1
|
Liu B, Meng C, Han S, Li Q, Miao X, Wang Z, Xu C, Kang X, Jiao X, Pan Z. Development of a 1-step multiplex PCR assay for the detection of S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis associated with poultry production. Poult Sci 2024; 103:104043. [PMID: 39043031 PMCID: PMC11318556 DOI: 10.1016/j.psj.2024.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Salmonellosis in poultry is detrimental to the advancement of the breeding industry and poses hazards to human health. Approximately 2,600 Salmonella varieties exist, among which S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis are prevalent serotypes in the poultry industry in recent years. They can also infect humans by contaminating poultry eggs and meat. Therefore, identifying these serotypes is crucial for successful preventive and control interventions. The White-Kauffmann-Le Minor scheme is time-consuming and requires expensive reagents. Whole-genome sequencing (WGS) and other molecular biology techniques require skilled technical staff. In comparison, the polymerase chain reaction (PCR) is more accurate, rapid, and inexpensive, thus proving suitable for widespread application in the poultry industry. Here, we selected 4 specific primers: lygD, mdh, ipaJ, and SIN_02055, which correspond to detecting S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, respectively. They were integrated into a 1-step multiplex PCR method. We optimized the PCR method by utilizing specificity test results to determine the optimal annealing temperature (57°C). The PCR method exhibited excellent sensitivity for genomic DNA and bacterial cultures. We used the developed method to determine 157 clinical Salmonella isolates from various stages of the poultry production chain. The results aligned with serotype data generated via WGS analysis, demonstrating the method's excellent accuracy. In conclusion, this study developed a 1-step multiplex PCR method that simultaneously identifies S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, allowing routine mass detection in the grass-root poultry industry.
Collapse
Affiliation(s)
- Bowen Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shunzi Han
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qing Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xinyuan Miao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Chen Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Han M, Chae M, Lee S, No K, Han S. Strain typing and antimicrobial susceptibility of Salmonella enterica Albany isolates from duck farms in South Korea. Heliyon 2024; 10:e27402. [PMID: 38486745 PMCID: PMC10937681 DOI: 10.1016/j.heliyon.2024.e27402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Salmonella enterica is distributed worldwide and is a common cause of bacterial food poisoning in humans and a serious public health problem. Although duck meat consumption has recently increased in Korea, studies on the epidemiological relationship between S. enterica contamination in duck farms are scarce. Salmonella enterica serovar Albany isolates recovered from duck farms were analyzed using two typing methods - IR Biotyper® (IRBT) and multilocus variable-number tandem repeat analysis (MLVA). The clustering results were compared with the epidemiological survey findings and the antimicrobial resistance profiles. From April 2019 to October 2020, 20 individual feces per farm from 5-6-week-old ducks were collected repeatedly from 105 duck farms. Salmonella spp. isolated from duck feces were identified using PCR and multilocus sequence typing to investigate the prevalence and distribution of the Salmonella serovars. The prevalence of S. enterica was 19%, and S. enterica Albany was the predominantly recovered isolate. The S. enterica Albany isolates underwent antimicrobial susceptibility testing to determine the minimum inhibitory concentration. MLVA and IRBT methods established relatedness and diversity among the S. enterica Albany isolates. Multidrug-resistant S. enterica Albany was distributed in all the farms. Antimicrobial resistance profiles reflected the duck farm characteristics and isolates recovered from the same farm showed an identical profile. Isolates repeatedly recovered from the same farm also showed identical IRBT clusters and MLVA groups. These findings suggest that the isolates remained on the duck farm and re-infected new duck flocks. Thus, proper cleaning and disinfection is required before the farms are repopulated.
Collapse
Affiliation(s)
- Mina Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Munhui Chae
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Sangkab Lee
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Kyongok No
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Seongtae Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| |
Collapse
|
3
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
4
|
Sheng H, Suo J, Dai J, Wang S, Li M, Su L, Cao M, Cao Y, Chen J, Cui S, Yang B. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int J Food Microbiol 2023; 403:110305. [PMID: 37421839 DOI: 10.1016/j.ijfoodmicro.2023.110305] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Salmonella is a major foodborne pathogen that poses a substantial risk to food safety and public health. This study aimed to assess the prevalence, antibiotic susceptibility, and genomic features of Salmonella isolates recovered from 600 retail meat samples (300 pork, 150 chicken and 150 beef) from August 2018 to October 2019 in Shaanxi, China. Overall, 40 (6.67 %) of 600 samples were positive to Salmonella, with the highest prevalence in chicken (21.33 %, 32/150), followed in pork (2.67 %, 8/300), while no Salmonella was detected in beef. A total of 10 serotypes and 11 sequence types (STs) were detected in 40 Salmonella isolates, with the most common being ST198 S. Kentucky (n = 15), ST13 S. Agona (n = 6), and ST17 S. Indiana (n = 5). Resistance was most commonly found to tetracycline (82.50 %), followed by to ampicillin (77.50 %), nalidixic acid (70.00 %), kanamycin (57.50 %), ceftriaxone (55.00 %), cefotaxime (52.50 %), cefoperazone (52.50 %), chloramphenicol (50.00 %), levofloxacin (57.50 %), cefotaxime (52.50 %), kanamycin (52.50 %), chloramphenicol (50.00 %), ciprofloxacin (50.00 %), and levofloxacin (50.00 %). All ST198 S. Kentucky isolates showed multi-drug resistance (MDR; ≥3 antimicrobial categories) pattern. Genomic analysis showed 56 distinct antibiotic resistance genes (ARGs) and 6 target gene mutations of quinolone resistance determining regions (QRDRs) in 40 Salmonella isolates, among which, the most prevalent ARG types were related to aminoglycosides and β-lactams resistance, and the most frequent mutation in QRDRs was GyrA (S83F) (47.5 %). The number of ARGs in Salmonella isolates showed a significant positive correlation with the numbers of insert sequences (ISs) and plasmid replicons. Taken together, our findings indicated retail chickens were seriously contaminated, while pork and beef are rarely contaminated by Salmonella. Antibiotic resistance determinants and genetic relationships of the isolates provide crucial data for food safety and public health safeguarding.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Cao
- Hebei Quality Inspection and Testing Center of Forest, Grass and Flower, Shijiazhuang 050081, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Zhou X, Kang X, Chen J, Song Y, Jia C, Teng L, Tang Y, Jiang Z, Peng X, Tao X, Xu Y, Huang L, Xu X, Xu Y, Zhang T, Yu S, Gong J, Wang S, Liu Y, Zhu G, Kehrenberg C, Weill FX, Barrow P, Li Y, Zhao G, Yue M. Genome degradation promotes Salmonella pathoadaptation by remodeling fimbriae-mediated proinflammatory response. Natl Sci Rev 2023; 10:nwad228. [PMID: 37965675 PMCID: PMC10642762 DOI: 10.1093/nsr/nwad228] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 11/16/2023] Open
Abstract
Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.
Collapse
Affiliation(s)
- Xiao Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Jiaqi Chen
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lin Teng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xianqi Peng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xiaoxi Tao
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yiwei Xu
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450053, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shaohui Wang
- Department of Animal Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen 35392, Germany
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, Paris 75724, France
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Khaltabadi Farahani R, Ebrahimi-Rad M, Shahrokhi N, Khaltabadi Farahani AH, Ghafouri SA, Rezaei M, Gharibzadeh S, Ghalyanchi Langeroudi A, Ehsani P. High prevalence of antibiotic resistance and biofilm formation in Salmonella Gallinarum. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:631-641. [PMID: 37941876 PMCID: PMC10628085 DOI: 10.18502/ijm.v15i5.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background and Objectives Antibiotic resistance is an indicator of the passively acquired and circulating resistance genes. Salmonella Gallinarum significantly affects the poultry food industry. The present study is the first study of the S. Gallinarum biofilm in Iran, which is focused on the characterization of the S. Gallinarum serovars and their acquired antibiotic resistance genes circulating in poultry fields in central and northwestern Iran. Materials and Methods Sixty isolates of S. Gallinarum serovar were collected from feces of live poultry. The bacteria were isolated using biochemical tests and confirmed by Multiplex PCR. Biofilm formation ability and the antibacterial resistance were evaluated using both phenotypic and genotypic methods. The data were analyzed using SPSS software. Results According to Multiplex PCR for ratA, SteB, and rhs genes, all 60 S. Gallinarum serovars were Gallinarum biovars. In our study, the antibiotic resistance rate among isolated strains was as follows: Penicillin (100%), nitrofurantoin (80%), nalidixic acid (45%), cefoxitin (35%), neomycin sulfate (30%), chloramphenicol (20%), and ciprofloxacin (5%). All isolates were susceptible to imipenem, ertapenem, ceftriaxone, ceftazidime, and ceftazidime+clavulanic acid. All sixty isolates did not express the resistance genes IMP, VIM, NDM, DHA, blaOXA48, and qnrA. On the other hand, they expressed GES (85%), qnrB (75%), Fox M (70%), SHV (60%), CITM (20%), KPC (15%), FOX (10%), MOXM (5%), and qnrS (5%). All S. Gallinarum isolates formed biofilm and expressed sdiA gene. Conclusion Considering that the presence of this bacteria is equal to the death penalty to the herd, the distribution of resistance genes could be a critical alarm for pathogen monitoring programs in the region. This study showed a positive correlation between biofilm formation and 50% of tested resistance genes. Also, it was found that the most common circulating S. gallinarum biovars are multidrug-resistant.
Collapse
Affiliation(s)
- Reza Khaltabadi Farahani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular, Central Veterinary Laboratory, Iranian Veterinary Organization, Tehran, Iran
| | | | - Nader Shahrokhi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Ali Ghafouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Rezaei
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, School of the Veterinary Medicine, University Tehran, Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Zhang Z, Li J, Zhou R, Xu Q, Qu S, Lin H, Wang Y, Li P, Zheng X. Serotyping and Antimicrobial Resistance Profiling of Multidrug-Resistant Non-Typhoidal Salmonella from Farm Animals in Hunan, China. Antibiotics (Basel) 2023; 12:1178. [PMID: 37508274 PMCID: PMC10376037 DOI: 10.3390/antibiotics12071178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a foodborne pathogen and a prevalent causative agent for disease outbreaks globally. The Salmonella enterica serovar 4,[5],12:i:- (S.4,[5],12:i:-) belongs to the monophasic variant of Salmonella typhimurium, which is of current global concern. In this study, the epidemiology and genomic characterization of S. 4,[5],12:i:- isolates from 17 livestock farms in Hunan Province between 2019 and 2020, as well as their susceptibility to 14 antimicrobial agents, were profiled. Twelve Salmonella serotypes were identified using the White-Kauffmann-Le Minor scheme, and whole-genome sequencing analyses were conducted based on these isolates. Overall, 107 Salmonella strains were isolated, of which 73% (78/107) were multidrug resistant. Resistance to tetracycline (85.05%) was found to be the most prevalent, followed by the oqxAB and aac(6')-Ib-cr genes. S. typhimurium (monophasic) 4,[5],12:i:- was the most common serotype, followed by S. typhimurium and S. derby. Most antimicrobial-resistant strains were isolated from pigs, indicating that they could be important reservoirs of resistant non-typhoidal Salmonella strains. The presence of similar genetic environments in S. 4,[5],12:i:- indicates both vertical and horizontal transmission of resistance plasmids, which may promote the spread of drug resistance genes. Appropriate measures should be taken to curb the prevalence of S. 4,[5],12:i:-.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha 410006, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Chen J, Zhou X, Tang Y, Jiang Z, Kang X, Wang J, Yue M. Characterization of two-component system CitB family in Salmonella enterica serovar Gallinarum biovar Gallinarum. Vet Microbiol 2023; 278:109659. [PMID: 36645991 DOI: 10.1016/j.vetmic.2023.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum is an avian-adapted pathogen causing fowl typhoid and leading to enormous economic loss in the global poultry industry. Two-component systems (TCSs) are crucial for bacteria survival, virulence, sensing and responding to the environment. 23 pairs of TCSs classified into five families were found in S. Gallinarum strain 287/91, of which the CitB family contains three pairs of TCSs, namely CitA/CitB, DcuS/DcuR and DpiB/DpiA, whose functions remained unaddressed. Thus, four mutants of S. Gallinarum strain U20, ΔcitAB (Δcit), ΔdcuSR (Δdcu), ΔdpiBA (Δdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were constructed. The results suggested that the CitB family did not affect the growth or the metabolic capacities tested, while different TCSs exerted various effects on biofilm formation and antimicrobial resistance against multiple drug classes. Furthermore, the CitB family negatively impacted the tolerance of environmental stress, contributing to compromised virulence in chicken embryos and in vivo survival of S. Gallinarum. Collectively, this research provided new knowledge of how the CitB family is involved in the pathogenicity of S. Gallinarum.
Collapse
Affiliation(s)
- Jiaqi Chen
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Jianfeng Wang
- Hangzhou Original Breeding Farm, Hangzhou 311115, Zhejiang, China.
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
9
|
Elbediwi M, Tang Y, Yue M. Genomic characterization of ESBL-producing Salmonella Thompson isolates harboring mcr-9 from dead chick embryos in China. Vet Microbiol 2023; 278:109634. [PMID: 36610099 DOI: 10.1016/j.vetmic.2022.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The emergence and dissemination of the extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae harbouring antimicrobial resistance (AMR) genes has diminished the potential options for treating multidrug-resistant (MDR) bacterial infections. Until now, numerous studies reported the spreading of critical plasmid-borne AMR genes from different sources worldwide. While the knowledge on the occurrence of the plasmid-borne AMR genes, especially mcr genes in the dead chick embryos, remains obscure. A retrospective study was conducted to detect the presence of the mcr genes in forty-five Salmonella enterica isolates recovered from 2139 dead chick embryo samples, from breeding chicken hatcheries in Henan, China. Using multiplex PCR, we found only four isolates out of the forty-five were mcr-9-positive. These four isolates were found to be MDR, ESBL- producing and showed resistance to 10 antimicrobial drugs. Additionally, mcr-9 harbouring plasmids were successfully transferred into Escherichia coli (E. coli) J53 by conjugation and the mcr-9 gene was confirmed by PCR. We also found that the transconjugants exhibited higher MICs for ampicillin, gentamycin and colistin than the recipient. Whole-genome sequence analysis showed that the four isolates belonged to Salmonella Thompson ST26 and harboured IncHI2 plasmid replicon. Furthermore, the mcr-9 harbouring plasmids were reconstructed using in silico tools and found to be carried other AMR genes (blaDHA-1 and qnrB4). The studied isolates carried the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), in addition to pef and csg operons which are important in host adhesion and biofilm formation. The mgtC gene, which is involved in phagocytosis, has also been identified. Together, the increase in the phenotypic resistance of the transconjugants and the plasmid in silico reconstruction analysis confirmed that the corresponding resistance genes might be located together on the same plasmid. To track the potential phylogenomic relations of our detected ESBL S. Thompson isolates, we constructed a phylogenomic tree with available ESBL S. Thompson genomes (n = 26) that were reported worldwide. The studied isolates were independently clustered together with four other Chinese isolates of food origin in one clade, providing strong evidence of a potential recent and wide dissemination of ESBL S. Thompson across the food chain in China. In conclusion, we report the detection of four highly virulent ESBL-producing S. Thompson ST26 isolates harbouring mcr-9 gene obtained from dead chick embryos in Henan, China.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.
| | - Yanting Tang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Abstract
High-resolution and efficient typing for the bacterial pathogen is essential for tracking the sources, detecting or diagnosing variants, and conducting a risk assessment. However, a systematic in-field investigation of Salmonella along the food chain has not been documented. This study assessed 12 typing methods, such as antimicrobial-resistance (AMR) gene profile typing, Core Genome Multilocus Sequence Typing (cgMLST), and CRISPR multi-virulence locus sequence typing (CRISPR-MVLST), to evaluate their effectiveness for use in routine monitoring of foodborne Salmonella transmission along the poultry production chain. During 2015-16, a total of 1,064 samples were collected from poultry production chain, starting from breeding farms and slaughterhouses to the markets of Zhejiang province in China. A total of 61 consecutive unique Salmonella isolates recovered from these samples were selected for genome sequencing and further comparative typing analysis. Traditional typing methods, including serotyping, AMR phenotype-based typing, as well as modern genotyping approaches, were evaluated and compared by their discrimination index (DI). The results showed that the serotyping method identified nine serovars. The gold standard cgMLST method indicated only 18 different types (DI = 0.8541), while the CRISPR-MVLST method detected 30 types (DI = 0.9628), with a higher DI than all examined medium-resolution WGS-based genotyping methods. We demonstrate that the CRISPR-MVLST might be used as a tool with high discriminatory power, comparable ease of use, ability of tracking the source of Salmonella strains along the food chain and indication of genetic features especially virulence genes. The available methods with different purposes and laboratory expertise were also illustrated to assist in rational implementation. IMPORTANCE In public health field, high-resolution and efficient typing of the bacterial pathogen is essential, considering source-tracking and risk assessment are fundamental issues. Currently, there are no recommendations for applying molecular characterization methods for Salmonella along the food chain, and a systematic in-field investigation comparing subtyping methods in the context of routine surveillance was partially addressed. Using 1,064 samples along a poultry production chain with a considerable level of Salmonella contamination, we collected representative isolates for genome sequencing and comparative analysis by using 12 typing techniques, particularly with whole-genome sequence (WGS) based methods and a recently invented CRISPR multi-virulence locus sequence typing (CRISPR-MVLST) method. CRISPR-MVLST is identified as a tool with higher discriminatory power compared with medium-resolution WGS-based typing methods, comparable ease of use and proven ability of tracking Salmonella isolates. Besides, we also offer recommendations for rational choice of subtyping methods to assist in better implementation schemes.
Collapse
|
11
|
Li Y, Ed-Dra A, Tang B, Kang X, Müller A, Kehrenberg C, Jia C, Pan H, Yang H, Yue M. Higher tolerance of predominant Salmonella serovars circulating in the antibiotic-free feed farms to environmental stresses. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129476. [PMID: 35809365 DOI: 10.1016/j.jhazmat.2022.129476] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.
Collapse
Affiliation(s)
- Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China.
| | | | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiamei Kang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Chenghao Jia
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health 2022; 10:988317. [PMID: 36176509 PMCID: PMC9513250 DOI: 10.3389/fpubh.2022.988317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, β-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.
Collapse
Affiliation(s)
- Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Yunyi Zhang
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Min Yue
| |
Collapse
|
13
|
Xiong D, Yuan L, Song L, Jiao X, Pan Z. A new multiplex PCR for the accurate identification and differentiation of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum. Front Microbiol 2022; 13:983942. [PMID: 36147848 PMCID: PMC9485580 DOI: 10.3389/fmicb.2022.983942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum cause severe chicken salmonellosis, a disease associated with high mortality and morbidity among chickens worldwide. The conventional serotyping and biochemical reactions have been used to identify Salmonella serovars. However, the conventional methods are complicated, time-consuming, laborious, and expensive. Furthermore, it is challenging to distinguish S. Gallinarum and S. Pullorum via biochemical assays and serotyping because of their antigenic similarity. Although various PCR methods were established, a PCR protocol to detect and discriminate S. Gallinarum and S. Pullorum simultaneously is lacking. Herein, a one-step multiplex PCR method was established for the accurate identification and discrimination of S. Pullorum and S. Gallinarum. Three specific genes were used for the multiplex PCR method, with the I137_14445 and ybgL genes being the key targets to identify and differentiate S. Gallinarum and S. Pullorum, and stn being included as a reference gene for the Salmonella genus. In silico analysis showed that the I137_14445 gene is present in all Salmonella serovars, except for S. Gallinarum, and could therefore be used for the identification of S. Gallinarum. A 68-bp sequence deficiency in ybgL was found only in S. Pullorum compared to other Salmonella serovars, and this could therefore be used for the specific identification of S. Pullorum. The developed PCR assay was able to distinguish S. Gallinarum and S. Pullorum among 75 various Salmonella strains and 43 various non-Salmonella pathogens with excellent specificity. The detection limit for the genomic DNA of S. Gallinarum and S. Pullorum was 21.4 pg./μL, and the detectable limit for bacterial cells was 100 CFU. The developed PCR method was used for the analysis of Salmonella isolates in a chicken farm. This PCR system successfully discriminated S. Gallinarum and S. Pullorum from other different Salmonella serovars. The PCR results were confirmed by the conventional serotyping method. The newly established multiplex PCR is a simple, accurate, and cost-effective method for the timely identification and differentiation of S. Pullorum and S. Gallinarum.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Yuan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- *Correspondence: Xinan Jiao,
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Zhiming Pan,
| |
Collapse
|
14
|
Li Y, Kang X, Ed-Dra A, Zhou X, Jia C, Müller A, Liu Y, Kehrenberg C, Yue M. Genome-Based Assessment of Antimicrobial Resistance and Virulence Potential of Isolates of Non-Pullorum/Gallinarum Salmonella Serovars Recovered from Dead Poultry in China. Microbiol Spectr 2022; 10:e0096522. [PMID: 35727054 PMCID: PMC9431532 DOI: 10.1128/spectrum.00965-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022] Open
Abstract
Paratyphoid avian salmonellosis is considered one of the leading causes of poultry death, resulting in significant economic losses to poultry industries worldwide. In China, especially in Shandong province, the leading producer of poultry products, several recurrent outbreaks of avian salmonellosis have been reported during the last decade where the precise causal agent remains unknown. Moreover, the establishment of earlier and more accurate recognition of pathogens is a key factor to prevent the further dissemination of resistant and/or hypervirulent clones. Here, we aim to use whole-genome sequencing combined with in silico toolkits to provide the genomic features of the antimicrobial resistance and virulence potential of 105 regionally representative non-Pullorum/Gallinarum Salmonella isolates recovered from dead poultry between 2008 and 2019 in Shandong, China. Additionally, phenotypic susceptibility to a panel of 15 antibiotics representing 11 classes was assessed by the broth microdilution method. In this study, we identified eight serovars and nine multilocus sequence typing (MLST) types, with Salmonella enterica serovar Enteritidis sequence type 11 (ST11) being the most prevalent (84/105; 80%). Based on their phenotypic antimicrobial resistance, 77.14% of the isolates were defined as multidrug resistant (≥3 antimicrobial classes), with the detection of one S. Enteritidis isolate that was resistant to the 11 classes. The highest rates of resistance were observed against nalidixic acid (97.14%) and ciprofloxacin (91.43%), followed by ampicillin (71.43%), streptomycin (64.77%), and tetracycline (60%). Genomic characterization revealed the presence of 41 resistance genes, with an alarmingly high prevalence of blaTEM-1B (60%), in addition to genomic mutations affecting the DNA gyrase (gyrA) and DNA topoisomerase IV (parC) genes, conferring resistance to quinolones. The prediction of plasmid replicons detected 14 types, with a dominance of IncFIB(S)_1 and IncFII(S)_1 (87.62% for both), while the IncX1 plasmid type was considered the key carrier of antimicrobial resistance determinants. Moreover, we report the detection of critical virulence genes, including cdtB, rck, sodCI, pef, and spv, in addition to the typical determinants for Salmonella pathogenicity island 1 (SPI-1) and SPI-2. Furthermore, phylogenomic analysis revealed the detection of three intra-farm and five inter-farm transmission events. Overall, the detection of Salmonella isolates presenting high antimicrobial resistance and harboring different critical virulence genes is of major concern, which requires the urgent implementation of effective strategies to mitigate non-Pullorum/Gallinarum avian salmonellosis. IMPORTANCE Avian salmonellosis is one of the leading global causes of poultry death, resulting in substantial economic losses in China (constituting 9% of overall financial losses). In Shandong province, a top poultry producer (30% of the overall production in China, with 15% being exported to the world), extensive outbreaks of avian salmonellosis have been reported in the past decade where the causal agents or exact types remain rarely addressed. From approximately 2008 to 2019, over 2,000 Salmonella strains were isolated and identified from dead poultry during routine surveillance of 95 poultry farms covering all 17 cities in Shandong. Approximately 1,500 isolates were confirmed to be of non-Pullorum/Gallinarum Salmonella serovars. There is an urgent need to understand the mechanisms behind the implication of zoonotic Salmonella serovars in systemic infections of poultry. Here, we analyzed populations of clinically relevant isolates of non-Pullorum/Gallinarum Salmonella causing chicken death in China by a whole-genome sequencing approach and determined that antimicrobial-resistant Salmonella Enteritidis remained the major cause in the past decades.
Collapse
Affiliation(s)
- Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | | | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Evaluation of the different methods to detect Salmonella in poultry feces samples. Arch Microbiol 2022; 204:269. [PMID: 35441892 DOI: 10.1007/s00203-022-02840-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 11/02/2022]
Abstract
Salmonella is one of the most common causes of foodborne outbreaks and infection worldwide. The gold-standard detection method of Salmonella is cultivation. There is a need to investigate rapid and accurate processes with time-consuming cultivation. The study evaluated different approaches to detect Salmonella in poultry feces samples. Poultry farm feces samples from 21 cities in Iran were collected from January 2016 to December 2019. Microbiological cultures, serological assays, and multiplex PCR (m-PCR) were used to detect and characterize Salmonella spp. isolates. Serological assays and m-PCR were used to determine the serogroups A, B, C1, C2, D1, E, H, and FliC. The m-PCR was used to detect seven Salmonella serovars, and a Chi-square test was performed to compare the discriminatory power of the methods. Of 2300 poultry feces samples, 173 (7.5%) and 166 (7.2%) samples were detected as Salmonella spp. by cultivation and m-PCR, respectively. The sensitivity of the molecular method was equal to cultivation at 0.96 (CI = 95%). Assessment of H antigenic subgroups showed the same for both m-PCR and serological tests. Therefore, the matching rate of the two methods for detecting all H antigenic subgroups was 100%. Thus, the relationship between the results obtained from both methods was significant in the contingency table test (P < 0.01). The PCR-based approach confirmed the detection of Salmonella in a shorter period (24-36 h) compared to the conventional microbiological approach (3-8 days).
Collapse
|
16
|
Xiong D, Zhou Y, Song L, Liu B, Matchawe C, Chen X, Pelle R, Jiao X, Pan Z. Development of a Duplex TaqMan Real-Time Polymerase Chain Reaction for Accurate Identification and Quantification of Salmonella Enteritidis from Laboratory Samples and Contaminated Chicken Eggs. Foods 2022; 11:foods11050742. [PMID: 35267375 PMCID: PMC8909838 DOI: 10.3390/foods11050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/07/2022] Open
Abstract
Salmonella enteritidis is a major causative agent of foodborne illnesses worldwide. As the traditional serotyping and quantification methods are labor-intensive, time-consuming, and expensive, faster and more convenient molecular diagnostic methods are needed. In this study, we developed and validated a rapid duplex TaqMan real-time polymerase chain reaction (PCR) for the accurate identification and quantification of S. enteritidis. The primers and TaqMan probes were designed based on the S. enteritidis-specific gene lygD and the Salmonella genus-specific gene invA. The melt curve and gel electrophoresis analysis showed that the designed primers had potent specificity for the amplification of lygD and invA. The duplex real-time PCR specifically identified S. enteritidis from a panel of 40 Salmonella strains that represented 29 serovars and 12 non-Salmonella organisms. The duplex real-time PCR assay detected four copies of S. enteritidis DNA per reaction. The intra- and inter- assays indicated a high degree of reproducibility. The real-time PCR could accurately detect and quantify S. enteritidis in chicken organs after Salmonella infection. Furthermore, the assay identified 100% of the S. enteritidis and Salmonella genus isolates from chicken egg samples with superior sensitivity after 6 h of pre-enrichment compared to the traditional culture method. Additionally, the most-probable-number (MPN) combined with qPCR and a shortened incubation time (MPN-qPCR-SIT) method was developed for the population determination of S. enteritidis and compared with various enumeration methods. Thus, we have established and validated a new duplex real-time PCR assay and MPN-qPCR-SIT method for the accurate detection and quantification of S. enteritidis, which could contribute to meeting the need for fast detection and identification in prevention and control measures for food safety.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Bowen Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Chelea Matchawe
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 00100, Kenya; (C.M.); (R.P.)
- Institute of Medical Research and Medicinal Plants Studies, Yaounde 4123, Cameroon
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Roger Pelle
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 00100, Kenya; (C.M.); (R.P.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China; (D.X.); (Y.Z.); (L.S.); (B.L.); (X.C.); (Z.P.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Salmonella spp: Prevalence, antimicrobial resistance and molecular typing of strains isolated from poultry in Tetouan-Morocco. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zahli R, Soliveri J, Abrini J, Copa-Patiño JL, Nadia A, Scheu AK, Nadia SS. Prevalence, typing and antimicrobial resistance of Salmonella isolates from commercial shellfish in the North coast of Morocco. World J Microbiol Biotechnol 2021; 37:170. [PMID: 34487261 DOI: 10.1007/s11274-021-03136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Salmonellosis is one of the most common foodborne illnesses in the world. The irrational use of antibiotics in medicine and in animal nutrition has greatly favored the emergence and spread of resistant strains of non-typhoid Salmonella. This study aims the determination of the prevalence of Salmonella in bivalve mollusks in Northern Morocco, as well as the molecular typing and antibiotic susceptibility testing of the strains isolated from positive samples. In total, 150 samples from shellfish composed of mussels (Mytilus galloprovincialis), clams (Callista chione and Ruditapes descussatus) and oysters (Magallana gigas). Isolated Salmonella were characterized by Molecular techniques PCR, MLST and MLVA, phylogenetically grouped by MLSA, and susceptibilities were determined for 30 antimicrobial drugs using microdilution method by the BD Phoenix Automated Microbiology System. Prevalence of Salmonella enterica subsp. enterica was 12.67%, grouped in four serovars identified as Chester, Hadar, Typhimurium and Kentucky. Five different MLST STs (sequence types) were detected, ST1954 being the most common, which was mostly found in Chester isolates. Forty-two percent of the isolates showed resistance to more than one antibiotic, especially trimethoprim, sulfa drugs, quinolones and β-lactam. There was a marked change in the serovars and antimicrobial resistance profiles of the Salmonella isolates in this study compared to those in previous studies.
Collapse
Affiliation(s)
- Rajae Zahli
- Biotechnology and Applied Microbiology Laboratory (BMA), Department of Biology, Abdelmalek Essadi University, Tétouan, Morocco.
| | - Juan Soliveri
- Department of Biomedicine and Biotechnology, Faculty of Farmacy, University of Alcalá, 28805, Madrid, Spain
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Laboratory (BMA), Department of Biology, Abdelmalek Essadi University, Tétouan, Morocco
| | - José L Copa-Patiño
- Department of Biomedicine and Biotechnology, Faculty of Farmacy, University of Alcalá, 28805, Madrid, Spain
| | - Amajoud Nadia
- Regional Environmental Laboratory of the Urban Community of Tetouan, Tétouan, Morocco
| | - Ann-Karolin Scheu
- Department of Biomedicine and Biotechnology, Faculty of Farmacy, University of Alcalá, 28805, Madrid, Spain
| | - Skali Senhaji Nadia
- Biotechnology and Applied Microbiology Laboratory (BMA), Department of Biology, Abdelmalek Essadi University, Tétouan, Morocco
| |
Collapse
|
19
|
Anwar M, Muhammad F, Aslam B, Saleemi MK. Isolation, characterization and in-vitro antigenicity studies of outer membrane proteins (OMPs) of Salmonella gallinarum coated gold nanoparticles (AuNPs). Immunobiology 2021; 226:152131. [PMID: 34461389 DOI: 10.1016/j.imbio.2021.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The development of biomimetic nanoparticles by combining the natural cellular material with synthetic nanoparticles has inspired innovative therapeutic strategies as compared to traditional line of therapeutics. Therefore, the research was conducted to prepare the outer membrane proteins (OMPs) from Salmonella gallinarum and coated on to the surface of synthetic gold nanoparticles (AuNPs). The size of the final product was characterized by Zeta sizer and Zeta potential. The coating of outer membrane proteins onto the gold nanoparticles (AuNPs) was confirmed by transmission electron microscopy (TEM). The sterility, stability and safety of the prepared antigen was confirmed by standard culture media, in biological buffer solution and in-vitro pyrogenic testing, respectively. In-vitro antigenicity of outer membrane protein alone and coated with gold nanoparticles were observed through macrophage phagocytosis assay. On the basis of results, it was anticipated that bacterial outer membrane protein has immunogenic antigenic properties and coating of bacterial outer membrane protein on the surfaces of synthetic gold nanoparticles not only preserved the complex biological characteristics of bacteria but also provided greater immune responses as compared to outer membrane protein alone. So, it was concluded that the coating of bacterial outer membrane proteins on the surface of synthetic gold nanoparticles have synergistic effects to induce the immune responses and promising potential to develop the effective antibacterial vaccine against salmonellosis in poultry birds.
Collapse
Affiliation(s)
- Majid Anwar
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Pakistan
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Pakistan.
| | - Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Pakistan
| | | |
Collapse
|
20
|
Wu B, Ed-Dra A, Pan H, Dong C, Jia C, Yue M. Genomic Investigation of Salmonella Isolates Recovered From a Pig Slaughtering Process in Hangzhou, China. Front Microbiol 2021; 12:704636. [PMID: 34305874 PMCID: PMC8298193 DOI: 10.3389/fmicb.2021.704636] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
The pig industry is the principal source of meat products in China, and the presence of pathogens in pig-borne meat is a crucial threat to public health. Salmonella is the major pathogen associated with pig-borne diseases. However, route surveillance by genomic platforms along the food chain is still limited in China. Here, we conducted a study to evaluate the dynamic prevalence of Salmonella in a pig slaughtering process in Hangzhou, Zhejiang Province, China. Fifty-five of 226 (24.37%) samples were positive for Salmonella; from them, 78 different isolates were selected and subjected to whole genome sequencing followed by bioinformatics analyses to determine serovar distribution, MLST patterns, antimicrobial resistance genes, plasmid replicons, and virulence factors. Moreover, phenotypic antimicrobial resistance was performed using the broth dilution method against 14 antimicrobial agents belonging to 10 antimicrobial classes. Our results showed that samples collected from the dehairing area (66.66%) and the splitting area (57.14%) were the most contaminated. Phenotypic antimicrobial resistance classified 67 of 78 isolates (85.90%) as having multidrug resistance (MDR), while the highest resistance was observed in tetracycline (85.90%; 67/78) followed by ampicillin (84.62%; 66/78), chloramphenicol (71.80%; 56/78), and nalidixic acid (61.54%; 48/78). Additionally, serovar prediction showed the dominance of Salmonella Typhimurium ST19 (51.28%; 40/78) among the 78 studied isolates, while plasmid prediction reported the dominance of IncHI2A_1 (20.51%; 16/78), followed by IncX1_1 (17.95%; 14/78) and IncHI2_1 (11.54%; 9/78). Virulence factor prediction showed the detection of cdtB gene encoding typhoid toxins in two Salmonella Goldcoast ST358 and one Salmonella Typhimurium ST19, while one isolate of Salmonella London ST155 was positive for genes encoding for the siderophore “yersiniabactin” and the gene senB encoding for enterotoxin production. From this study, we conclude that pig slaughterhouses are critical points for the dissemination of virulent and multidrug-resistant Salmonella isolates along the food chain which require the implementation of management systems to control the critical points. Moreover, there is an urgent need for the implementation of the whole genome sequencing platform to monitor the emergence of virulent and multidrug-resistant clones along the food chain.
Collapse
Affiliation(s)
- Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Hang Pan
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghang Dong
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China.,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
21
|
Jiang Z, Anwar TM, Peng X, Biswas S, Elbediwi M, Li Y, Fang W, Yue M. Prevalence and antimicrobial resistance of Salmonella recovered from pig-borne food products in Henan, China. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Liu Y, Jiang J, Ed-Dra A, Li X, Peng X, Xia L, Guo Q, Yao G, Yue M. Prevalence and genomic investigation of Salmonella isolates recovered from animal food-chain in Xinjiang, China. Food Res Int 2021; 142:110198. [PMID: 33773671 DOI: 10.1016/j.foodres.2021.110198] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Salmonella is a major foodborne pathogen worldwide, causing serious cases of morbidity and mortality due to the consumption of contaminated foods. Animal-borne foods were considered the main source of transferring Salmonella to humans; however, route surveillance by genomic platforms along the food-chain is limited in China. Here, we proceeded to the application of whole genome sequencing in the epidemiological analysis of Salmonella isolated along the food-chain in Xinjiang, China. A total of 2408 samples were collected from farms, slaughterhouses, and markets, and subjected to the isolation of Salmonella strains. 314 (13.04%) of the samples were positive for Salmonella. Phenotypic antimicrobial resistance was conducted by the broth dilution method using 14 antimicrobial agents belonging to ten classes for all 314 isolates. A selection of representative 103 isolates was subjected to whole-genome sequencing for understanding the Salmonella diversity, including serovars, antimicrobial and virulence genes, plasmid types, multi-locus sequence types, and allelic types. We found that S. Agona was the dominant serovar and O:4(B) was the dominant serogroup. The dominant genotype was ST13 and each serovar has a unique MLST pattern. Plasmids prediction reported Col(MGD2)_1 and Col(Ye4449)_1 as the dominant plasmids, in addition to the detection of IncFII(S)_1 and IncFIB(S)_1 carried by all S. Enteritidis isolates. Importantly, virulence genes prediction showed the presence of cdtB gene encoding typhoid toxins, spv genes, and pef gene cluster encoding fimbriae in the genomes of S. Indiana and S. Enteritidis. Phenotypic antimicrobial resistance identified 92.04% of the sampled isolates as multi-drug resistance (MDR), with high resistance to tetracycline (78.03%; 245/314), amoxicillin/ clavulanic acid (75.80%; 238/314), and ampicillin (70.70%; 222/314). Together, we firstly reported the prevalence of MDR Salmonella isolates harboring critical virulence factors transmission via animal-borne food-chain in Xinjiang, hence route surveillance by whole-genome sequencing platform could facilitate recognition and project early warning for the emerging MDR clones along the food-chain.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jindou Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Abdelaziz Ed-Dra
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiaomeng Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
23
|
Wang Y, Huang C, Tang J, Liu G, Hu M, Kang X, Zhang J, Zhang Y, Pan Z, Jiao X, Geng S. Salmonella Pullorum spiC mutant is a desirable LASV candidate with proper virulence, high immune protection and easy-to-use oral administration. Vaccine 2021; 39:1383-1391. [PMID: 33551301 DOI: 10.1016/j.vaccine.2021.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Live attenuated Salmonellavaccine (LASV) is considered to be an effective contributory measure during the control of Salmonella infection. A Salmonella Pullorum spiC mutant was evaluated comprehensively as a LASV candidate (LASV-p) for broilers in terms of safety and immunogenicity. LASV-p was adminstered to 3-day broilers by intramuscular injection. The LD50 increased 126 fold, and no tissue lesions were observed in the liver, spleen and cecum, in comparison with the control group inoculated with PBS and a passive group by wild-type Salmonella. Growth rates of all broilers were normal and not affected. LASV-p persisted in vivo until 21 days in liver, 28 days in spleen and 35 days in feces, and induced high levels of humoral IgG and mucosal IgA. Cellular immunity was also stimulated in the form of antigen-specific lymphocyte proliferation and higher counts of CD3+CD8+ T cells and increased expression of mRNA of Th1 cytokines, IFN-γ and IL-2, in the early stage, and Th2 cytokines, IL-4 and IL-10, in the later stages. LASV-p provided at least 90% immuneprotection against a wild-type Salmonella Pullorum and cross-protection in different degree against other Salmonella searovars. Oral vaccine could also offer high immune protection of 87.5%. These results indicated that LASV-p vaccine candidate had a high level of safety and immune protection and it might be developed as a novel easy-to-use oral vaccine to improve poultry health in the future.
Collapse
Affiliation(s)
- Yaonan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cuiying Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Juan Tang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guifeng Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Maozhi Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xilong Kang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jian Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Shizhong Geng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
24
|
Xu X, Biswas S, Gu G, Elbediwi M, Li Y, Yue M. Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China. Antibiotics (Basel) 2020; 9:antibiotics9100660. [PMID: 33007986 PMCID: PMC7600917 DOI: 10.3390/antibiotics9100660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.
Collapse
Affiliation(s)
- Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Silpak Biswas
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
| | - Guimin Gu
- Guangxi Institute for Product Quality Inspection, Nanning 530007, China;
| | - Mohammed Elbediwi
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11435, Egypt
| | - Yan Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-0571-8898-2832
| |
Collapse
|
25
|
Xu Y, Zhou X, Jiang Z, Qi Y, Ed-Dra A, Yue M. Epidemiological Investigation and Antimicrobial Resistance Profiles of Salmonella Isolated From Breeder Chicken Hatcheries in Henan, China. Front Cell Infect Microbiol 2020; 10:497. [PMID: 33042870 PMCID: PMC7522330 DOI: 10.3389/fcimb.2020.00497] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022] Open
Abstract
The emergence of antimicrobial-resistant (AR) Salmonella has a major concern worldwide. This study was designed to determine the AR profiles and serovars distribution of Salmonella enterica isolated from different breeds of breeder chickens in the province of Henan, China. For this, 2,139 dead embryo samples were collected from 28 breeder chicken hatcheries, representing two domestic and four foreign breeds. The samples were subjected to the isolation and identification of Salmonella by PCR. The confirmed strains were serotyped according to the Kauffmann-White scheme and their AR profiles against 20 antimicrobial agents were determined by Kirby-Bauer (K-B) disc diffusion method. The results of this study showed the prevalence of Salmonella in 504 strains (23.56%) with a high abundance in southern regions of Yellow River (28.66%, n = 495, N = 1,727) compared to the northern regions (2.18%, n = 9, N = 412) (p < 0.0001). The domestic breeds were more contaminated than imported breeds (p < 0.0001). However, the contamination rate of samples recovered from M-hatcheries was the highest (p < 0.0001). Serotyping method identified 12 serovars, with the dominance of S. Pullorum (75.79%), followed by S. Enteritidis (7.14%). The AR assay showed high resistant to ciprofloxacin (77.00%), sulfisoxazole (73.00%), and ampicillin (55.60%), as well as 98.81% (n = 498) of the isolated strains, were resistant to at least one antimicrobial and 69.64% (n = 351) were resistant to three or more antimicrobials. Among them, one strain of S. Thompson was resistant to 15 antimicrobial agents belonging to eight different classes. In conclusion, Salmonella strains isolated in this study were multidrug-resistant (MDR), presenting a serious problem for human and animal health. Therefore, it is necessary to monitor, control, and rationalize the use of antimicrobials agents in chicken farms in order to limit the increasing resistance against the recent antimicrobial agents.
Collapse
Affiliation(s)
- Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yaru Qi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Abdelaziz Ed-Dra
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
26
|
Liu Q, Chen W, Elbediwi M, Pan H, Wang L, Zhou C, Zhao B, Xu X, Li D, Yan X, Han X, Li H, Li Y, Yue M. Characterization of Salmonella Resistome and Plasmidome in Pork Production System in Jiangsu, China. Front Vet Sci 2020; 7:617. [PMID: 33062654 PMCID: PMC7517575 DOI: 10.3389/fvets.2020.00617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
The prevalence of antimicrobial resistance in zoonotic Salmonella is a significant ongoing concern over the world. Several reports have investigated the prevalence of Salmonella infections in the farm animals in China; however, there is only limited knowledge about the Salmonella cross-contamination in the slaughterhouses. Moreover, the application of genomic approaches for understanding the cross-contamination in the food-animal slaughterhouses is still in its infancy in China. In the present study, we have isolated 105 Salmonella strains from pig carcasses and environment samples collected from four independent slaughterhouses in Jiangsu, China. All the Salmonella isolates were subjected to whole genome sequencing, bioinformatics analysis for serovar predictions, multi-locus sequence types, antimicrobial resistance genes, and plasmid types by using the in-house Galaxy platform. The antimicrobial resistance of Salmonella isolates was determined using a minimal inhibitory concentration assay with 14 antimicrobials. We found that the predominant serovar and serogroup was S. Derby and O:4(B), with a prevalence of 41.9 and 55%, respectively. All the isolates were multidrug-resistant and the highest resistance was observed against antimicrobials tetracycline (95.4%) and trimethoprim and sulfamethoxazole (90.9%). Additionally, the colistin-resistant determinant mcr-1 gene was detected in five (4.8%) strains. Our study demonstrated the prevalence of antimicrobial resistance in Salmonella strains isolated from pig slaughterhouses in China and suggested that the genomic platform can serve as routine surveillance along with the food-chain investigation.
Collapse
Affiliation(s)
- Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Wenjing Chen
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Liqun Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Chuang Zhou
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xinguo Xu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Dingguo Li
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xin Yan
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xiao Han
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Hanyuan Li
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
27
|
Xu X, Chen Y, Pan H, Pang Z, Li F, Peng X, Ed-dra A, Li Y, Yue M. Genomic characterization of Salmonella Uzaramo for human invasive infection. Microb Genom 2020; 6:mgen000401. [PMID: 32589568 PMCID: PMC7478631 DOI: 10.1099/mgen.0.000401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Salmonella is composed of a wide variety of serovars, causing human self-limited gastrointestinal illnesses or invasive infections. Invasive non-typhoidal Salmonella (iNTS) is well documented, with high mortality for children and immunocompromised adults in sub-Saharan Africa and has recently been reported in Southeast Asia. However, iNTS in China remains unknown. In May 2019, a case of invasive infection caused by Salmonella enterica serovar Uzaramo (S. Uzaramo) was reported for the first time in China. Phylogenomic analysis was performed by genomic sequencing the available contextualized isolates, which separated the two Chinese strains into different sublineages. Both phenotypic and genomic characterization demonstrated that the S. Uzaramo isolates showed in general low antimicrobial resistance potential, except one isolated from lake-water in China. Additional comparative genomic analysis and Caenorhabditis elegans killing assays suggested a unique combination of virulence factors, including typhoid toxin and tcf fimbrial adhesin, which might play a role in the invasive infection. This study highlights that the transparency of global surveillance genomic data could accelerate understanding of virulence and antimicrobial resistance makeup of a previously unknown threat.
Collapse
Affiliation(s)
- Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, PR China
| | - Yan Chen
- Panzhihua Center for Disease Control and Prevention, Panzhihua 617000, PR China
| | - Hang Pan
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
| | - Zaiyuan Pang
- Panzhihua Municipal Central Hospital, Panzhihua 617000, PR China
| | - Fang Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
| | - Xianqi Peng
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
| | - Abdelaziz Ed-dra
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
| | - Yan Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
- Zhejiang Provincial Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, PR China
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China
- Zhejiang Provincial Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, PR China
| |
Collapse
|
28
|
Elbediwi M, Beibei W, Pan H, Jiang Z, Biswas S, Li Y, Yue M. Genomic Characterization of mcr-1-carrying Salmonella enterica Serovar 4,[5],12:i:- ST 34 Clone Isolated From Pigs in China. Front Bioeng Biotechnol 2020; 8:663. [PMID: 32714906 PMCID: PMC7344297 DOI: 10.3389/fbioe.2020.00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:-, so-called Typhimurium monophasic variant, has become one of the most frequently isolated serovars both in humans and in animals all over the world. The increasing prevalence of mcr-1-carrying Salmonella poses significant global health concerns. However, the potential role of Salmonella 4,[5],12:i:- in mcr-1 gene migration through the food chain to the human remains obscure. Here, we investigated 337 Salmonella isolates from apparently healthy finishing pigs, which is rarely studied, obtained from pig farms and slaughterhouses in China. The mcr-1 gene was found in four colistin-resistant S. enterica 4,[5],12:i:- isolates. Notably, all four isolates belonged to sequence type 34 (ST34) with multidrug resistance phenotype. Further genomic sequencing and antimicrobial resistance characterization confirmed that mcr was responsible for the colistin resistance, and the conjugation assay demonstrated that three of four isolates carried mcr-1 in IncHI2 plasmid. Importantly, mcr-1 and class-1 integron were found to co-localize in two strains with IncHI2 plasmid. By collecting all the mcr-1-carrying Typhimurium and monophasic variant strains across the food chain (farm animals, animal-origin food, and humans), our phylogenomic analysis of available 66 genomes, including four strains in this study, demonstrated an independent phylogenetic cluster of all eight Chinese swine-originated isolates and one human isolate. Together, this study provides direct evidence for clonal and pork-borne transmission of mcr-1 by Salmonella 4,[5],12:i:- ST34 in China and highlighted a domestication pathway by acquisition of additional antimicrobial resistance determinants in Chinese ST34 isolates.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wu Beibei
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Silpak Biswas
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
30
|
Jiang Z, Paudyal N, Xu Y, Deng T, Li F, Pan H, Peng X, He Q, Yue M. Antibiotic Resistance Profiles of Salmonella Recovered From Finishing Pigs and Slaughter Facilities in Henan, China. Front Microbiol 2019; 10:1513. [PMID: 31333618 PMCID: PMC6622357 DOI: 10.3389/fmicb.2019.01513] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
With the increase in commercial pig farming, there is a simultaneous increase in the use of antibiotics for prophylaxis as well as therapeutics in China. In this study, we evaluated the prevalence and resistance diversity of salmonellae isolated from feces of asymptomatic, live and slaughtered pigs. We analyzed 1,732 pig fecal samples collected over 8 months, at Henan province of China. The salmonellae were isolated and identified by PCR. They were serotyped using commercial antisera and assayed for the MIC of 16 antibiotics by broth microdilution method. The average prevalence of Salmonella was 19.4% (95% CI: 17.6–21.4). Large farms (herd size ≥1,000) were found to have a higher prevalence as compared to the small- and medium-scale farms (p < 0.0001). The prevalence of salmonellae in samples collected from the farms [11.77% (95% CI: 10.1–13.6)] and from the slaughterhouse [45.23% (95% CI: 40.3–50.30)] was statistically different (p < 0.0001). Uncommon serovars of Salmonella such as Agama and common serovars such as Derby and Typhimurium were isolated. High resistance (>80%) was recorded toward ciprofloxacin (100%), tetracycline (99.4%), doxycycline (97%), sulfamethoxazole (85.8%), ampicillin (81.6%), and amoxicillin (80.4%). Multidrug resistance (MDR) to four, five, and seven classes of antibiotics was recorded to be approximately 25% in the most prevalent serovar like Derby. We conclude that the presence of alarmingly high resistance, toward the critical antibiotics such as fluoroquinolones and beta-lactams, in large swine farms in China, should draw public attention. These results highlight the need for continued antibiotic stewardship programs for judicious use of critical antibiotics in animal health as well as for producing safe pork.
Collapse
Affiliation(s)
- Zenghai Jiang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Narayan Paudyal
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Animal Health Research Division (AHRD), Nepal Agricultural Research Council (NARC), Kathmandu, Nepal
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tongwei Deng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Fang Li
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Hang Pan
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xianqi Peng
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qigai He
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Yue
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
31
|
Xu J, Zhang P, Zhuang L, Zhang D, Qi K, Dou X, Wang C, Gong J. Multiplex polymerase chain reaction to detectSalmonellaserovars Indiana, Enteritidis, and Typhimurium in raw meat. J Food Saf 2019. [DOI: 10.1111/jfs.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingxiao Xu
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
| | - Ping Zhang
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
| | - Linlin Zhuang
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
| | - Di Zhang
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease ControlAnhui Agricultural University Hefei Anhui China
| | - Xinhong Dou
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
| | - Chengming Wang
- Department of PathobiologyAuburn University College of Veterinary Medicine Auburn Alabama
| | - Jiansen Gong
- Poultry InstituteChinese Academy of Agricultural Sciences Yangzhou Jiangsu China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonoseYangzhou University Yangzhou Jiangsu China
| |
Collapse
|
32
|
Salazar GA, Guerrero-López R, Lalaleo L, Avilés-Esquivel D, Vinueza-Burgos C, Calero-Cáceres W. Presence and diversity of Salmonella isolated from layer farms in central Ecuador. F1000Res 2019; 8:235. [PMID: 31069068 PMCID: PMC6480948 DOI: 10.12688/f1000research.18233.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Given the considerable role played by Salmonella in the incidence of food contamination, around the world, surveillance of this infection is prioritized by both food producers and health care authorities. Data remains insufficient concerning the prevalence of Salmonella in poultry systems in Ecuador and in Latin America in general. Methods: In this study, we evaluated the presence and diversity of Salmonella serovars in samples taken from 21 layer farms and backyard layers in central Ecuador during August-November 2017. Salmonella was isolated following standardized methods (ISO 6579) and the serovar determination was carried out by PCR. Results: A significant presence of Salmonella was detected in the 21 farms evaluated, with a frequency of 76% (95% confidence interval (CI): 53-92) in environmental surfaces, 33% (95%CI: 15-57) in pooled cloacal swabs from layer hens, 33% (95% CI: 13-59) on feed samples, and 10% (95%CI: 1-30) in backyard layer feces from traditional local markets. The dominant serovars detected were S. Infantis and S. Typhimurium. Conclusions: This study forms a basis for further surveillance of Salmonella serovars in layer farms in central Ecuador.
Collapse
Affiliation(s)
- Gabriela A Salazar
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Ricardo Guerrero-López
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Liliana Lalaleo
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | - Diana Avilés-Esquivel
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| | | | - William Calero-Cáceres
- UTA RAM OneHealth Group, Faculty of Agricultural Sciences, Universidad Técnica de Ambato, Cevallos, Ecuador
| |
Collapse
|
33
|
Al-Habsi K, Jordan D, Harb A, Laird T, Yang R, O'Dea M, Jacobson C, Miller DW, Ryan U, Abraham S. Salmonella enterica isolates from Western Australian rangeland goats remain susceptible to critically important antimicrobials. Sci Rep 2018; 8:15326. [PMID: 30333552 PMCID: PMC6193037 DOI: 10.1038/s41598-018-33220-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigated faecal carriage and antimicrobial resistance (AMR) of Salmonella enterica recovered from rangeland goats. Faecal samples (n = 400) were collected at slaughter from four consignments of goats (n = 100 samples per consignment), each from one of four localities in Western Australia. Carriage of Salmonella spp. was detected in 106 samples (26.5%; 95% CI 22.4-31.0%). The rate of faecal carriage for each consignment ranged between 23-30%. PCR assays targeting the STM2755 and STM4497 genes revealed 84.9% (90/106) of the isolates were of serovar Typhimurium. Salmonella Chester (11/106, 10.4%) and S. Saintpaul (5/106, 4.7%) were characterised at invA and ompF genes. Antimicrobial susceptibility testing demonstrated that 84.0% of isolates were susceptible to all tested (n = 13) antimicrobials. Resistance was identified to azithromycin (14.2%), tetracycline (10.4%), ampicillin (5.7%), amoxicillin-clavulanate and cefoxitin (3.8%), trimethoprim/sulfamethoxazole (1.9%), gentamicin and streptomycin (0.9%). No isolate was resistant to four or more antimicrobials, or to critically important antimicrobials such as fluoroquinolones and extended spectrum cephalosporins. This is the first study reporting AMR in Salmonella isolates from Australian rangeland goats. The rate of detection of AMR was very low, some resistance to low-importance drugs was present in the Salmonella population, despite the absence of active selection pressure.
Collapse
Affiliation(s)
- Khalid Al-Habsi
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, 1243 Bruxner Highway, Wollongbar, NSW, 2477, Australia
| | - Ali Harb
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Tanya Laird
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Mark O'Dea
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Caroline Jacobson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - David W Miller
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sam Abraham
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
34
|
Molecular Detection, Virulence Genes, Biofilm Formation, and Antibiotic Resistance of Salmonella enterica Serotype enteritidis Isolated from Poultry and Clinical Samples. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.69504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Xu L, Liu Z, Li Y, Yin C, Hu Y, Xie X, Li Q, Jiao X. A rapid method to identify Salmonella enterica serovar Gallinarum biovar Pullorum using a specific target gene ipaJ. Avian Pathol 2018; 47:238-244. [PMID: 29231761 DOI: 10.1080/03079457.2017.1412084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is the pathogen of pullorum disease, which leads to severe economic losses in many developing countries. Traditional methods to identify S. enterica have relied on biochemical reactions and serotyping, which are time-consuming with accurate identification if properly carried out. In this study, we developed a rapid polymerase chain reaction (PCR) method targeting the specific gene ipaJ to detect S. Pullorum. Among the 650 S. Pullorum strains isolated from 1962 to 2016 all over China, 644 strains were identified to harbour ipaJ gene in the plasmid pSPI12, accounting for a detection rate of 99.08%. Six strains were ipaJ negative because pSPI12 was not found in these strains according to whole genome sequencing results. There was no cross-reaction with other Salmonella serotypes, including Salmonella enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum), which show a close genetic relationship with S. Pullorum. This shows that the PCR method could distinguish S. Gallinarum from S. Pullorum in one-step PCR without complicated biochemical identification. The limit of detection of this PCR method was as low as 90 fg/μl or 102 CFU, which shows a high sensitivity. Moreover, this method was applied to identify Salmonella isolated from the chicken farm and the results were consistent with what we obtained from biochemical reactions and serotyping. Together, all the results demonstrated that this one-step PCR method is simple and feasible to efficiently identify S. Pullorum.
Collapse
Affiliation(s)
- Lijuan Xu
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Zijian Liu
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Yang Li
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Chao Yin
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,c Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , Yangzhou , People's Republic of China
| | - Yachen Hu
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Xiaolei Xie
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Qiuchun Li
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China
| | - Xinan Jiao
- a Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China , Yangzhou University , Yangzhou , People's Republic of China.,b Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou University , Yangzhou , People's Republic of China.,c Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
36
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Salmonella infection in poultry with serotypes of animal health relevance ( S. Pullorum, S. Gallinarum and S. arizonae). EFSA J 2017; 15:e04954. [PMID: 32625620 PMCID: PMC7009822 DOI: 10.2903/j.efsa.2017.4954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Salmonella infection in poultry (Salmonella Pullorum, Salmonella Gallinarum and Salmonella arizonae) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Salmonella to be listed, Article 9 for the categorisation of Salmonella according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to Salmonella. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Salmonella can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 1 of Annex IV referred to in point (a) of Article 9(1) is inconclusive. The main animal species to be listed for Salmonella according to Article 8(3) criteria are all species of domestic poultry and wild species of mainly Anseriformes and Galliformes, as indicated in the present opinion.
Collapse
|
37
|
Abstract
Abstract
The aim of the study was to evaluate and adapt the PCR-based protocol that utilizes the developed serotype-specific primers to identify Salmonella enterica species and its serotypes that are most frequently isolated from poultry samples in Vojvodina. Using the slide agglutination test, 64 and 33 out of 107 Salmonella isolates were identified as S. Infantis and S. Enteritidis, respectively, while ten isolates were identified as eight different Salmonella serovars. Using the same isolates, presence of 993-bp (bcfC gene), 636-bp (steB gene) and 293-bp (sdf locus) amplicons in multiplex PCR unambiguously identified 31 isolates as S. Enteritidis. Two isolates identified as Enteritidis in slide agglutination test were not identified as such in PCR-based approach since they both were missing 293-bp long PCR product. Thirty-nine isolates produced a 727-bp amplicon in the specific simplex PCR, and thus were identified as S. Infantis. The greatest discrepancy in comparison to the results of conventional serotyping has been observed in the case of S. Infantis, since 25 more isolates were noted as S. Infantis by conventional serotyping. Seven isolates, with unexpected PCR profiles stayed unidentified by molecular typing, although they were serotyped as S. Typhimurium (1) and S. Infantis (6). S. Gallinarum serovar has to be additionally confirmed, since it shares the same PCR profile with S. Livingstone. Clearly, PCR-based identification has to be thoroughly checked, verified and adapted if it is to be applied as the routine identification protocol.
Collapse
|
38
|
Xiong D, Song L, Tao J, Zheng H, Zhou Z, Geng S, Pan Z, Jiao X. An Efficient Multiplex PCR-Based Assay as a Novel Tool for Accurate Inter-Serovar Discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin. Front Microbiol 2017; 8:420. [PMID: 28360901 PMCID: PMC5352712 DOI: 10.3389/fmicb.2017.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovars Enteritidis, Pullorum/Gallinarum, and Dublin are infectious pathogens causing serious problems for pig, chicken, and cattle production, respectively. Traditional serotyping for Salmonella is costly and labor-intensive. Here, we established a rapid multiplex PCR method to simultaneously identify three prevalent Salmonella serovars Enteritidis, Pullorum/Gallinarum, and Dublin individually for the first time. The multiplex PCR-based assay focuses on three genes tcpS, lygD, and flhB. Gene tcpS exists only in the three Salmonella serovars, and lygD exists only in S. Enteritidis, while a truncated region of flhB gene is only found in S. Pullorum/Gallinarum. The sensitivity and specificity of the multiplex PCR assay using three pairs of specific primers for these genes were evaluated. The results showed that this multiplex PCR method could accurately identify Salmonella Enteritidis, Pullorum/Gallinarum, and Dublin from eight non-Salmonella species and 27 Salmonella serovars. The least concentration of genomic DNA that could be detected was 58.5 pg/μL and the least number of cells was 100 CFU. Subsequently, this developed method was used to analyze clinical Salmonella isolates from one pig farm, one chicken farm, and one cattle farm. The results showed that blinded PCR testing of Salmonella isolates from the three farms were in concordance with the traditional serotyping tests, indicating the newly developed multiplex PCR system could be used as a novel tool to accurately distinguish the three specific Salmonella serovars individually, which is useful, especially in high-throughput screening.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Jing Tao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Huijuan Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Zihao Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou UniversityYangzhou, China
| |
Collapse
|
39
|
RANJBAR R, MORTAZAVI SM, MEHRABI TAVANA A, SARSHAR M, NAJAFI A, SORURI ZANJANI R. Simultaneous Molecular Detection of Salmonella enterica Serovars Typhi, Enteritidis, Infantis, and Typhimurium. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:103-111. [PMID: 28451535 PMCID: PMC5401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Salmonella enterica serovar Typhi, as causative agent of typhoid fever, is one of the most important endemic pathogens. Non-typhoidal Salmonella serovars, including Typhimurium, Infantis, and Enteritidis are amongst the most prevalent serotypes worldwide and in developing areas such as Iran. The aim of this study was to apply a uniplex PCR for rapid detection of Salmonella spp., and a multiplex PCR for the simultaneous detection of the four most common Salmonella serovars in Iran. METHODS Current research was done in 2010 at Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. For detection of Salmonella spp a pair of primers was used to replicate a chromosomal sequence. Four other sets of primers were also designed to amplify the target genes of four Salmonella species including S. typhi, and three non-typhoidal Salmonella spp (S. enteritidis, S. infantis, and S. typhimurium). The assay specificity was investigated by testing 15 different Salmonella serovars and 8 other additional non-Salmonella species. RESULTS The Salmonella genus-specific PCR yielded the expected DNA band of 404 bp in all Salmonella spp., strains tested. The uniplex and multiplex PCR assays produced also the expected fragments of 489 bp, 304 bp, 224 bp, and 104 bp for serovars Typhi, Enteritidis, Typhimurium, and Infantis, respectively. Each species-specific primer pair set did not show any cross-reactivity when tested on other Salmonella serovars or other non- but related- Salmonella strains. CONCLUSION Both uniplex and multiplex PCR protocols had a good specificity. They can provide an important tool for the rapid and simultaneous detection and differentiation of the four most prevalent Salmonella serovars in Iran.
Collapse
Affiliation(s)
- Reza RANJBAR
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Seyyed Mojtaba MORTAZAVI
- Dept. of Microbiology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali MEHRABI TAVANA
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Meysam SARSHAR
- Dept. of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ali NAJAFI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rahim SORURI ZANJANI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Xiong D, Song L, Geng S, Tao J, An S, Pan Z, Jiao X. One-Step PCR Detection of Salmonella Pullorum/Gallinarum Using a Novel Target: The Flagellar Biosynthesis Gene flhB. Front Microbiol 2016; 7:1863. [PMID: 27920764 PMCID: PMC5118417 DOI: 10.3389/fmicb.2016.01863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica serovar Pullorum/Gallinarum is an important infectious pathogen that has caused widespread problems for chicken industry. Traditional Salmonella serotyping is an expensive and time-consuming process. In this study, we developed a rapid one-step polymerase chain reaction (PCR) method to identify S. Pullorum/Gallinarum. The PCR-based assay focuses on flhB, which shows a deficient region only in S. Pullorum/Gallinarum, compared with that of other serovars. The specificity and sensitivity of the PCR system were evaluated. The developed PCR method could identify S. Pullorum/Gallinarum from 27 different Salmonella serovars and eight non-Salmonella pathogens. The minimum limit of DNA and the lowest number of cells of S. Pullorum for the PCR detection were no less than 5.85 pg/μL and 10 CFU, respectively. The method was applied to the analysis of Salmonella strains isolated from the chicken farm. The PCR-based testing results of the farm isolates were in concordance with those obtained using traditional serotyping method. This newly developed PCR-based system could be used to accurately screen for the presence of S. Pullorum/Gallinarum, and support traditional serotyping methods, especially in high-throughput screening situations.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Jing Tao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Shumin An
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of EducationYangzhou, China
| |
Collapse
|