (NTM). Originally misidentified as Mycobacterium tuberculosis complex, the NTM cross-reacts with the M. tuberculosis complex nucleic acid hybridization probe, a M. tuberculosis gamma interferon release assay, and is closely related to M. tuberculosis by 16S rRNA gene sequencing.
Collapse
|
23
|
Abstract
PZA is a unique anti-tuberculosis drug that plays a key role in shortening the TB therapy. PZA kills non-replicating persisters that other TB drugs fail to kill, and thus making it an essential drug for inclusion in any drug combinations for treating drug susceptible and drug-resistant TB such as MDR-TB. PZA acts differently from common antibiotics by inhibiting multiple targets such as energy production, trans-translation and perhaps pantothenate /coenzyme A required for persister survival. Resistance to PZA is mostly caused by mutations in the pncA gene encoding pyrazinamidase involved in conversion of the prodrug PZA to the active form POA. Mutations in the drug target RpsA are also found in some PZA-resistant strains. The recent finding that panD mutations are found in some PZA-resistant strains without pncA or rpsA mutations may suggest a third PZA resistance gene and a potential new target of PZA. Current phenotype based PZA susceptibility testing is not reliable due to false resistance, and sequencing of the pncA gene represents a more rapid, cost-effective and more reliable molecular test for PZA susceptibility testing and should be used for guiding improved treatment of MDR/XDR-TB. Finally, the story of PZA has important implications for not only TB therapy but also chemotherapy in general. PZA serves as a model prototype persister drug and hopefully a 'tipping point' that inspires new efforts at developing a new type of antibiotics or drugs that target non-replicating persisters for improved treatment of not only TB but also other persistent bacterial infections.
Collapse
|
24
|
Pérez-Lago L, Navarro Y, García-de-Viedma D. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review. Res Vet Sci 2013; 97 Suppl:S94-S100. [PMID: 24360647 DOI: 10.1016/j.rvsc.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/17/2013] [Indexed: 10/25/2022]
Abstract
Mycobacterium bovis is both the causative agent of bovine tuberculosis (TB) and a zoonotic pathogen. In humans, considerably fewer cases of TB are caused by M. bovis than M. tuberculosis; nevertheless, diagnostic limitations mean that currently available data on prevalence grossly underestimate the true dimension of the problem. The routes of transmission from animals to humans are well known and include direct exposure to infected animals or consumption of contaminated animal products. Application of fingerprinting tools facilitates analysis of the molecular epidemiology of M. bovis in animal-to-human and human-to-human transmission. Apart from cattle and M. bovis, other animal species and members within the M. tuberculosis complex can contribute to the zoonosis. Improvements in diagnostic techniques, application of more advanced discriminatory genotyping tools, and collaboration between veterinary and human health care researchers are key to our understanding of this zoonosis.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Spain
| | - Yurena Navarro
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain
| | - Darío García-de-Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Spain; CEI Campus Moncloa, UCM-UPM, Madrid, Spain.
| |
Collapse
|
25
|
Rapid detection of Mycobacterium tuberculosis and pyrazinamide susceptibility related to pncA mutations in sputum specimens through an integrated gene-to-protein function approach. J Clin Microbiol 2013; 52:260-7. [PMID: 24226918 DOI: 10.1128/jcm.02285-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Testing the pyrazinamide (PZA) susceptibility of Mycobacterium tuberculosis isolates is challenging. In a previous paper, we described the development of a rapid colorimetric test for the PZA susceptibility of M. tuberculosis by a PCR-based in vitro-synthesized-pyrazinamidase (PZase) assay. Here, we present an integrated approach to detect M. tuberculosis and PZA susceptibility directly from sputum specimens. M. tuberculosis was detected first, using a novel long-fragment quantitative real-time PCR (LF-qPCR), which amplified a fragment containing the whole pncA gene. Then, the positive amplicons were sequenced to find mutations in the pncA gene. For new mutations not found in the Tuberculosis Drug Resistance Mutation Database (www.tbdreamdb.com), the in vitro PZase assay was used to test the PZA resistance. This approach could detect M. tuberculosis within 3 h with a detection limit of 7.8 copies/reaction and report the PZA susceptibility within 2 days. In an initial testing of 213 sputum specimens, the LF-qPCR found 53 positive samples with 92% sensitivity and 97% specificity compared to the culture test for M. tuberculosis detection. DNA sequencing of the LF-qPCR amplicons revealed that 49 samples were PZA susceptible and 1 was PZA resistant. In the remaining 3 samples, with new pncA mutations, the in vitro PZase assay found that 1 was PZA susceptible and 2 were PZA resistant. This integrated approach provides a rapid, efficient, and relatively low-cost solution for detecting M. tuberculosis and PZA susceptibility without culture.
Collapse
|
26
|
Bhuju S, Fonseca LDS, Marsico AG, de Oliveira Vieira GB, Sobral LF, Stehr M, Singh M, Saad MHF. Mycobacterium tuberculosis isolates from Rio de Janeiro reveal unusually low correlation between pyrazinamide resistance and mutations in the pncA gene. INFECTION GENETICS AND EVOLUTION 2013; 19:1-6. [PMID: 23770140 DOI: 10.1016/j.meegid.2013.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
It has been widely accepted, that pyrazinamide (PZA) resistance in Mycobacterium tuberculosis is correlated with mutations in the pncA gene. But since years researchers have been puzzled by the fact that up to 30% of PZA resistant strains do not show any correlation between PZA resistance and mutations in the pncA gene, and thus may vary with geographic area. The objective of the study was to investigate the correlation between PZA susceptibility and mutations in pncA gene in M. tuberculosis isolates from individuals living in a highly endemic area. Therefore we analyzed drug resistant and multidrug resistant (MDR) isolates from patients in Rio de Janeiro, Brazil. From a total of 97 clinical isolates of M. tuberculosis 35 were identified as PZA resistant, 24/35 strains did not show PZase activity and 15/24 (62.5%) strains possess mutation in the pncA gene. This is a low correlation between PZA resistance and PZase activity (68.6%) and even lower correlation between PZA resistance and the presence of mutation in pncA gene (45.7%). Most of the mutations found were conserved near the active site or metal binding site of PZase. The 146A>C mutation was found both in PZA resistant and susceptible isolates, suggesting that this mutation may not fully associated with PZA resistance. Of the mutations found, three have not been previously described. The insertions 192-193 TCCTCGTC and 388-389 AGGTCGATG, although found before, here was found to be a short tandem repeat and in one strain, insertion of the IS6110 was observed 55nt upstream of the gene. All PZA resistant isolates had no mutation in the gene coding ribosomal protein S1 (rpsA), which has recently been proposed as alternate target for pyrazinoic acid (POA). The results show a low association of PZA resistance and pncA gene mutations in a selected patient group from an highly endemic area. Our findings point out that the phenotypic susceptibility testing remains important for the detection of PZA-resistant M. tuberculosis.
Collapse
Affiliation(s)
- Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2013; 2:e34. [PMID: 26038471 PMCID: PMC3697303 DOI: 10.1038/emi.2013.38] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/09/2022]
Abstract
Pyrazinamide (PZA) is a frontline anti-tuberculosis drug that plays a crucial role in the treatment of both drug susceptible and multidrug-resistant tuberculosis (MDR-TB). Resistance to PZA is most commonly associated with mutations in the pncA gene encoding nicotinamidase/pyrazinamidase which converts the prodrug PZA to the active form pyrazinoic acid (POA). RpsA (ribosomal protein S1) involved in trans-translation was recently shown to be a target of PZA and mutations in RpsA are found in some PZA-resistant TB strains. However, some other PZA-resistant strains lack mutations in either pncA or rpsA. To identify potential new mechanisms of PZA resistance, we isolated 174 in vitro mutants of M. tuberculosis H37Rv resistant to PZA to search for resistant isolates that do not have pncA or rpsA mutations. DNA sequencing revealed that 169 of the 174 (97.1%) PZA-resistant mutants had pncA mutations but 5 mutants lacked pncA or rpsA mutations. Whole genome sequencing analyses revealed that the 5 PZA-resistant mutants had different mutations all occurring in the same gene panD encoding aspartate decarboxylase, which is involved in synthesis of β-alanine that is a precursor for pantothenate and co-enzyme A biosynthesis. panD mutations were identified in naturally PZA-resistant Mycobacterium canetti strain and a PZA-resistant MDR-TB clinical isolate. Future studies are needed to address the role of panD mutations in PZA resistance and confirm PanD as a new target of PZA.
Collapse
|
28
|
Borgdorff MW, van Soolingen D. The re-emergence of tuberculosis: what have we learnt from molecular epidemiology? Clin Microbiol Infect 2013; 19:889-901. [PMID: 23731470 DOI: 10.1111/1469-0691.12253] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tuberculosis (TB) has re-emerged over the past two decades: in industrialized countries in association with immigration, and in Africa owing to the human immunodeficiency virus epidemic. Drug-resistant TB is a major threat worldwide. The variable and uncertain impact of TB control necessitates not only better tools (diagnostics, drugs, and vaccines), but also better insights into the natural history and epidemiology of TB. Molecular epidemiological studies over the last two decades have contributed to such insights by answering long-standing questions, such as the proportion of cases attributable to recent transmission, risk factors for recent transmission, the occurrence of multiple Mycobacterium tuberculosis infection, and the proportion of recurrent TB cases attributable to re-infection. M. tuberculosis lineages have been identified and shown to be associated with geographical origin. The Beijing genotype is strongly associated with multidrug resistance, and may have escaped from bacille Calmette-Guérin-induced immunity. DNA fingerprinting has quantified the importance of institutional transmission and laboratory cross-contamination, and has helped to focus contact investigations. Questions to be answered in the near future with whole genome sequencing include identification of chains of transmission within clusters of patients, more precise quantification of mixed infection, and transmission probabilities and rates of progression from infection to disease of various M. tuberculosis lineages, as well as possible variations in vaccine efficacy by lineage. Perhaps most importantly, dynamics in the population structure of M. tuberculosis in response to control measures in high-prevalence areas should be better understood.
Collapse
Affiliation(s)
- M W Borgdorff
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, The Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam and Centre for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Feuerriegel S, Köser CU, Richter E, Niemann S. Mycobacterium canettii is intrinsically resistant to both pyrazinamide and pyrazinoic acid. J Antimicrob Chemother 2013; 68:1439-40. [PMID: 23447141 DOI: 10.1093/jac/dkt042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Cuevas-Córdoba B, Xochihua-González SO, Cuellar A, Fuentes-Domínguez J, Zenteno-Cuevas R. Characterization of pncA gene mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from Mexico. INFECTION GENETICS AND EVOLUTION 2013; 19:330-4. [PMID: 23321280 DOI: 10.1016/j.meegid.2012.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 11/29/2022]
Abstract
Numerous studies have linked mutations in the pncA gene with resistance to pyrazinamide (Z) in Mycobacterium tuberculosis. However, variations in these mutations are specific to the country of origin of the isolate. The aim of this study was to characterize changes in pncA gene sequence in isolates of M. tuberculosis with resistance to Z, from patients in Mexico. M. tuberculosis isolates were recovered from individuals suspected of carrying drug resistant tuberculosis and respective susceptibility tests were developed. In isolates with resistance to pyrazinamide the pncA gene and its promoter were analyzed by capillary sequencing. From 127 drug-resistant isolates collected, 42 (33%) were resistant to pyrazinamide. The pncA sequences showed 26 changes in 34 (81%) isolates: 18 SNPs (n=26, 62%), four insertions (n=4, 9.5%) and four deletions (n=4, 9.5%). Absence of modifications was observed in eight (19%) sequences/isolates. The most frequent changes were the mutations L120P (n=7) and K96R (n=4). Twelve changes found are reported for the first time. This is the first description of pncA gene modifications in pyrazinamide resistant isolates originating in Mexico. We conclude that the diversity of changes in pncA indicates the presence of a noteworthy variety of pyrazinamide resistant strains occurring in the area.
Collapse
|
31
|
Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance. Antimicrob Agents Chemother 2012; 56:6080-7. [PMID: 23006760 DOI: 10.1128/aac.01641-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being genetically monomorphic, the limited genetic diversity within the Mycobacterium tuberculosis complex (MTBC) has practical consequences for molecular methods for drug susceptibility testing and for the use of current antibiotics and those in clinical trials. It renders some representatives of MTBC intrinsically resistant against one or multiple antibiotics and affects the spectrum and consequences of resistance mutations selected for during treatment. Moreover, neutral or silent changes within genes responsible for drug resistance can cause false-positive results with hybridization-based assays, which have been recently introduced to replace slower phenotypic methods. We discuss the consequences of these findings and propose concrete steps to rigorously assess the genetic diversity of MTBC to support ongoing clinical trials.
Collapse
|
32
|
Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J Clin Microbiol 2012; 50:3726-8. [PMID: 22895038 DOI: 10.1128/jcm.00620-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA) is an important component of first-line therapy for the treatment of tuberculosis. Here, we evaluate targeted gene sequencing as a supplement to phenotypic PZA susceptibility testing of Mycobacterium tuberculosis. Routine sequencing of pncA, but not rpsA, is effective for verification of PZA susceptibility results.
Collapse
|
33
|
Zhang Y, Chiu Chang K, Leung CC, Wai Yew W, Gicquel B, Fallows D, Kaplan G, Chaisson RE, Zhang W. 'Z(S)-MDR-TB' versus 'Z(R)-MDR-TB': improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg Microbes Infect 2012; 1:e5. [PMID: 26038418 PMCID: PMC3630910 DOI: 10.1038/emi.2012.18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/16/2022]
Abstract
Indispensable for shortening treatment of drug-susceptible tuberculosis (TB), pyrazinamide (PZA, Z) is also essential in the treatment of multidrug-resistant (MDR)-TB. While resistance to PZA in MDR-TB is associated with poor treatment outcome, bacillary susceptibility to PZA along with the use of fluoroquinolone (FQ) and second-line injectable drugs (SLIDs) may predict improved treatment success in MDR-TB. Despite a high prevalence of PZA resistance among MDR-TB patients (10%–85%), PZA susceptibility testing is seldom performed because of technical challenges. To improve treatment of MDR-TB, we propose to: (i) classify MDR-TB into PZA-susceptible MDR-TB (ZS-MDR-TB) and PZA-resistant MDR-TB (ZR-MDR-TB); (ii) use molecular tests such as DNA sequencing (pncA, gyrA, rrs, etc.) to rapidly identify ZS-MDR-TB versus ZR-MDR-TB and susceptibility profile for FQ and SLID; (iii) refrain from using PZA in ZR-MDR-TB; and (iv) explore the feasibility of shortening the treatment duration of ZS-MDR-TB with a regimen comprising PZA plus at least two bactericidal agents especially new agents like TMC207 or PA-824 or delamanid which the bacilli are susceptible to, with one or two other agents. These measures may potentially shorten therapy, save costs, and reduce side effects of MDR-TB treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD 21205, USA ; Department of Infectious Diseases, Huashan Hospital, Fudan University , Shanghai 200040, China
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Department of Health , Hong Kong, China
| | - Chi-Chiu Leung
- Tuberculosis and Chest Service, Department of Health , Hong Kong, China
| | - Wing Wai Yew
- Department of Microbiology, Chinese University of Hong Kong , Hong Kong, China
| | - Brigitte Gicquel
- Unite de Génétique Mycobactérienne, Institut Pasteur , 28 rue du Dr. Roux 75015 Paris, France
| | - Dorothy Fallows
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute at University of Medicine and Dentistry of New Jersey , Newark, NJ 07103, USA
| | - Gilla Kaplan
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute at University of Medicine and Dentistry of New Jersey , Newark, NJ 07103, USA
| | - Richard E Chaisson
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University , Baltimore, MD 21287, USA
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University , Shanghai 200040, China
| |
Collapse
|
34
|
Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56:5186-93. [PMID: 22825123 DOI: 10.1128/aac.05385-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA) is a first-line antitubercular drug known for its activity against persistent Mycobacterium tuberculosis bacilli. We set out to systematically determine the PZA susceptibility profiles and mutations in the pyrazinamidase (pncA) gene of a collection of multidrug-resistant tuberculosis (MDR-TB) clinical isolates and PZA-resistant (PZA(r)) spontaneous mutants. The frequency of acquired resistance to PZA was determined to be 10(-5) bacilli in vitro. Selection at a lower concentration of PZA yielded a significantly larger number of spontaneous mutants. The methodical approach employed allowed for determination of the frequency of the PZA(r) phenotype correlated with mutations in the pncA gene, which was 87.5% for the laboratory-selected spontaneous mutants examined in this study. As elucidated by structural analysis, most of the identified mutations were foreseen to affect protein activity through either alteration of an active site residue or destabilization of protein structure, indicating some preferential mutation site rather than random scattering. Twelve percent of the PZA(r) mutants did not have a pncA mutation, strongly indicating the presence of at least one other mechanism(s) of PZA(r).
Collapse
|
35
|
Chowdhury IH, Sen A, Bahar B, Hazra A, Chakraborty U, Choudhuri S, Goswami A, Pal NK, Bhattacharya B. A molecular approach to identification and profiling of first-line-drug-resistant mycobacteria from sputum of pulmonary tuberculosis patients. J Clin Microbiol 2012; 50:2082-4. [PMID: 22461679 PMCID: PMC3372138 DOI: 10.1128/jcm.06093-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/15/2012] [Indexed: 11/20/2022] Open
Abstract
Conventional and molecular techniques were applied to detect and characterize drug resistance of mycobacteria in the sputum samples of clinically confirmed tuberculosis. The sensitivities of mycobacterium detection by ZN staining, culture, multiplex PCR, and restriction fragment length polymorphism (RFLP) were 27.7%, 19.9%, 92.9%, and 95.7%, respectively, but all were 100% specific. The conventional and multiple-allele-specific PCR (MAS-PCR) methods enabled establishment of the drug resistance in 19.3% and 86.9% cases, respectively. We demonstrated that molecular techniques have potential in the accurate diagnosis of tuberculosis.
Collapse
Affiliation(s)
| | | | - Bojlul Bahar
- Cell and Molecular Biology Laboratory, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | - Urmita Chakraborty
- Department of Microbiology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | - Avranil Goswami
- Department of Microbiology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Nishith Kumar Pal
- Department of Microbiology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | | |
Collapse
|
36
|
Zhou M, Geng X, Chen J, Wang X, Wang D, Deng J, Zhang Z, Wang W, Zhang XE, Wei H. Rapid colorimetric testing for pyrazinamide susceptibility of M. tuberculosis by a PCR-based in-vitro synthesized pyrazinamidase method. PLoS One 2011; 6:e27654. [PMID: 22102918 PMCID: PMC3213173 DOI: 10.1371/journal.pone.0027654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug. But PZA susceptibility test is challenging because PZA activity is optimal only in an acid environment that inhibits the growth of M. tuberculosis. For current phenotypic methods, inconsistent results between different labs have been reported. Direct sequencing of pncA gene is being considered as an accurate predictor for PZA susceptibility, but this approach needs expensive sequencers and a mutation database to report the results. An in-vitro synthesized Pyrazinamidase (PZase) assay was developed based on PCR amplification of pncA gene and an in vitro wheat germ system to express the pncA gene into PZase. The activity of the synthesized PZase was used as an indicator for PZA susceptibility. Fifty-one clinical isolates were tested along with pncA sequencing and the BACTEC MGIT 960 methods. The in-vitro synthesized PZase assay was able to detect PZA susceptibility of M. tuberculosis within 24 h through observing the color difference either by a spectrometer or naked eyes. This method showed agreements of 100% (33/33) and 88% (14/16) with the pncA sequencing method, and agreements of 96% (27/28) and 65% (15/23) with the BACTEC MGIT 960 method, for susceptible and resistant strains, respectively. The novel in-vitro synthesized PZase assay has significant advantages over current methods, such as its fast speed, simplicity, no need for expensive equipment, and the potentials of being a direct test, predicting resistance level and easy reading results by naked eyes. After confirmation by more clinical tests, this method may provide a radical change to the current PZA susceptibility assays.
Collapse
Affiliation(s)
- Man Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xuelei Geng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Wuan Tuberculosis Control Center, Baofeng Road, Wuhan, China
| | - Xude Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dianbing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weihua Wang
- Wuan Tuberculosis Control Center, Baofeng Road, Wuhan, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (X-EZ)
| | - Hongping Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HW); (X-EZ)
| |
Collapse
|
37
|
Species distribution of the Mycobacterium tuberculosis complex in clinical isolates from 2007 to 2010 in Turkey: a prospective study. J Clin Microbiol 2011; 49:3837-41. [PMID: 21940474 DOI: 10.1128/jcm.01172-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of a group of closely related species that differ in their epidemiological profiles, host ranges, pathogenicities, geographic distributions, and drug resistances. Identification of members in the MTBC is essential for monitoring the epidemiology of tuberculosis (TB) and implementing appropriate public health control measures. In this study, 188 consecutive MTBC clinical isolates from 2007 to 2010 were evaluated to determine the prevalence of MTBC species in Turkey. PCR and restriction fragment length polymorphism analysis (PCR-RFLP) of the gyrB gene were used, and results for species other than M. tuberculosis were confirmed using the GenoType MTBC assay (Hain Lifescience, Nehren, Germany). Most of the strains were found to be M. tuberculosis (94.1%). The prevalences of M. bovis and M. caprae were 4.3% and 1.6%, respectively. Only one M. bovis BCG strain was identified. Overall, the frequency of bovine tuberculosis in humans was 5.3%. We had assumed that bovine TB infection was under control in animal herds, but primary M. bovis infections in humans caused by transmission from infected animals are still an issue in Turkey. Our results indicate that the frequent identification of M. bovis in routine mycobacteriological laboratory work has further importance due to the well-known resistance of this species to pyrazinamide.
Collapse
|
38
|
Reddington K, O'Grady J, Dorai-Raj S, Niemann S, van Soolingen D, Barry T. A novel multiplex real-time PCR for the identification of mycobacteria associated with zoonotic tuberculosis. PLoS One 2011; 6:e23481. [PMID: 21858140 PMCID: PMC3153498 DOI: 10.1371/journal.pone.0023481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. An ability to detect the Mycobacterium tuberculosis complex (MTC) in clinical material while simultaneously differentiating its members is considered important. This allows for the gathering of epidemiological information pertaining to the prevalence, transmission and geographical distribution of the MTC, including those MTC members associated with zoonotic TB infection in humans. Also differentiating between members of the MTC provides the clinician with inherent MTC specific drug susceptibility profiles to guide appropriate chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS The aim of this study was to develop a multiplex real-time PCR assay using novel molecular targets to identify and differentiate between the phylogenetically closely related M. bovis, M. bovis BCG and M. caprae. The lpqT gene was explored for the collective identification of M. bovis, M. bovis BCG and M. caprae, the lepA gene was targeted for the specific identification of M. caprae and a Region of Difference 1 (RD1) assay was incorporated in the test to differentiate M. bovis BCG. The multiplex real-time PCR assay was evaluated on 133 bacterial strains and was determined to be 100% specific for the members of the MTC targeted. CONCLUSIONS/SIGNIFICANCE The multiplex real-time PCR assay developed in this study is the first assay described for the identification and simultaneous differentiation of M. bovis, M. bovis BCG and M. caprae in one internally controlled reaction. Future validation of this multiplex assay should demonstrate its potential in the rapid and accurate diagnosis of TB caused by these three mycobacteria. Furthermore, the developed assay may be used in conjunction with a recently described multiplex real-time PCR assay for identification of the MTC and simultaneous differentiation of M. tuberculosis, M. canettii resulting in an ability to differentiate five of the eight members of the MTC.
Collapse
Affiliation(s)
- Kate Reddington
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Justin O'Grady
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Siobhan Dorai-Raj
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| | - Stefan Niemann
- Molecular Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Thomas Barry
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, National Centre for Biomedical Engineering Science (NCBES), National University of Ireland, Galway, Ireland
| |
Collapse
|
39
|
Pyrazinamide susceptibility testing in Mycobacterium tuberculosis: a systematic review with meta-analyses. Antimicrob Agents Chemother 2011; 55:4499-505. [PMID: 21768515 DOI: 10.1128/aac.00630-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard culture-based testing of the susceptibility of Mycobacterium tuberculosis to pyrazinamide is difficult to perform. This systematic review with meta-analyses evaluated the roles of molecular assays targeting pncA and of pyrazinamidase assays. PubMed and Embase were searched for relevant publications in English. Sensitivity and specificity were estimated in bivariate random-effects models. Of 128 articles identified, 73 sets of data involving culture isolates were initially included in meta-analyses. Summary estimates of sensitivity and specificity, respectively, were 87% and 93% for PCR-DNA sequencing (n = 29), 75% and 95% for PCR-single-stranded conformation polymorphism (SSCP) (n = 5), 96% and 97% for a mixture of other molecular assays (n = 6), and 89% and 97% for pyrazinamidase assays using the Wayne method (n = 33). The median prevalence (range) of pyrazinamide resistance was 51% (31% to 89%) in multidrug-resistant M. tuberculosis isolates and 5% (0% to 9%) in non-multidrug-resistant isolates. Excluding studies with possibly considerable false resistance in the reference assay gave the following estimates of sensitivity and specificity, respectively: 92% and 93% for PCR-DNA sequencing (n = 20), 98% and 96% for other molecular assays (n = 5), and 91% and 97% for the Wayne assay (n = 27). The Wayne assay had significant funnel plot asymmetry, so the test performance might have been overestimated. Considering the prevalence of pyrazinamide resistance in different clinical settings, PCR-DNA sequencing, and possibly other molecular assays targeting pncA, can detect pyrazinamide resistance in multidrug-resistant M. tuberculosis isolates, with predictive values largely exceeding 90%, and rule out pyrazinamide resistance in non-multidrug-resistant isolates, with predictive values exceeding 99%. Molecular assays are probably the way forward for detecting pyrazinamide resistance.
Collapse
|
40
|
Reddington K, O'Grady J, Dorai-Raj S, Maher M, van Soolingen D, Barry T. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains. J Clin Microbiol 2011; 49:651-7. [PMID: 21123525 PMCID: PMC3043491 DOI: 10.1128/jcm.01426-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.
Collapse
Affiliation(s)
- Kate Reddington
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, NCBES, National University of Ireland, Galway, Ireland
| | - Justin O'Grady
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, NCBES, National University of Ireland, Galway, Ireland
| | - Siobhan Dorai-Raj
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, NCBES, National University of Ireland, Galway, Ireland
| | - Majella Maher
- Molecular Diagnostics Research Group, NCBES, National University of Ireland, Galway, Ireland
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Thomas Barry
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Molecular Diagnostics Research Group, NCBES, National University of Ireland, Galway, Ireland
| |
Collapse
|
41
|
Koeck JL, Fabre M, Simon F, Daffé M, Garnotel E, Matan AB, Gérôme P, Bernatas JJ, Buisson Y, Pourcel C. Clinical characteristics of the smooth tubercle bacilli 'Mycobacterium canettii' infection suggest the existence of an environmental reservoir. Clin Microbiol Infect 2010; 17:1013-9. [PMID: 20831613 DOI: 10.1111/j.1469-0691.2010.03347.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over a 3-year follow-up, 30 out of the 318 unique Mycobacterium tuberculosis complex isolates recovered in the Republic of Djibouti had a smooth-type morphology and were Niacine-negative, the characteristics of 'Mycobacterium canettii' strains. Unlike M. tuberculosis, 'M. canettii' grew on nutrient-poor media at 30°C, and possessed characteristic lipids. They were isolated from respiratory and extra-respiratory sites from patients with typical forms of tuberculosis. Most cases resolved with antibiotic therapy but in two human immunodeficiency virus-positive patients 'M. canettii' infection led to septicaemia and death. No cases of human-to-human transmission were observed. The proportion of tuberculosis cases caused by 'M. canettii' was higher among French patients than among Djiboutian patients. Patients with 'M. canettii' were significantly younger than those with tuberculosis caused by other M. tuberculosis complex strains. Smooth tubercle bacilli could be misidentified as non-tuberculous mycobacteria and appear to be limited to the Horn of Africa. Their characteristics are consistent with the existence of non-human sources of infection.
Collapse
Affiliation(s)
- J-L Koeck
- Laboratoire de biologie clinique, HIA Robert Picqué, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fabre M, Hauck Y, Soler C, Koeck JL, van Ingen J, van Soolingen D, Vergnaud G, Pourcel C. Molecular characteristics of "Mycobacterium canettii" the smooth Mycobacterium tuberculosis bacilli. INFECTION GENETICS AND EVOLUTION 2010; 10:1165-73. [PMID: 20692377 DOI: 10.1016/j.meegid.2010.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Since the first discovery of the smooth tubercle (SmTB) bacilli "Mycobacterium canettii" less than 60 isolates have been reported, all but one originating from a limited geographical location, the Horn of Africa. In spite of its rarity, the SmTB lineage deserves special attention. Previous investigations suggested that SmTB isolates represent an ancestral lineage of the Mycobacterium tuberculosis complex (MTBC) and that consequently they might provide essential clues on the origin and evolution of the MTBC. There is evidence that unlike the rest of the MTBC, SmTB strains recombine chromosomal sequences with a yet unknown Mycobacterium species. This behavior contributes to the much larger genetic heterogeneity observed in the SmTB isolates compared to the other members of the MTBC. We have collected 59 SmTB isolates of which 14 were newly recovered since previous reports, and performed extensive phenotypical and genotypical characterization. We take advantage of these investigations to review the current knowledge of "M. canettii". Their characteristics and the apparent lack of human to human transmission are consistent with the previously proposed existence of non-human sources of infection. SmTB strains show remarkably common features together with secondary and taxonomically minor genetic differences such as the presence or absence of the CRISPR (Clustered Regularly Interspersed Palindromic Repeat) locus (usually called Direct Repeat or DR region) or number of IS sequences. Multiple Locus Variable number of tandem repeat Analysis (MLVA) and DR region analyses reveal one predominant clone, one minor clone and a number of more distantly related strains. This suggests that the two most frequent clones may represent successfully emerging lineages.
Collapse
Affiliation(s)
- Michel Fabre
- Laboratoire de biologie clinique, HIA Percy, Clamart, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nakajima C, Rahim Z, Fukushima Y, Sugawara I, van der Zanden AGM, Tamaru A, Suzuki Y. Identification of Mycobacterium tuberculosis clinical isolates in Bangladesh by a species distinguishable multiplex PCR. BMC Infect Dis 2010; 10:118. [PMID: 20470432 PMCID: PMC2877677 DOI: 10.1186/1471-2334-10-118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 05/15/2010] [Indexed: 11/21/2022] Open
Abstract
Background Species identification of isolates belonging to the Mycobacterium tuberculosis complex (MTC) seems to be important for the appropriate treatment of patients, since M. bovis is naturally resistant to a first line anti-tuberculosis (TB) drug, pyrazinamide, while most of the other MTC members are susceptible to this antimicrobial agent. A simple and low-cost differentiation method was needed in higher TB burden countries, such as Bangladesh, where the prevalence of M. bovis among people or cattle has not been investigated. Methods Genetic regions cfp32, RD9 and RD12 were chosen as targets for a species distinguishable multiplex PCR and the system was evaluated with twenty reference strains of mycobacterial species including non-tubercular mycobacteria (NTM). A total of 350 clinical MTC isolates obtained in Bangladesh were then analyzed with this multiplex PCR. Results All of the MTC reference strains gave expected banding patterns and no non-specific amplifications were observed in the NTM strains. Out of 350 clinical isolates examined by this method, 347 (99.1%) were positive for all of the cfp32, RD9 and RD12 and determined as M. tuberculosis. Two isolates lacked cfp32 PCR product and one lacked RD12, however, those three samples were further examined and identified as M. tuberculosis by the sequence analyses of hsp65 and gyrB. Conclusions The MTC-discrimination multiplex PCR (MTCD-MPCR) developed in this study showed high specificity and was thought to be very useful as a routine test because of its simplicity. In the current survey, all the 350 MTC isolates obtained from Bangladesh TB patients were determined as M. tuberculosis and no other MTC were detected. This result suggested the general TB treatment regimen including pyrazinamide to be the first choice in Bangladesh.
Collapse
Affiliation(s)
- Chie Nakajima
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
In-depth molecular characterization of Mycobacterium tuberculosis from New Delhi--predominance of drug resistant isolates of the 'modern' (TbD1) type. PLoS One 2009; 4:e4540. [PMID: 19234602 PMCID: PMC2641002 DOI: 10.1371/journal.pone.0004540] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/17/2009] [Indexed: 01/12/2023] Open
Abstract
Background India has the highest estimated burden of tuberculosis in the world, accounting for 21% of all tuberculosis cases world-wide. However, due to lack of systematic analysis using multiple markers the available information on the genomic diversity of Mycobacterium tuberculosis in India is limited. Methodology/Principal Findings Thus, 65 M. tuberculosis isolates from New Delhi, India were analyzed by spoligotyping, MIRU-VNTR, large deletion PCR typing and single nucleotide polymorphism analysis (SNP). The Central Asian (CAS) 1 _DELHI sub-lineage was the most prevalent sub-lineage comprising 46.2% (n = 30) of all isolates, with shared-type (ST) 26 being the most dominant genotype comprising 24.6% (n = 16) of all isolates. Other sub-lineages observed were: East-African Indian (EAI)-5 (9.2%, n = 6), EAI6_BGD1 (6.2%, n = 4), EAI3_IND, CAS and T1 with 6.2% each (n = 4 each), Beijing (4.6%, n = 3), CAS2 (3.1%, n = 2), and X1 and X2 with 1 isolate each. Genotyping results from five isolates (7.7%) did not match any existing spoligopatterns, and one isolate, ST124, belonged to an undefined lineage. Twenty-six percent of the isolates belonged to the TbD1+ PGG1 genogroup. SNP analysis of the pncA gene revealed a CAS-lineage specific silent mutation, S65S, which was observed for all CAS-lineage isolates (except two ST26 isolates) and in 1 orphan. Mutations in the pncA gene, conferring resistance to pyrazinamide, were observed in 15.4% of all isolates. Collectively, mutations in the rpoB gene, the katG gene and in both rpoB and katG genes, conferring resistance to rifampicin and isoniazid, respectively, were more frequent in CAS1_DELHI isolates compared to non-CAS_DELHI isolates (OR: 3.1, CI95% [1.11, 8.70], P = 0.045). The increased frequency of drug-resistance could not be linked to the patients' history of previous anti-tuberculosis treatment (OR: 1.156, CI95% [0.40, 3.36], P = 0.79). Fifty-six percent of all new tuberculosis patients had mutations in either the katG gene or the rpoB gene, or in both katG and rpoB genes. Conclusion CAS1_DELHI isolates circulating in New Delhi, India have a high frequency of mutations in the rpoB and katG genes. A silent mutation (S65S) in the pncA gene can be used as a putative genetic marker for CAS-lineage isolates.
Collapse
|
45
|
"Mycobacterium canettii" isolated from a human immunodeficiency virus-positive patient: first case recognized in the United States. J Clin Microbiol 2008; 47:255-7. [PMID: 19020064 DOI: 10.1128/jcm.01268-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first case of tuberculosis caused by "Mycobacterium canettii" recognized in the United States. The pathogen was isolated from the cerebrospinal fluid of a 30-year-old Sudanese refugee.
Collapse
|
46
|
Djelouadji Z, Raoult D, Daffé M, Drancourt M. A single-step sequencing method for the identification of Mycobacterium tuberculosis complex species. PLoS Negl Trop Dis 2008; 2:e253. [PMID: 18618024 PMCID: PMC2453075 DOI: 10.1371/journal.pntd.0000253] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 05/20/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTC) comprises closely related species responsible for strictly human and zoonotic tuberculosis. Accurate species determination is useful for the identification of outbreaks and epidemiological links. Mycobacterium africanum and Mycobacterium canettii are typically restricted to Africa and M. bovis is a re-emerging pathogen. Identification of these species is difficult and expensive. METHODOLOGY/PRINCIPAL FINDINGS The Exact Tandem Repeat D (ETR-D; alias Mycobacterial Interspersed Repetitive Unit 4) was sequenced in MTC species type strains and 110 clinical isolates, in parallel to reference polyphasic identification based on phenotype profiling and sequencing of pncA, oxyR, hsp65, gyrB genes and the major polymorphism tandem repeat. Inclusion of M. tuberculosis isolates in the expanding, antibiotic-resistant Beijing clone was determined by Rv0927c gene sequencing. The ETR-D (780-bp) sequence unambiguously identified MTC species type strain except M. pinnipedii and M. microti thanks to six single nucleotide polymorphisms, variable numbers (1-7 copies) of the tandem repeat and two deletions/insertions. The ETR-D sequencing agreed with phenotypic identification in 107/110 clinical isolates and with reference polyphasic molecular identification in all isolates, comprising 98 M. tuberculosis, 5 M. bovis BCG type, 5 M. canettii, and 2 M. africanum. For M. tuberculosis isolates, the ETR-D sequence was not significantly associated with the Beijing clone. CONCLUSIONS/SIGNIFICANCE ETR-D sequencing allowed accurate, single-step identification of the MTC at the species level. It circumvented the current expensive, time-consuming polyphasic approach. It could be used to depict epidemiology of zoonotic and human tuberculosis, especially in African countries where several MTC species are emerging.
Collapse
Affiliation(s)
- Zoheira Djelouadji
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Mamadou Daffé
- Département de Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et Biologie structurale, Toulouse, France
| | - Michel Drancourt
- Unité des Rickettsies CNRS UMR6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| |
Collapse
|
47
|
Direct comparison of the genotype MTBC and genomic deletion assays in terms of ability to distinguish between members of the Mycobacterium tuberculosis complex in clinical isolates and in clinical specimens. J Clin Microbiol 2008; 46:1854-7. [PMID: 18353933 DOI: 10.1128/jcm.00105-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The automated GenoType MTBC assay was evaluated for the ability to detect and identify members of the Mycobacterium tuberculosis complex. In addition to 35 reference strains and 157 clinical isolates, performance of this assay was tested directly on 79 smear-positive clinical specimens. The assay proved as accurate as the reference deletion analysis for all 192 isolates and detected and identified M. tuberculosis complex members in 93.2% of the specimens containing the M. tuberculosis complex.
Collapse
|
48
|
Matteelli A, Migliori GB, Cirillo D, Centis R, Girard E, Raviglion M. Multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis: epidemiology and control. Expert Rev Anti Infect Ther 2007; 5:857-71. [PMID: 17914919 DOI: 10.1586/14787210.5.5.857] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence of multidrug-resistant (MDR)-TB and, more recently, of extensively drug-resistant (XDR)-TB is a real threat to achieve TB control and elimination. Over 400,000 new cases of MDR-TB occur each year and, although their number is currently unknown, XDR cases are recognized in every setting where there has been the capacity to detect them. The long-term vision for the full control of MDR-TB requires the scaling-up of culture and drug-susceptibility testing capacity, which is very limited in disease-endemic countries, and the expanded use of high-technology assays for rapid determination of resistance. MDR cases are treatable and well designed regimens, largely based on second-line anti-TB drugs, can considerably improve cure rates. However, treatment regimens need to be markedly improved through the introduction of less toxic and more powerful drugs, thus reducing duration of treatment and tolerability. This is of utmost importance for XDR-TB cases. The prevalence of MDR-TB and XDR-TB are inversely correlated with the quality of TB control and the proper use of second-line anti-TB drugs. Adherence to proper standards of care and control is imperative and a top priority of all TB control efforts. However, the risk of an uncontrollable epidemic of MDR- and XDR-TB is real considering current levels of financing and commitment to care.
Collapse
Affiliation(s)
- Alberto Matteelli
- Institute of Infectious and Tropical Diseases, University of Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Aragón LM, Garrigó M, Moreno C, Español M, Coll P. Evaluation of the BacT/ALERT PZA kit in comparison with the BACTEC 460TB PZA for testing Mycobacterium tuberculosis susceptibility to pyrazinamide. J Antimicrob Chemother 2007; 60:655-7. [PMID: 17615155 DOI: 10.1093/jac/dkm252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To compare the performance of the BacT/ALERT PZA kit (BioMerieux, Marcy l'Etoile, France) with the radiometric BACTEC 460TB PZA test (Becton-Dickinson method) for testing Mycobacterium tuberculosis susceptibility to pyrazinamide. METHODS A total of 50 M. tuberculosis strains were tested. Thirty of these strains had been previously considered pyrazinamide-susceptible and 20 pyrazinamide-resistant by BACTEC 460TB. RESULTS Final overall agreement was 100%. Time needed for the susceptibility test was 6.69 days for the BacT/ALERT PZA kit versus 8.07 days for the BACTEC 460TB PZA test. CONCLUSIONS BacT/ALERT PZA test is an excellent alternative to BACTEC 460TB for pyrazinamide susceptibility testing.
Collapse
Affiliation(s)
- Lina Marcela Aragón
- Servei de Microbiología, Hospital de la Santa Creu i Sant Pau, Av. Sant Antoni Ma Claret, 167, 08025 Barcelona, Spain
| | | | | | | | | |
Collapse
|