1
|
André E, Lorent N, Beuselinck K, Deiwick S, Dupont L, Gafsi J, Laenen L, Raymaekers L, Van Bleyenbergh P, Perry JD, Kahl BC. Multicenter study of the performance of NTM Elite agar for the detection of nontuberculous mycobacteria from patients with cystic fibrosis. Microbiol Spectr 2024; 12:e0273623. [PMID: 39194292 PMCID: PMC11465971 DOI: 10.1128/spectrum.02736-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
The performance of a novel selective agar was evaluated against the performance of conventional mycobacterial cultures, i.e., a combination of the mycobacterial growth indicator tube (MGIT) with Löwenstein-Jensen (LJ), for the detection of nontuberculous mycobacteria (NTM) in sputum samples from people with cystic fibrosis (pwCF). Two hundred eighty-three sputum samples (231 fresh sputum and 52 spiked sputum) from 143 pwCF were collected. They were inoculated without prior decontamination on NTM Elite agar (30°C ± 2°C for 28 days) and inoculated on both MGIT and LJ (35°C-37°C for 6-8 weeks) after N-acetyl-L-cysteine-2% sodium hydroxide decontamination. NTM were identified by Matrix-Assisted Laser Desorption Ionization/Time of Flight Mass Spectrometry and/or PCR, and whole-genome sequencing. A total of 67 NTM were recovered overall by the combination of all culture media. NTM Elite agar allowed the recovery of 65 NTM (97%), compared to 22 for the conventional MGIT and LJ media combination (32.8%), including 22 NTM for MGIT (32.8%) and 3 NTM with the LJ medium (4.5%). For Mycobacterium abscessus complex, the sensitivity of NTM Elite agar was 95% compared with a sensitivity of 30% for the conventional MGIT and LJ media combination. Overall, 17.3% of cultures on NTM Elite agar were contaminated with other micro-organisms vs 46.3% on MGIT and 77% on LJ. This study shows that the novel selective agar (NTM Elite agar) significantly outperforms the conventional MGIT and LJ media combination in terms of sensitivity, selectivity, and ease of culture, without the requirement of an L3 laboratory.IMPORTANCENontuberculous mycobacteria (NTM) are significant pulmonary pathogens in patients with pre-existing structural lung conditions such as cystic fibrosis, bronchiectasis, or chronic obstructive pulmonary disease. Mycobacterium avium complex and Mycobacterium abscessus complex (MABSC) are the most frequently isolated organisms. Compared to the recommended culture method for NTM, which combines solid and liquid culture media, NTM Elite agar enables a faster/easier diagnosis and speeds up identification and susceptibility testing as the final reading is at 28 days instead of 6-8 weeks for the conventional mycobacterial cultures. In addition, for the NTM Elite agar, no decontamination stage before inoculation is necessary, unlike the conventional mycobacterial cultures. NTM Elite agar is derived from a formulation of medium adapted to rapidly growing mycobacteria (RGM). The medium enables the growth of RGM while suppressing other flora. It is supported with published clinical data showing the benefits of this medium.
Collapse
Affiliation(s)
- Emmanuel André
- Laboratory Medicine
Department, UZ Leuven University
Hospitals, Leuven,
Belgium
- Department of
Microbiology, Immunology, and Transplantation, Laboratory of Clinical
Microbiology, KU Leuven,
Leuven, Belgium
| | - Natalie Lorent
- Respiratory Diseases
Department, University Hospitals
Leuven, Leuven,
Belgium
| | - Kurt Beuselinck
- Laboratory Medicine
Department, UZ Leuven University
Hospitals, Leuven,
Belgium
| | - Susanne Deiwick
- University Hospital
Münster, Institute of Medical
Microbiology, Münster,
Germany
| | - Lieven Dupont
- Respiratory Diseases
Department, University Hospitals
Leuven, Leuven,
Belgium
| | - Johanne Gafsi
- BioMérieux
Global Clinical Affairs,
Marcy-l’Etoile, France
| | - Lies Laenen
- Laboratory Medicine
Department, UZ Leuven University
Hospitals, Leuven,
Belgium
- Department of
Microbiology, Immunology, and Transplantation, Laboratory of Clinical
Microbiology, KU Leuven,
Leuven, Belgium
| | - Lise Raymaekers
- Laboratory Medicine
Department, UZ Leuven University
Hospitals, Leuven,
Belgium
| | | | - John D. Perry
- Microbiology
Department, Freeman Hospital,
Newcastle upon Tyne, United Kingdom
| | - Barbara C. Kahl
- University Hospital
Münster, Institute of Medical
Microbiology, Münster,
Germany
| |
Collapse
|
2
|
Kehrmann J, Stumpf AL, Dragaqina A, Buer J. Improved detection of mycobacteria in CF and tissue samples grown in mycobacteria growth indicator tube incubated at 30°C compared to conventional growth conditions of liquid and solid media. J Clin Microbiol 2024; 62:e0068324. [PMID: 39136449 PMCID: PMC11389136 DOI: 10.1128/jcm.00683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 09/12/2024] Open
Abstract
This study evaluates the growth of mycobacteria in samples from cystic fibrosis (CF) patients and tissue samples using the mycobacteria growth indicator tube (MGIT) incubated at 30°C in comparison to conventional MGIT cultures incubated at 37°C in a BACTEC MGIT 960 device and solid media incubated at 36°C and 30°C. A total of 1,549 samples were analyzed, of which 202 mycobacterial isolates were cultured from 197 positive specimens, including five mixed cultures. The highest detection rate was achieved from MGIT at 30°C, with 84.2% of mycobacterial isolates (170 of 202), which was significantly higher than any other culture condition (P < 0.0001 for any condition). MGIT at 37°C yielded 61.4% (124 of 202) of the recovered isolates, whereas Löwenstein Jensen (LJ) and Stonebrink at 36°C, and LJ and Stonebrink at 30°C retrieved 47.0% (95), 49.5% (100), 50.0% (101), and 53.0% (107) of the isolates, respectively. Of the 53 isolates that were grown exclusively under one culture condition, the highest number of isolates (36) was recovered from MGIT incubated at 30°C. MGIT at 37°C recovered eight of the 53 isolates, whereas LJ incubated at 30°C and Stonebrink incubated at 30°C and 36°C recovered five, three, and one isolate, respectively. No isolates were grown exclusively from LJ incubated at 36°C. In CF patients and tissue samples, MGIT cultivated at 30°C for 8 weeks increases the performance of mycobacterial culture. IMPORTANCE Our study shows that the addition of mycobacteria growth indicator tube (MGIT) liquid culture incubated at 30°C improves the detection of mycobacteria from CF and tissue samples. MGIT incubated at 30°C recovered significantly more mycobacterial isolates than MGIT incubated at 37°C and significantly more isolates than either Lowenstein Jensen or Stonebrink solid media incubated at either 36°C or 30°C. Of 202 mycobacterial isolates recovered from 1,549 specimens, 170 were recovered from MGIT incubated at 30°C, followed by MGIT incubated at 37°C with 124 isolates and solid media culture conditions that recovered between 95 and 107 mycobacterial isolates. All conventional culture conditions combined without MGIT incubated at 30°C recovered 166 isolates. MGIT incubated at 30°C recovered the highest number of isolates detected exclusively by a single culture condition and recovered mycobacterial isolates of highly relevant mycobacterial species, including Mycobacterium abscessus and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- J Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A L Stumpf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A Dragaqina
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - J Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Xu N, Li L, Wu S. Epidemiology and laboratory detection of non-tuberculous mycobacteria. Heliyon 2024; 10:e35311. [PMID: 39166010 PMCID: PMC11334812 DOI: 10.1016/j.heliyon.2024.e35311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
The global incidence of non-tuberculous mycobacteria (NTM) infections is on the rise. This study systematically searched several databases, including PubMed, Web of Science, Google Scholar, and two Chinese libraries (Chinese National Knowledge Infrastructure and Wanfang) to identify relevant published between 2013 and 2023 related to the isolation of NTM in clinical specimens from various countries and provinces of China. Furthermore, a comprehensive literature review was conducted in PubMed and Google Scholar to identify randomized clinical trials, meta-analyses, systematic reviews, and observational studies that evaluated the diagnostic accuracy and impact of laboratory detection methods on clinical outcomes. This review presented the most recent epidemiological data and species distributions of NTM isolates in several countries and provinces of China. Moreover, it provided insights into laboratory bacteriological detection, including the identified strains, advantages and disadvantages, recent advancements, and the commercial Mycobacterium identification kits available for clinical use. This review aimed to aid healthcare workers in understanding this aspect, enhance the standards of clinical diagnosis and treatment, and enlighten them on the existing gaps and future research priorities.
Collapse
Affiliation(s)
- Nuo Xu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lihong Li
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenghai Wu
- The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| |
Collapse
|
4
|
Maboni G, Prakash N, Moreira MAS. Review of methods for detection and characterization of non-tuberculous mycobacteria in aquatic organisms. J Vet Diagn Invest 2024; 36:299-311. [PMID: 37606184 PMCID: PMC11110783 DOI: 10.1177/10406387231194619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Mycobacteriosis is an emerging and often lethal disease of aquatic organisms caused by several non-tuberculous mycobacteria (NTM) species. Early diagnosis of mycobacteriosis in aquaculture and aquatic settings is critical; however, clinical diagnoses and laboratory detection are challenging, and the available literature is scarce. In an attempt to fill the gap, here we review the most relevant approaches to detect and characterize mycobacteria in clinical specimens of aquatic organisms. Emphasis is given to recent advances in molecular methods used to differentiate NTM species spanning from targeted gene sequencing to next-generation sequencing. Further, given that there are major gaps in our understanding of the prevalence of the different NTM species, partially because of their distinct requirements for in vitro growth, we also reviewed the most relevant NTM species reported to cause disease in aquatic organisms and their specific in vitro growth conditions. We also highlight that traditional bacterial culture continues to be relevant for NTM identification, particularly in non-automated laboratories. However, for NTM species discrimination, a high level of accuracy can be achieved with MALDI-TOF MS and molecular approaches, especially targeted gene sequencing applied from clinical specimens or from pure NTM isolates.
Collapse
Affiliation(s)
- Grazieli Maboni
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Niharika Prakash
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Maria Aparecida S. Moreira
- Department of Veterinary, Bacterial Diseases Laboratory, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Caldwell M, Tisdale J, Khare R. Improved recovery of nontuberculous mycobacteria in culture with adjunctive use of a selective agar. J Clin Microbiol 2024; 62:e0167823. [PMID: 38391224 PMCID: PMC10935627 DOI: 10.1128/jcm.01678-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Affiliation(s)
- Mikayla Caldwell
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, Colorado, USA
| | - Jena Tisdale
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, Colorado, USA
| | - Reeti Khare
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
6
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
7
|
Broncano-Lavado A, Barrado L, Lopez-Roa P, Cacho J, Domingo D, Hernandez S, Garcia-Martinez J, Millan MR, Perez-Cecilia E, Ruiz-Serrano MJ, Salso S, Simon M, Tato M, Toro C, Valverde-Canovas JF, Esteban J. Clinical Evaluation of Nontuberculous Mycobacteria (NTM) Elite Agar, a New Medium for the Isolation of NTM: a Multicenter Study. J Clin Microbiol 2023; 61:e0003623. [PMID: 36975783 PMCID: PMC10117115 DOI: 10.1128/jcm.00036-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are gaining interest with the increased number of infected patients. NTM Elite agar is designed specifically for the isolation of NTM without the decontamination step. We assessed the clinical performance of this medium combined with Vitek mass spectrometry (MS) matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) technology for the isolation and identification of NTM in a prospective multicenter study, including 15 laboratories (24 hospitals). A total of 2,567 samples from patients with suspected NTM infection were analyzed (1,782 sputa, 434 bronchial aspirates, 200 bronchoalveolar lavage samples, 34 bronchial lavage samples, and 117 other samples). A total of 220 samples (8.6%) were positive with existing laboratory methods against 330 with NTM Elite agar (12.8%). Using the combination of both methods, 437 isolates of NTM were detected in 400 positive samples (15.6% of samples). In total, 140 samples of the standard procedures (SP) and 98 of the NTM Elite agar were contaminated. NTM Elite agar showed a higher performance for rapidly growing mycobacteria (RGM) species than SP (7% versus 3%, P < 0.001). A trend has been noted for the Mycobacterium avium complex (4% with SP versus 3% with NTM Elite agar, P = 0.06). The time to positivity was similar (P = 0.13) between groups. However, the time to positivity was significantly shorter for the RGM in subgroup analysis (7 days with NTM and 6 days with SP, P = 0.01). NTM Elite agar has been shown to be useful for the recovery of NTM species, especially for the RGM. Using NTM Elite agar + Vitek MS system in combination with SP increases the number of NTM isolated from clinical samples.
Collapse
Affiliation(s)
| | - Laura Barrado
- Department of Clinical Microbiology, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain
| | - Paula Lopez-Roa
- Department of Microbiology, Hospital Universitario, Madrid, Spain
| | - Juana Cacho
- Department of Microbiology, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Diego Domingo
- Department of Microbiology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Sara Hernandez
- Microbiology Laboratory, Hospital Severo Ochoa, Leganés, Madrid, Spain
| | | | - Maria Rosario Millan
- Department of Microbiology, H.U. Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | | | - Maria-Jesus Ruiz-Serrano
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBERES-CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Santiago Salso
- Clinical Laboratory, UR Salud. Paseo de Europa, San Sebastián de los Reyes, Madrid, Spain
| | - Maria Simon
- Department of Microbiology and Parasitology, Hospital Central de la Defensa Gomez Ulla, Madrid, Spain
| | - Marta Tato
- Department of Microbiology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Carlos Toro
- Department of Microbiology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
8
|
Burke A, Thomson RM, Wainwright CE, Bell SC. Nontuberculous Mycobacteria in Cystic Fibrosis in the Era of Cystic Fibrosis Transmembrane Regulator Modulators. Semin Respir Crit Care Med 2023; 44:287-296. [PMID: 36649736 DOI: 10.1055/s-0042-1759883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nontuberculous mycobacteria (NTM) are a group of mycobacteria which represent opportunistic pathogens that are of increasing concern in people with cystic fibrosis (pwCF). The acquisition has been traditionally though to be from environmental sources, though recent work has suggested clustered clonal infections do occur and transmission potential demonstrated among pwCF attending CF specialist centers. Guidelines for the screening, diagnosis, and identification of NTM and management of pwCF have been published. The emergence of CF-specific therapies, in particular cystic fibrosis transmembrane regulator (CFTR) modulator drugs, have led to significant improvement in the health and well-being of pwCF and may lead to challenges in sampling the lower respiratory tract including to screen for NTM. This review highlights the epidemiology, modes of acquisition, screening and diagnosis, therapeutic approaches in the context of improved clinical status for pwCF, and the clinical application of CFTR modulator therapies.
Collapse
Affiliation(s)
- Andrew Burke
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rachel M Thomson
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
9
|
Ditommaso S, Giacomuzzi M, Memoli G, Garlasco J, Curtoni A, Iannaccone M, Zotti CM. A New Culture Method for the Detection of Non-Tuberculous Mycobacteria in Water Samples from Heater-Cooler Units and Extracorporeal Membrane Oxygenation Machines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10645. [PMID: 36078363 PMCID: PMC9518321 DOI: 10.3390/ijerph191710645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The isolation of non-tuberculous mycobacteria (NTM) from cultures is particularly laborious due to the potential overgrowth of coexisting non-acid fast bacilli. To reduce the overgrowth of these non-mycobacterial organisms, a decontamination step with NaOH or cetylpyridinium chloride is highly recommended before plating the samples on the culture medium. However, due to their toxicity, decontamination solutions tend to decrease NTM recovery from clinical and environmental samples. Here, we tested an alternative method for NTM recovery based on the use of NTM Elite agar, a selective medium that does not require a decontamination step. Using NTM Elite agar, we were able to detect non-tuberculous mycobacteria in 27.7% (30/108) of water samples analyzed. The average time to NTM detection was 18 days, but some strains required longer to grow, perhaps due to the stressful environmental conditions (periodical disinfection of devices). NTM Elite agar's effectiveness in inhibiting background flora was proven by the isolation of NTM from samples with and without background flora, showing no statistically significant differences in detection rates for different total viable counts of background flora (p = 0.4989). In conclusion, our findings indicate that effective NTM recovery from HCU- and ECMO-derived water samples can be achieved via filtration and direct culture of the filters on NTM Elite agar. This simple procedure can speed up laboratory work and provide an improved method, successfully resulting in low contamination and high detection rate, in addition to being less time-consuming. Its sensitivity and lack of a decontamination step make this protocol particularly useful for monitoring the effectiveness of device disinfection in hospital settings, even in the presence of low NTM loads. Reading timeframes should probably be extended to 7 weeks (i.e., well beyond the standard 4 weeks advised by the manufacturer), in order to isolate even the slow-growing mycobacteria. However, an extended incubation period is not necessary for exclusion of M. chimaera contamination of the devices, as M. chimaera isolation times do not generally exceed 3 weeks.
Collapse
Affiliation(s)
- Savina Ditommaso
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Monica Giacomuzzi
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Gabriele Memoli
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Jacopo Garlasco
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Marco Iannaccone
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Carla M. Zotti
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| |
Collapse
|
10
|
Ditommaso S, Giacomuzzi M, Memoli G, Garlasco J, Curtoni A, Iannaccone M, Zotti CM. Chemical susceptibility testing of non-tuberculous mycobacterium strains and other aquatic bacteria: Results of a study for the development of a more sensitive and simple method for the detection of NTM in environmental samples. J Microbiol Methods 2022; 193:106405. [PMID: 34990646 DOI: 10.1016/j.mimet.2021.106405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
The methods employed to detect non-tuberculous mycobacteria on environmental samples are essentially those classically used in clinical microbiology, which envisage a decontamination step to reduce the overgrowth of non-mycobacterial organisms before plating them on the culture medium. The aim of this study was to propose alternative culture techniques to improve non-tuberculous mycobacteria detection in environmental samples. We used artificially contaminated samples to compare the membrane filter washing procedure against direct plating of membrane filters on culture media in relation to M.chimaera and M.chelonae recovery efficiency. Moreover, we compared the efficacy of NTM Elite agar in inhibiting the growth of aquatic bacteria with that of cetylpyridinium chloride and N-acetyl-L-cysteine sodium hydroxide decontamination treatments. The washing procedure yielded a low release of both mycobacterium strains (6.6% for Mycobacterium chimaera and 7.5% for Mycobacterium chelonae) from the membrane filters; on the contrary, direct plating of membrane filters led to a 100% cell recovery. Water sample pretreatment with N-acetyl-L-cysteine sodium hydroxide (1%), despite achieving complete suppression of non-acid fast bacilli, caused a reduction in mycobacteria growth. Decontamination with cetylpyridinium chloride (0.005%) was found to be ineffective against Methylobacterium spp. and Burkholderia multivorans. NTM Elite agar was ineffective against B. multivorans, but it inhibited the growth of all other aquatic bacteria. Our results indicate that NTM Elite agar provides a valid alternative method of recovering non-tuberculous mycobacteria from environmental samples. It does not involve a decontamination step and provides greater recovery efficiency by skipping the washing step and directly plating the filters on the media.
Collapse
Affiliation(s)
- Savina Ditommaso
- Department of Public Health and Pediatrics, University of Turin, Italy.
| | - Monica Giacomuzzi
- Department of Public Health and Pediatrics, University of Turin, Italy
| | - Gabriele Memoli
- Department of Public Health and Pediatrics, University of Turin, Italy
| | - Jacopo Garlasco
- Department of Public Health and Pediatrics, University of Turin, Italy
| | - Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Iannaccone
- Microbiology and Virology Unit, University Hospital Citta della Salute e della Scienza di Torino, Turin, Italy
| | - Carla Maria Zotti
- Department of Public Health and Pediatrics, University of Turin, Italy
| |
Collapse
|
11
|
Ahn K, Kim YK, Hwang GY, Cho H, Uh Y. Continued Upward Trend in Non-Tuberculous Mycobacteria Isolation over 13 Years in a Tertiary Care Hospital in Korea. Yonsei Med J 2021; 62:903-910. [PMID: 34558869 PMCID: PMC8470563 DOI: 10.3349/ymj.2021.62.10.903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Despite decreased prevalence of tuberculosis, the incidence of the diseases associated with nontuberculous mycobacteria (NTM) has been increasing in South Korea and around the world. The present retrospective study was conducted to determine longitudinal changes in the epidemiology and distribution of NTM over 13 years at a tertiary care hospital in Korea. MATERIALS AND METHODS We retrospectively analyzed data on Mycobacterium species over 13 years (January 2007 to December 2019) by utilizing the laboratory information system. Mycobacterium species were identified using biochemical tests and PCR-restriction fragment length polymorphism and Mycobacteria GenoBlot assays. RESULTS After excluding duplicates from the initial pool of 17996 mycobacterial isolates, 7674 strains were analyzed and 2984 (38.9%) NTM were isolated. The proportion of NTM continuously increased over the 13-year period, from 17.0% in 2007 to 57.5% in 2019. Among the NTM isolates, the most common species were Mycobacterium intracellulare (50.6%), M. avium (18.3%), M. fortuitumcomplex (4.9%), M. abscessus (4.5%), M. gordonae (3.3%), M. kansasii (1.1%), M. chelonae (1.0%), and M. massiliense (0.9%). In patients over the age of 70 years, the proportion of NTM among the isolates increased from 26.6% in 2007 to 62.0% in 2019, and that of M. intracellulare isolates among the NTM increased from 13.9% (11/79) in 2007 to 37.4% (175/468) in 2019. CONCLUSION The number of NTM isolates continuously increased over the study period, and the increase in the proportion of M.intracellulare in patients aged over 70 years was notable.
Collapse
Affiliation(s)
- Kwangjin Ahn
- Department of Public Health Inspection, Armed Forces Medical Research Institute, Daejeon, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Gyu Yel Hwang
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyunmi Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
12
|
Stephenson D, Perry A, Nelson A, Robb AE, Thomas MF, Bourke SJ, Perry JD, Jones AL. Decontamination Strategies Used for AFB Culture Significantly Reduce the Viability of Mycobacterium abscessus Complex in Sputum Samples from Patients with Cystic Fibrosis. Microorganisms 2021; 9:microorganisms9081597. [PMID: 34442676 PMCID: PMC8400212 DOI: 10.3390/microorganisms9081597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Nontuberculous mycobacteria are important respiratory pathogens in patients with cystic fibrosis (CF). For diagnosis, international guidelines recommend culture of sputum that has been decontaminated via chemical treatment. Fifty-six sputum samples from 32 patients known to be previously colonized or infected with NTM were subdivided, and the aliquots were subjected to six different decontamination strategies, followed by quantitative culture for NTM. Thirty sputum samples contained Mycobacterium abscessus complex (MABSC) and 11 contained Mycobacterium avium complex (MAC). Decontamination strategies included treatment with N-acetyl L-cysteine with 2% sodium hydroxide (NALC-NaOH), 4% NaOH, 1% chlorhexidine, 0.5 N sulfuric acid, 5% oxalic acid, double decontamination with NALC-NaOH, followed by 5% oxalic acid, and saline (0.85%) as a control. The samples were also cultured directly with no treatment. Treatment with NALC-NaOH resulted in an average reduction in colony count of 87% for MABSC when compared with direct culture. NaOH at 4% caused a 98.3% average reduction in colony count. All treatments that included NaOH resulted in colony counts that were statistically lower than those obtained from direct culture or the saline-treated control (p < 0.05). Standard treatments using sulfuric or oxalic acids were less deleterious, but still resulted in an average reduction in colony count of at least 30%. The viability of MAC was much less affected by most decontamination treatments. In conclusion, the viability of MABSC was severely compromised by standard decontamination regimens. This supports recent evidence showing that optimal recovery of MABSC is achieved by culture on an appropriate selective agar without decontamination of sputum samples.
Collapse
Affiliation(s)
- Dominic Stephenson
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| | - Audrey Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| | - Ali E. Robb
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
| | - Matthew F. Thomas
- Paediatric Respiratory Unit, Great North Children’s Hospital, Newcastle upon Tyne NE1 4LP, UK;
| | - Stephen J. Bourke
- Adult Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK;
| | - John D. Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK; (D.S.); (A.P.); (A.E.R.)
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
- Correspondence:
| | - Amanda L. Jones
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (A.L.J.)
| |
Collapse
|
13
|
Evaluation of a new culture medium for isolation of nontuberculous mycobacteria from environmental water samples. PLoS One 2021; 16:e0247166. [PMID: 33657154 PMCID: PMC7928522 DOI: 10.1371/journal.pone.0247166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are waterborne pathogens commonly found in building water systems where they are a primary concern to vulnerable patient populations and can cause severe disease. The recovery of NTM from environmental samples can be a laborious undertaking and current pre-treatment methods and selective media lack sensitivity. We explored the use of the highly selective Rapidly Growing Mycobacteria (RGM) medium for culturing NTM from environmental water samples compared to existing methods. In total, 223 environmental water samples, including potable and non-potable water, were cultured for NTM using three culture media. In addition to direct culture on RGM medium, each sample was cultured on Middlebrook 7H10 medium and Mitchison 7H11 medium after pre-treatment with 0.2M KCl-HCl. Additionally, 33 distinct species of NTM were inoculated onto RGM medium and 7H10 medium in parallel to directly compare their growth. The use of RGM medium alone without pre-treatment provided a sensitivity (91%) comparable to that offered by culture on both 7H10 and 7H11 with acid pretreatment (combined sensitivity; 86%) with significantly less overgrowth and interference from other organisms on RGM medium. The average concentration of NTM observed on RGM medium alone was comparable to or greater than the NTM concentration on either medium alone or combined. Thirty-three species were examined in parallel and all tested strains of 27 of these species successfully grew on RGM medium, including 19 of 21 from the CDC’s healthcare-associated infections species list. RGM medium was successful at recovering environmental NTM without a pre-treatment, greatly reducing labor and materials required to process samples. Simplification of culture processing for environmental NTM will allow for a better assessment of their presence in building water systems and the potential for reduced exposure of susceptible populations.
Collapse
|
14
|
Brown-Elliott BA, Molina S, Fly T, Njie O, Stribley P, Stephenson D, Wallace RJ, Perry JD. Evaluation of a novel rapidly-growing mycobacteria medium for isolation of Mycobacterium abscessus complex from respiratory specimens from patients with bronchiectasis. Heliyon 2019; 5:e02684. [PMID: 31687514 PMCID: PMC6820269 DOI: 10.1016/j.heliyon.2019.e02684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
This single center study assessed the performance of a novel solid rapidly-growing mycobacteria (RGM) medium for the recovery of nontuberculous mycobacteria (NTM), especially Mycobacterium abscessus complex, in patients with underlying bronchiectasis. A total of 297 mycobacterial sputa from 116 patients were plated directly on RGM medium and, following decontamination, onto an agar biplate [Middlebrook 7H11 and Mitchison (selective) agar] and into broth media (VersaTrek). The recovery of M. abscessus complex was increased by approximately 12% by implementation of the RGM medium. Contamination was reduced to 2% from 48% and 95% on routine solid media and broth cultures respectively. Our study corroborated previous studies in that recovery of M. abscessus complex was enhanced and contamination was virtually eliminated without the need for specimen decontamination when utilizing RGM medium.
Collapse
Affiliation(s)
- Barbara A. Brown-Elliott
- Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
- Corresponding author.
| | - Susan Molina
- Pathology Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
| | - Travis Fly
- Pathology Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
| | - Ousman Njie
- Pathology Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
| | - Patricia Stribley
- Pathology Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
| | - Dominic Stephenson
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Richard J. Wallace
- Mycobacteria/Nocardia Research Laboratory, The University of Texas Health Science Center at Tyler, Texas, United States
| | - John D. Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Gharbi R, Mhenni B, Ben Fraj S, Mardassi H. Nontuberculous mycobacteria isolated from specimens of pulmonary tuberculosis suspects, Northern Tunisia: 2002-2016. BMC Infect Dis 2019; 19:819. [PMID: 31533664 PMCID: PMC6751674 DOI: 10.1186/s12879-019-4441-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background Reports on the worldwide ascending trend of pulmonary nontuberculous mycobacteria (NTM) isolation rates and their effective role in respiratory tract infections are compelling. However, as yet, there are no such data relating to Tunisia. Methods Here we carried out a retrospective review of mycobacterial cultures originating from Northern Tunisia, which have been processed in the laboratory of mycobacteria of the Institut Pasteur de Tunis, during the time period 2002–2016. All pulmonary NTM (PNTM) isolates available for culture were characterized phenotypically and their taxonomic status was further established based on polymorphisms in rpoB, 16S rRNA, hsp65, and sodA DNA gene sequences. Results Of the 10,466 specimens collected from HIV-negative Tunisian patients with presumptive clinical pulmonary TB, 60 (0.6%) yielded PNTM isolates. An overall annual PNTM isolation prevalence of 0.2/100,000 was estimated. As far as could be ascertained, this isolation rate accounts amongst the lowest reported hitherto throughout the world. Among the 30 NTM isolates that were available for culture, 27 (90.0%) have been identified to the species level. The most commonly encountered species was Mycobacterium kansasii (23.3%) subtype 1. Strikingly, all M. kansasii cases were male patients originating from Bizerte, an industrialized region particularly known for iron industry. The remaining NTM species were M. fortuitum (16.6%), M. novocastrense (16.6%), M. chelonae (10.0%), M. gordonae (6.6%), M. gadium (6.6%), M. peregrinum (3.3%), M. porcinum (3.3%), and M. flavescens (3.3%). There were no bacteria of the M. avium complex, the most frequently isolated NTM globally, and the main driver of the rise of NTM-lung diseases. Conclusions This study uncovered an exceptional low prevalence of PNTM isolation among HIV-negative TB suspects in Northern Tunisia, suggesting a very low burden of NTM pulmonary disease. However, the frequent isolation of M. kansasii subtype 1, the most pathogenic subtype, particularly from the industrialized region of Bizerte, strongly suggests its effective involvement in a typical pulmonary disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s12879-019-4441-1.
Collapse
Affiliation(s)
- Reem Gharbi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Saloua Ben Fraj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Tunisia.
| |
Collapse
|