1
|
Islam Sajib MS, Brunker K, Oravcova K, Everest P, Murphy ME, Forde T. Advances in Host Depletion and Pathogen Enrichment Methods for Rapid Sequencing-Based Diagnosis of Bloodstream Infection. J Mol Diagn 2024; 26:741-753. [PMID: 38925458 DOI: 10.1016/j.jmoldx.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Bloodstream infection is a major cause of morbidity and death worldwide. Timely and appropriate treatment can reduce mortality among critically ill patients. Current diagnostic methods are too slow to inform precise antibiotic choice, leading to the prescription of empirical antibiotics, which may fail to cover the resistance profile of the pathogen, risking poor patient outcomes. Additionally, overuse of broad-spectrum antibiotics may lead to more resistant organisms, putting further pressure on the dwindling pipeline of antibiotics, and risk transmission of these resistant organisms in the health care environment. Therefore, rapid diagnostics are urgently required to better inform antibiotic choice early in the course of treatment. Sequencing offers great promise in reducing time to microbiological diagnosis; however, the amount of host DNA compared with the pathogen in patient samples presents a significant obstacle. Various host-depletion and bacterial-enrichment strategies have been used in samples, such as saliva, urine, or tissue. However, these methods have yet to be collectively integrated and/or extensively explored for rapid bloodstream infection diagnosis. Although most of these workflows possess individual strengths, their lack of analytical/clinical sensitivity and/or comprehensiveness demands additional improvements or synergistic application. This review provides a distinctive classification system for various methods based on their working principles to guide future research, and discusses their strengths and limitations and explores potential avenues for improvement to assist the reader in workflow selection.
Collapse
Affiliation(s)
- Mohammad S Islam Sajib
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Kirstyn Brunker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katarina Oravcova
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Everest
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael E Murphy
- Department of Microbiology, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Taya Forde
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Peng Y, Williams MM, Xiaoli L, Simon A, Fueston H, Tondella ML, Weigand MR. Strengthening Bordetella pertussis genomic surveillance by direct sequencing of residual positive specimens. J Clin Microbiol 2024; 62:e0165323. [PMID: 38445858 PMCID: PMC11005353 DOI: 10.1128/jcm.01653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Whole-genome sequencing (WGS) of microbial pathogens recovered from patients with infectious disease facilitates high-resolution strain characterization and molecular epidemiology. However, increasing reliance on culture-independent methods to diagnose infectious diseases has resulted in few isolates available for WGS. Here, we report a novel culture-independent approach to genome characterization of Bordetella pertussis, the causative agent of pertussis and a paradigm for insufficient genomic surveillance due to limited culture of clinical isolates. Sequencing libraries constructed directly from residual pertussis-positive diagnostic nasopharyngeal specimens were hybridized with biotinylated RNA "baits" targeting B. pertussis fragments within complex mixtures that contained high concentrations of host and microbial background DNA. Recovery of B. pertussis genome sequence data was evaluated with mock and pooled negative clinical specimens spiked with reducing concentrations of either purified DNA or inactivated cells. Targeted enrichment increased the yield of B. pertussis sequencing reads up to 90% while simultaneously decreasing host reads to less than 10%. Filtered sequencing reads provided sufficient genome coverage to perform characterization via whole-genome single nucleotide polymorphisms and whole-genome multilocus sequencing typing. Moreover, these data were concordant with sequenced isolates recovered from the same specimens such that phylogenetic reconstructions from either consistently clustered the same putatively linked cases. The optimized protocol is suitable for nasopharyngeal specimens with diagnostic IS481 Ct < 35 and >10 ng DNA. Routine implementation of these methods could strengthen surveillance and study of pertussis resurgence by capturing additional cases with genomic characterization.
Collapse
Affiliation(s)
- Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Ashley Simon
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heather Fueston
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria L. Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Kekeisen-Chen JF, Tarbangdo FT, Sharma S, Marasini D, Marjuki H, Kibler JL, Reese HE, Ouattara S, Ake FH, Yameogo I, Ouedraogo I, Seini E, Zoma RL, Tonde I, Sanou M, Novak RT, McNamara LA. Expansion of Neisseria meningitidis Serogroup C Clonal Complex 10217 during Meningitis Outbreak, Burkina Faso, 2019. Emerg Infect Dis 2024; 30:460-468. [PMID: 38407254 PMCID: PMC10902552 DOI: 10.3201/eid3003.221760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
During January 28-May 5, 2019, a meningitis outbreak caused by Neisseria meningitidis serogroup C (NmC) occurred in Burkina Faso. Demographic and laboratory data for meningitis cases were collected through national case-based surveillance. Cerebrospinal fluid was collected and tested by culture and real-time PCR. Among 301 suspected cases reported in 6 districts, N. meningitidis was the primary pathogen detected; 103 cases were serogroup C and 13 were serogroup X. Whole-genome sequencing revealed that 18 cerebrospinal fluid specimens tested positive for NmC sequence type (ST) 10217 within clonal complex 10217, an ST responsible for large epidemics in Niger and Nigeria. Expansion of NmC ST10217 into Burkina Faso, continued NmC outbreaks in the meningitis belt of Africa since 2019, and ongoing circulation of N. meningitidis serogroup X in the region underscore the urgent need to use multivalent conjugate vaccines in regional mass vaccination campaigns to reduce further spread of those serogroups.
Collapse
|
4
|
Borrow R, Findlow J. The important lessons lurking in the history of meningococcal epidemiology. Expert Rev Vaccines 2024; 23:445-462. [PMID: 38517733 DOI: 10.1080/14760584.2024.2329618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The epidemiology of invasive meningococcal disease (IMD), a rare but potentially fatal illness, is typically described as unpredictable and subject to sporadic outbreaks. AREAS COVERED Meningococcal epidemiology and vaccine use during the last ~ 200 years are examined within the context of meningococcal characterization and classification to guide future IMD prevention efforts. EXPERT OPINION Historical and contemporary data highlight the dynamic nature of meningococcal epidemiology, with continued emergence of hyperinvasive clones and affected regions. Recent shifts include global increases in serogroup W disease, meningococcal antimicrobial resistance (AMR), and meningococcal urethritis; additionally, unvaccinated populations have experienced disease resurgences following lifting of COVID-19 restrictions. Despite these changes, a close analysis of meningococcal epidemiology indicates consistent dominance of serogroups A, B, C, W, and Y and elevated IMD rates among infants and young children, adolescents/young adults, and older adults. Demonstrably effective vaccines against all 5 major disease-causing serogroups are available, and their prophylactic use represents a powerful weapon against IMD, including AMR. The World Health Organization's goal of defeating meningitis by the year 2030 demands broad protection against IMD, which in turn indicates an urgent need to expand meningococcal vaccination programs across major disease-causing serogroups and age-related risk groups.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UKHSA, Manchester Royal Infirmary, Manchester, UK
| | - Jamie Findlow
- Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| |
Collapse
|
5
|
Yekani M, Memar MY. Immunologic biomarkers for bacterial meningitis. Clin Chim Acta 2023; 548:117470. [PMID: 37419301 DOI: 10.1016/j.cca.2023.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Meningitis is defined as the inflammation of the meninges that is most often caused by various bacterial and viral pathogens, and is associated with high rates of mortality and morbidity. Early detection of bacterial meningitis is essential to appropriate antibiotic therapy. Alterations in immunologic biomarkers levels have been considered the diagnostic approach in medical laboratories for the identifying of infections. The early increasing immunologic mediators such as cytokines and acute phase proteins (APPs) during bacterial meningitis have made they significant indicators for laboratory diagnosis. Immunology biomarkers showed wide variable sensitivity and specificity values that influenced by different reference values, selected a certain cutoff point, methods of detection, patient characterization and inclusion criteria, as well as etiology of meningitis and time of CSF or blood specimens' collection. This study provides an overview of different immunologic biomarkers as diagnostic markers for the identification of bacterial meningitis and their efficiencies in the differentiating of bacterial from viral meningitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Dwivedi-Yu JA, Oppler ZJ, Mitchell MW, Song YS, Brisson D. A fast machine-learning-guided primer design pipeline for selective whole genome amplification. PLoS Comput Biol 2023; 19:e1010137. [PMID: 37068103 PMCID: PMC10138271 DOI: 10.1371/journal.pcbi.1010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.
Collapse
Affiliation(s)
- Jane A. Dwivedi-Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Facebook AI Research, 1 Rathbone Square, London, England
| | - Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Asturias EJ, Bai X, Bettinger JA, Borrow R, Castillo DN, Caugant DA, Chacon GC, Dinleyici EC, Echaniz-Aviles G, Garcia L, Glennie L, Harrison LH, Howie RL, Itsko M, Lucidarme J, Marin JEO, Marjuki H, McNamara LA, Mustapha MM, Robinson JL, Romeu B, Sadarangani M, Sáez-Llorens X, Sáfadi MAP, Stephens DS, Stuart JM, Taha MK, Tsang RSW, Vazquez J, De Wals P. Meningococcal disease in North America: Updates from the Global Meningococcal Initiative. J Infect 2022; 85:611-622. [PMID: 36273639 PMCID: PMC11091909 DOI: 10.1016/j.jinf.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.1 cases/100,000); however, there is notable regional and temporal variation. Outbreaks persist in at-risk subpopulations, such as people experiencing homelessness in the US and migrants in Mexico. The recent emergence of β-lactamase-positive and ciprofloxacin-resistant meningococci in the US is a major concern. While vaccination practices vary across North America, vaccine uptake remains relatively high. Monovalent and multivalent conjugate vaccines (which many countries in North America primarily use) can provide herd protection. However, there is no evidence that group B vaccines reduce meningococcal carriage. The coronavirus pandemic illustrates that following public health crises, enhanced surveillance of disease epidemiology and catch-up vaccine schedules is key. Whole genome sequencing is a key epidemiological tool for identifying IMD strain emergence and the evaluation of vaccine strain coverage. The Global Roadmap on Defeating Meningitis by 2030 remains a focus of the GMI.
Collapse
Affiliation(s)
- Edwin J Asturias
- University of Colorado School of Medicine and Colorado School of Public Health, Aurora, CO, USA
| | - Xilian Bai
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, UK
| | - Julie A Bettinger
- Vaccine Evaluation Center, British Colombia Children's Hospital Research Institute, and Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, UK.
| | | | | | | | | | - Gabriela Echaniz-Aviles
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Luis Garcia
- Center for State Control of Drugs, Medical Devices and Equipment, Cuba
| | | | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca L Howie
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, USA
| | - Mark Itsko
- WDS Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, USA
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, UK
| | | | - Henju Marjuki
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, USA
| | - Lucy A McNamara
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, USA
| | | | | | - Belkis Romeu
- Center for State Control of Drugs, Medical Devices and Equipment, Cuba
| | - Manish Sadarangani
- Vaccine Evaluation Center, British Colombia Children's Hospital Research Institute, and Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xavier Sáez-Llorens
- Hospital del Niño - Dr José Renán Esquivel, Distinguished Investigator at Senacyt (SNI) and Cevaxin, Panama City, Panama
| | - Marco A P Sáfadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - David S Stephens
- Robert W. Woodruff Health Sciences Center, Emory University, Atlanta, GA, USA
| | | | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Haemophilus influenzae, Paris, France
| | - Raymond S W Tsang
- National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Julio Vazquez
- National Centre of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
8
|
Meningococcal Urethritis: Old and New. J Clin Microbiol 2022; 60:e0057522. [PMID: 35969045 PMCID: PMC9667755 DOI: 10.1128/jcm.00575-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a common commensal bacterium found in the respiratory tract, but it can also cause severe, invasive disease. Vaccines have been employed which have been successful in helping to prevent invasive disease caused by encapsulated N. meningitidis from the A, C, W, Y, and B serogroups. Currently, nonencapsulated N. meningitidis groups are more common commensals in the population than in the prevaccine era. One emerging nonencapsulated group of bacteria is the U.S. N. meningitidis urethritis clade (US_NmUC), which can cause meningococcal urethritis in men. US_NmUC has unique genotypic and phenotypic features that may increase its fitness in the male urethra. It is diagnostically challenging to identify and distinguish meningococcal urethritis from Neisseria gonorrhoeae, as the clinical presentation and microbiological findings are overlapping. In this review, the history of meningococcal urethritis, emergence of US_NmUC, laboratory diagnosis, and clinical treatment are all explored.
Collapse
|
9
|
Kwambana-Adams BA, Clark SA, Tay N, Agbla S, Chaguza C, Kagucia EW, Borrow R, Heyderman RS. Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease. Int J Mol Sci 2022; 23:ijms231911879. [PMID: 36233182 PMCID: PMC9569512 DOI: 10.3390/ijms231911879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
To improve the storage and transport of clinical specimens for the diagnosis of Neisseria meningitidis (Nm) infections in resource-limited settings, we have evaluated the performance of dried blood spot (DBS) and dried cerebrospinal fluid spot (DCS) assays. DBS and DCS were prepared on filter paper from liquid specimens previously tested for Nm in the United Kingdom. Nm was detected and genogrouped by real-time PCR performed on crude genomic DNA extracted from the DBS (n = 226) and DCS (n = 226) specimens. Targeted whole-genome sequencing was performed on a subset of specimens, DBS (n = 4) and DCS (n = 6). The overall agreement between the analysis of liquid and dried specimens was (94.2%; 95% CI 90.8−96.7) for blood and (96.4%; 95% CI 93.5−98.0) for cerebrospinal fluid. Relative to liquid specimens as the reference, the DBS and DCS assays had sensitivities of (89.1%; 95% CI 82.7−93.8) and (94.2%; 95% CI 88.9−97.5), respectively, and both assays had specificities above 98%. A genogroup was identified by dried specimen analysis for 81.9% of the confirmed meningococcal infections. Near full-length Nm genome sequences (>86%) were obtained for all ten specimens tested which allowed determination of the sequence type, clonal complex, presence of antimicrobial resistance and other meningococcal genotyping. Dried blood and CSF filter spot assays offer a practical alternative to liquid specimens for the molecular and genomic characterisation of invasive meningococcal diseases in low-resource settings.
Collapse
Affiliation(s)
- Brenda A. Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme (MLW), Blantyre P.O. Box 30096, Malawi
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Stephen A. Clark
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Nicole Tay
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Schadrac Agbla
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Eunice W. Kagucia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi P.O. Box 230-8010, Kenya
| | - Ray Borrow
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
| | - Robert S. Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
10
|
Itsko M, Topaz N, Ousmane-Traoré S, Popoola M, Ouedraogo R, Gamougam K, Sadji AY, Abdul-Karim A, Lascols C, Wang X. Enhancing Meningococcal Genomic Surveillance in the Meningitis Belt Using High-Resolution Culture-Free Whole-Genome Sequencing. J Infect Dis 2022; 226:729-737. [PMID: 35325163 PMCID: PMC11091911 DOI: 10.1093/infdis/jiac104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 05/16/2024] Open
Abstract
Rollout of meningococcal serogroup A conjugate vaccine in Africa started in 2010, aiming to eliminate meningitis outbreaks, in meningitis belt countries. Since then, studies have been conducted, primarily using isolates, to assess the vaccine impact on the distribution of meningococcal strains in the region. Here, we implemented an innovative, culture-free whole-genome sequencing approach on almost 400 clinical specimens collected between 2017 and 2019 from meningococcal meningitis cases in 6 African countries. About 50% of specimens provided high-quality whole-genome sequence data for comprehensive molecular profiling of the meningococcal pathogen. Three major clonal complexes were identified: CC11 associated with serogroup W, CC181 associated with serogroup X, and CC10217 associated with serogroup C, which continues to rise as a predominant clonal complex in the region. Genomic surveillance for meningococcal meningitis can be significantly improved using culture-free methods to increase data representativeness and monitor changes in epidemiological landscape, especially for countries with low culture rate.
Collapse
Affiliation(s)
- Mark Itsko
- WDS Inc, Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nadav Topaz
- CDC Foundation field employee assigned to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | - Adodo Yao Sadji
- Ministère de la Santé et de la Protection Sociale du Togo, Lomé, Togo
| | - Abass Abdul-Karim
- Ghana Health Services, Zonal Public Health Laboratory, Tamale, Ghana
| | - Christine Lascols
- CDC Foundation field employee assigned to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Selective Whole-Genome Amplification as a Tool to Enrich Specimens with Low Treponema pallidum Genomic DNA Copies for Whole-Genome Sequencing. mSphere 2022; 7:e0000922. [PMID: 35491834 PMCID: PMC9241506 DOI: 10.1128/msphere.00009-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Syphilis is a sexually transmitted, disseminated acute and chronic infection caused by the bacterial pathogen
Treponema pallidum
subspecies
pallidum
. Primary syphilis typically presents as single or multiple mucocutaneous lesions and, if left untreated, can progress through multiple stages with various clinical manifestations.
Collapse
|
12
|
Neisseria meningitidis Serogroup C Clonal Complex 10217 Outbreak in West Kpendjal Prefecture, Togo 2019. Microbiol Spectr 2022; 10:e0192321. [PMID: 35234504 PMCID: PMC8941916 DOI: 10.1128/spectrum.01923-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Togo has reported seasonal meningitis outbreaks caused by non-Neisseria meningitidis serogroup A (NmA) pathogens since the introduction of meningococcal serogroup A conjugate vaccine (MACV, MenAfriVac) in 2014. From 2016 to 2017, NmW caused several outbreaks. In early 2019, a NmC outbreak was detected in the Savanes region of Togo and its investigation is described here. Under case-based surveillance, epidemiological and clinical data, and cerebrospinal fluid specimens were collected for every suspected case of meningitis. Specimens were tested for meningitis pathogens using confirmatory microbiological and molecular methods. During epidemic weeks 9 to 15, 199 cases were reported, with 179 specimens being available for testing and 174 specimens (97.2%) were tested by at least one confirmatory method. The NmC was the predominant pathogen confirmed (93.9%), belonging to sequence type (ST)-9367 of clonal complex (CC) 10217. All NmC cases were localized to the West Kpendjal district of the Savanes region with attack rates ranging from 4.1 to 18.8 per 100,000 population and case fatality rates ranging up to 2.2% during weeks 9 to 15. Of the 93 NmC confirmed cases, 63.4% were males and 88.2% were in the 5 to 29 age group. This is the first report of a NmC meningitis outbreak in Togo. The changing epidemiology of bacterial meningitis in the meningitis belt post-MACV highlights the importance of monitoring of emerging strain and country preparedness for outbreaks in the region. IMPORTANCE The recent emergence of an invasive NmC strain in Togo is an example of the changing bacterial meningitis epidemiology in the meningitis belt post-MACV. The current epidemiology includes the regional circulation of various non-NmA serogroups, which emphasizes the need for effective molecular surveillance, laboratory diagnosis, and a multivalent vaccine that is effective against all serogroups in circulation.
Collapse
|
13
|
Retchless AC, Itsko M, Bazan JA, Turner AN, Hu F, Joseph SJ, Carter A, Brown M, Snyder B, Wang X. Evaluation of Urethrotropic-Clade Meningococcal Infection by Urine Metagenomic Shotgun Sequencing. J Clin Microbiol 2022; 60:e0173221. [PMID: 34817203 PMCID: PMC8849347 DOI: 10.1128/jcm.01732-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Urethral infections caused by an emerging nongroupable (NG) urethrotropic clade of Neisseria meningitidis were first reported in the United States in 2015 (the "U.S. NmNG urethritis clade"). Here, we evaluate for the presence of other urethral pathogens in men with U.S. NmNG urethritis clade infection. We evaluated 129 urine specimens collected from men at a sexual health clinic, including 33 from patients with culture-confirmed or suspected urethral N. meningitidis infection and 96 specimens in which nucleic acid amplification test detected Neisseria gonorrhoeae, Chlamydia trachomatis, both pathogens, or neither pathogen. N. meningitidis was detected first by real-time PCR, followed by metagenomic shotgun sequencing of 91 specimens to identify coinfections. N. meningitidis genomes were sequenced following selective whole-genome amplification when possible. Metagenomic sequencing detected N. meningitidis in 16 of 17 specimens from culture-confirmed N. meningitidis cases, with no coinfection by other conventional urethral pathogens. Metagenomic sequencing also detected N. meningitidis in three C. trachomatis-positive specimens, one specimen positive for both N. gonorrhoeae and C. trachomatis, and nine specimens with negative N. gonorrhoeae and C. trachomatis results, eight of which had suspected Neisseria infections. N. meningitidis from culture-confirmed N. meningitidis cases belonged to the U.S. NmNG urethritis clade, while N. meningitidis identified in other specimens belonged to multiple clonal complexes. Additional urethral pathogens were predominant in non-N. meningitidis specimens, including N. gonorrhoeae, C. trachomatis, Mycoplasma genitalium, Ureaplasma urealyticum, and herpes simplex virus 2. Coinfection with other conventional urethral pathogens is rare in men with culture-confirmed U.S. NmNG urethritis clade infection and points to the strong association of this clade with disease.
Collapse
Affiliation(s)
- Adam C. Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Itsko
- WDS Inc., Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jose A. Bazan
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fang Hu
- IHRC Inc., Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandeep J. Joseph
- IHRC Inc., Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexandria Carter
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Morgan Brown
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brandon Snyder
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Kwambana-Adams BA, Cohen AL, Hampton L, Nhantumbo AA, Heyderman RS, Antonio M, Bita A, Mwenda JM. Toward Establishing Integrated, Comprehensive, and Sustainable Meningitis Surveillance in Africa to Better Inform Vaccination Strategies. J Infect Dis 2021; 224:S299-S306. [PMID: 34469559 PMCID: PMC8409533 DOI: 10.1093/infdis/jiab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Large populations across sub-Saharan Africa remain at risk of devastating acute bacterial meningitis epidemics and endemic disease. Meningitis surveillance is a cornerstone of disease control, essential for describing temporal changes in disease epidemiology, the rapid detection of outbreaks, guiding vaccine introduction and monitoring vaccine impact. However, meningitis surveillance in most African countries is weak, undermined by parallel surveillance systems with little to no synergy and limited laboratory capacity. African countries need to implement comprehensive meningitis surveillance systems to adapt to the rapidly changing disease trends and vaccine landscapes. The World Health Organization and partners have developed a new investment case to restructure vaccine-preventable disease surveillance. With this new structure, countries will establish comprehensive and sustainable meningitis surveillance systems integrated with greater harmonization between population-based and sentinel surveillance systems. There will also be stronger linkage with existing surveillance systems for vaccine-preventable diseases, such as polio, measles, yellow fever, and rotavirus, as well as with other epidemic-prone diseases to leverage their infrastructure, transport systems, equipment, human resources and funding. The implementation of these concepts is currently being piloted in a few countries in sub-Saharan Africa with support from the World Health Organization and other partners. African countries need to take urgent action to improve synergies and coordination between different surveillance systems to set joint priorities that will inform action to control devastating acute bacterial meningitis effectively.
Collapse
Affiliation(s)
- Brenda Anna Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| | - Adam L Cohen
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lee Hampton
- Gavi, The Vaccine Alliance, Global Health Campus, Geneva, Switzerland
| | - Aquino Albino Nhantumbo
- Laboratório Nacional de Referência de Microbiologia, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Martin Antonio
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andre Bita
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Jason Mathiu Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Neisseria meningitidis (Nm) is primarily associated with asymptomatic nasopharyngeal carriage and invasive meningococcal disease (sepsis and meningitis), but like N. gonorrhoea (Ng), Nm can colonize urogenital and rectal mucosal surfaces and cause disease. First noted in 2015, but with origins in 2011, male urethritis clusters caused by a novel Nm clade were reported in the USA (the US_NmUC). This review describes research developments that characterize this urogenital-tropic Nm. RECENT FINDINGS The US_NmUC evolved from encapsulated Nm serogroup C strains. Loss of capsule expression, lipooligosaccharide (LOS) sialylation, genetic acquisition of gonococcal alleles (including the gonococcal anaerobic growth aniA/norB cassette), antimicrobial peptide heteroresistance and high surface expression of a unique factor-H-binding protein, can contribute to the urethra-tropic phenotype. Loss-of-function mutations in mtrC are overrepresented in clade isolates. Similar to Ng, repeat US_NmUC urethritis episodes can occur. The US_NmUC is now circulating in the UK and Southeast Asia. Genomic sequencing has defined the clade and rapid diagnostic tests are being developed for surveillance. SUMMARY The US_NmUC emerged as a cause of urethritis due to acquisition of gonococcal genetic determinants and phenotypic traits that facilitate urogenital tract infection. The epidemiology and pathogenesis of this urogenital-tropic pathogen continues to be defined.
Collapse
|
16
|
Diallo K, Feteh VF, Ibe L, Antonio M, Caugant DA, du Plessis M, Deghmane AE, Feavers IM, Fernandez K, Fox LM, Rodrigues CMC, Ronveaux O, Taha MK, Wang X, Brueggemann AB, Maiden MCJ, Harrison OB. Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine 2021; 65:103274. [PMID: 33721818 PMCID: PMC7957090 DOI: 10.1016/j.ebiom.2021.103274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial meningitis is a major global cause of morbidity and mortality. Rapid identification of the aetiological agent of meningitis is essential for clinical and public health management and disease prevention given the wide range of pathogens that cause the clinical syndrome and the availability of vaccines that protect against some, but not all, of these. Since microbiological culture is complex, slow, and often impacted by prior antimicrobial treatment of the patient, molecular diagnostic assays have been developed for bacterial detection. Distinguishing between meningitis caused by Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Streptococcus agalactiae and identifying their polysaccharide capsules is especially important. Here, we review methods used in the identification of these bacteria, providing an up-to-date account of available assays, allowing clinicians and diagnostic laboratories to make informed decisions about which assays to use.
Collapse
Affiliation(s)
- Kanny Diallo
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Cote d'Ivoire
| | - Vitalis F Feteh
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Lilian Ibe
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo N-0213, Norway
| | - Mignon du Plessis
- A division of the National Health Laboratory Service (NHLS), National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
| | | | - Ian M Feavers
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | | | - LeAnne M Fox
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Charlene M C Rodrigues
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Department of Paediatric Infectious Diseases, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | | | | | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Angela B Brueggemann
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | - Odile B Harrison
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom.
| |
Collapse
|