1
|
Park H, Jung W, Jang H, Namkoong K, Choi KY. One-Step RT-qPCR for Viral RNA Detection Using Digital Analysis. Front Bioeng Biotechnol 2022; 10:837838. [PMID: 35340840 PMCID: PMC8948435 DOI: 10.3389/fbioe.2022.837838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The rapid detection of viruses is becoming increasingly important to prevent widespread infections. However, virus detection via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is time-consuming, as it involves independent nucleic acid extraction and complementary DNA synthesis. This process limits the potential for rapid diagnosis and mass analysis, which are necessary to curtail viral spread. In this study, a simple and rapid thermolysis method was developed to circumvent the need for extraction and purification of viral RNA. The developed protocol was applied to one-chip digital PCR (OCdPCR), which allowed thermolysis, RT, and digital PCR in a single unit comprising 20,000 chambers of sub-nanoliter volume. Two viruses such as tobacco mosaic virus and cucumber mosaic virus were tested as model viral particles. First, the temperature, exposure time, and template concentration were optimized against tobacco mosaic viral particles, and the most efficient conditions were identified as 85°C, 5 min, and 0.01 μg/nL with a cycle threshold of approximately 33. Finally, the OCdPCR analysis yielded 1,130.2 copies/µL using 10−2 μg/nL of viral particles in a 30 min thermolysis-RT reaction at 70°C. This novel protocol shows promise as a quick, accurate, and precise method for large-scale viral analysis in the future.
Collapse
Affiliation(s)
- Hyuna Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, South Korea
| | - Wonjong Jung
- Device Research Center, Advanced Sensor Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co.Ltd., Suwon-si, South Korea
| | - Hyeongseok Jang
- Device Research Center, Advanced Sensor Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co.Ltd., Suwon-si, South Korea
| | - Kak Namkoong
- Device Research Center, Advanced Sensor Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co.Ltd., Suwon-si, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, South Korea
| |
Collapse
|
2
|
Gorse GJ, Rattigan SM, Kirpich A, Simberkoff MS, Bessesen MT, Gibert C, Nyquist AC, Price CS, Gaydos CA, Radonovich LJ, Perl TM, Rodriguez-Barradas MC, Cummings DAT. Influence of Pre-Season Antibodies against Influenza Virus on Risk of Influenza Infection among Health Care Personnel. J Infect Dis 2021; 225:891-902. [PMID: 34534319 DOI: 10.1093/infdis/jiab468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of hemagglutination inhibition (HAI) antibodies with protection from influenza among healthcare personnel (HCP) with occupational exposure to influenza viruses has not been well-described. METHODS The Respiratory Protection Effectiveness Clinical Trial was a cluster-randomized, multi-site study that compared medical masks to N95 respirators in preventing viral respiratory infections among HCP in outpatient healthcare settings for 5,180 participant-seasons. Serum HAI antibody titers before each influenza season and influenza virus infection confirmed by polymerase chain reaction were studied over four study years. RESULTS In univariate models, the risk of influenza A(H3N2) and B virus infections was associated with HAI titers to each virus, study year, and site. HAI titers were strongly associated with vaccination. Within multivariate models, each log base 2 increase in titer was associated with 15%, 26% and 33-35% reductions in the hazard of influenza A(H3N2), A(H1N1) and B infections, respectively. Best models included pre-season antibody titers and study year, but not other variables. CONCLUSIONS HAI titers were associated with protection from influenza among HCP with routine exposure to patients with respiratory illness and influenza season contributed to risk. HCP can be reassured about receiving influenza vaccination to stimulate immunity.
Collapse
Affiliation(s)
- Geoffrey J Gorse
- Section of Infectious Diseases, Veterans Affairs St. Louis Health Care System, St. Louis, MO, 63106 USA.,Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104 USA
| | - Susan M Rattigan
- Department of Biology and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Alexander Kirpich
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA USA
| | - Michael S Simberkoff
- Department of Medicine, Veterans Affairs New York Harbor Healthcare System, New York, NY, USA.,Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Mary T Bessesen
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, 80045 USA.,Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cynthia Gibert
- Medical Service, Washington D.C. Veterans Affairs Medical Center, Washington, DC, USA
| | - Ann-Christine Nyquist
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Pediatrics, Section of Pediatric Infectious Disease and Epidemiology Children's Hospital Colorado, Aurora, CO, USA
| | - Connie Savor Price
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA.,Infectious Diseases, Denver Health, Denver, CO, USA
| | - Charlotte A Gaydos
- Department of Medicine and Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lewis J Radonovich
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV USA
| | - Trish M Perl
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Derek A T Cummings
- Department of Biology and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
4
|
Quick assessment of influenza a virus infectivity with a long-range reverse-transcription quantitative polymerase chain reaction assay. BMC Infect Dis 2020; 20:585. [PMID: 32762666 PMCID: PMC7407439 DOI: 10.1186/s12879-020-05317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The polymerase chain reaction (PCR) is commonly used to detect viral pathogens because of its high sensitivity and specificity. However, conventional PCR methods cannot determine virus infectivity. Virus infectivity is conventionally examined with methods such as the plaque assay, even though such assays require several days. Long-range reverse-transcription quantitative PCR (RT-qPCR) has previously been suggested for the rapid assessment of RNA virus infectivity where the loss of infectivity is attributable to genomic fragmentation. METHODS IAV was irradiated with 253.7 nm ultraviolet (UV) rays to induce genomic strand breaks that were confirmed by a full-length RT-PCR assay. The IAV was then subjected to plaque assay, conventional RT-qPCR and long-range RT-qPCR to examine the relationship between infectious titer and copy number. A simple linear regression analysis was performed to examine the correlation between the results of these assays. RESULTS A long-range RT-qPCR assay was developed and validated for influenza A virus (IAV). Although only a few minutes of UV irradiation was required to completely inactivate IAV, genomic RNA remained detectable by the conventional RT-qPCR and the full-length RT-PCR for NS of viral genome following inactivation. A long-range RT-qPCR assay was then designed using RT-priming at the 3' termini of each genomic segment and subsequent qPCR of the 5' regions. UV-mediated IAV inactivation was successfully analyzed by the long-range RT-qPCR assay especially when targeting PA of the viral genome. This was also supported by the regression analysis that the long-range RT-qPCR is highly correlated with plaque assay (Adjusted R2 = 0.931, P = 0.000066). CONCLUSIONS This study suggests that IAV infectivity can be predicted without the infectivity assays. The rapid detection of pathogenic IAV has, therefore, been achieved with this sensing technology.
Collapse
|
5
|
Cummings DAT, Radonovich LJ, Gorse GJ, Gaydos CA, Bessesen MT, Brown AC, Gibert CL, Hitchings MDT, Lessler J, Nyquist AC, Rattigan SM, Rodriguez-Barradas MC, Price CS, Reich NG, Simberkoff MS, Perl TM. Risk Factors for Healthcare Personnel Infection with Endemic Coronaviruses (HKU1, OC43, NL63, 229E): Results from the Respiratory Protection Effectiveness Clinical Trial (ResPECT). Clin Infect Dis 2020; 73:e4428-e4432. [PMID: 32645144 PMCID: PMC7454439 DOI: 10.1093/cid/ciaa900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background SARS-CoV-2 presents a large risk to healthcare personnel. Quantifying the risk of coronavirus infection associated with workplace activities is an urgent need. Methods We assessed the association of worker characteristics, occupational roles and behaviors, and participation in procedures with the risk of endemic coronavirus infection among healthcare personnel who participated in the Respiratory Protection Effectiveness Trial (ResPECT), a cluster randomized trial to assess personal protective equipment to prevent respiratory infections and illness conducted from 2011 to 2016. Results Among 4,689 HCP-seasons, we detected coronavirus infection in 387 (8%). HCP who participated in an aerosol generation procedure (AGP) at least once during the viral respiratory season were 105% (95% CI 21%, 240%) more likely to be diagnosed with a laboratory-confirmed coronavirus infection. Younger individuals, those who saw pediatric patients and those with household members under the age of five were at increased risk of coronavirus infection. Conclusions Our analysis suggests the risk of HCP becoming infected with an endemic coronavirus increases approximately two-fold with exposures to AGP. Our findings may be relevant to the Coronavirus Disease 2019 (COVID-19) pandemic; however, SARS-COV-2, the virus that causes COVID-19, may differ from endemic coronaviruses in important ways.
Collapse
Affiliation(s)
| | - Lewis J Radonovich
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Geoffrey J Gorse
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.,Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | - Mary T Bessesen
- Veterans Affairs Eastern Colorado Healthcare System, Denver, CO, USA.,University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Cynthia L Gibert
- Veterans Affairs Medical Center, Washington, DC, USA.,George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | | | - Justin Lessler
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ann-Christine Nyquist
- University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital Colorado, Aurora, CO, USA
| | | | - Maria C Rodriguez-Barradas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Baylor College of Medicine, Houston, Texas, USA
| | - Connie Savor Price
- University of Colorado School of Medicine, Aurora, CO, USA.,Denver Health Medical Center, Denver, CO, USA
| | | | - Michael S Simberkoff
- Veterans Affairs New York Harbor Healthcare System, New York, NY, USA.,NYU School of Medicine, New York, NY, USA
| | - Trish M Perl
- Johns Hopkins School of Medicine, Baltimore, MD, USA.,University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Stellrecht KA, Cimino JL, Wilson LI, Maceira VP, Butt SA. Panther Fusion® Respiratory Virus Assays for the detection of influenza and other respiratory viruses. J Clin Virol 2019; 121:104204. [PMID: 31743836 PMCID: PMC7172166 DOI: 10.1016/j.jcv.2019.104204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nucleic acid amplification tests (NAATs), such as PCR, are preferred for respiratory virus testing, due to superior diagnostic accuracy and faster turnaround time. Panther Fusion® Respiratory Assays (Fusion), which includes FluA/B/RSV (FFABR), Paraflu and AdV/hMPV/RV, offers a modular approach to syndromic testing on a fully automated platform while improving gene targets and expanding the test menu. OBJECTIVES AND STUDY DESIGN We evaluated Fusion using 275 consecutive nasopharyngeal specimens previously used in an analysis of five PCRs, as well as 225 archived specimens. RESULTS Of the combined 500 specimens, 134 were positive for influenza A (FluA), 54 for FluB, 65 for RSV, 64 for parainfluenza (PIV), 24 for adenovirus (AdV), 21 for humanmetapneumovirus (hMPV), and 40 for rhinovirus (RV) with Fusion. Of the positive samples Fusion correlated with historical results for all but one, despite multiple freeze-thaws cycles of this collection. Fusion was positive for an additional 33 samples, including 11 FluAs, 7 RSVs, 3 PIV3s, 3 AdV, 6 hMPV and 3 RVs. These samples were retested with corresponding Prodesse (Pro) assays using quadruple sample volume. This resolver test confirmed Fusion results for an additional 4 FluAs, 4 RSVs, 1 PIV3 and 3 AdVs. The sensitivity and specificity ranges of Fusion were 99-100% and 98-100%. Limit of detection (LOD) analyses were performed on a variety of Flu isolates. The LODs ranged from 2.69 to 2.99 log copies/ml and demonstrated superior LOD as compared to previously published data for some assays or to concurrent analyses with two new commercial tests.
Collapse
Affiliation(s)
- Kathleen A Stellrecht
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, United States; Department of Immunology and Microbial Diseases, Albany Medical College, Albany, New York, United States; Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States.
| | - Jesse L Cimino
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Lisa I Wilson
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Vincente P Maceira
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Shafiq A Butt
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| |
Collapse
|
7
|
Radonovich LJ, Simberkoff MS, Bessesen MT, Brown AC, Cummings DAT, Gaydos CA, Los JG, Krosche AE, Gibert CL, Gorse GJ, Nyquist AC, Reich NG, Rodriguez-Barradas MC, Price CS, Perl TM. N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel: A Randomized Clinical Trial. JAMA 2019; 322:824-833. [PMID: 31479137 PMCID: PMC6724169 DOI: 10.1001/jama.2019.11645] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Importance Clinical studies have been inconclusive about the effectiveness of N95 respirators and medical masks in preventing health care personnel (HCP) from acquiring workplace viral respiratory infections. Objective To compare the effect of N95 respirators vs medical masks for prevention of influenza and other viral respiratory infections among HCP. Design, Setting, and Participants A cluster randomized pragmatic effectiveness study conducted at 137 outpatient study sites at 7 US medical centers between September 2011 and May 2015, with final follow-up in June 2016. Each year for 4 years, during the 12-week period of peak viral respiratory illness, pairs of outpatient sites (clusters) within each center were matched and randomly assigned to the N95 respirator or medical mask groups. Interventions Overall, 1993 participants in 189 clusters were randomly assigned to wear N95 respirators (2512 HCP-seasons of observation) and 2058 in 191 clusters were randomly assigned to wear medical masks (2668 HCP-seasons) when near patients with respiratory illness. Main Outcomes and Measures The primary outcome was the incidence of laboratory-confirmed influenza. Secondary outcomes included incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenzalike illness. Adherence to interventions was assessed. Results Among 2862 randomized participants (mean [SD] age, 43 [11.5] years; 2369 [82.8%]) women), 2371 completed the study and accounted for 5180 HCP-seasons. There were 207 laboratory-confirmed influenza infection events (8.2% of HCP-seasons) in the N95 respirator group and 193 (7.2% of HCP-seasons) in the medical mask group (difference, 1.0%, [95% CI, -0.5% to 2.5%]; P = .18) (adjusted odds ratio [OR], 1.18 [95% CI, 0.95-1.45]). There were 1556 acute respiratory illness events in the respirator group vs 1711 in the mask group (difference, -21.9 per 1000 HCP-seasons [95% CI, -48.2 to 4.4]; P = .10); 679 laboratory-detected respiratory infections in the respirator group vs 745 in the mask group (difference, -8.9 per 1000 HCP-seasons, [95% CI, -33.3 to 15.4]; P = .47); 371 laboratory-confirmed respiratory illness events in the respirator group vs 417 in the mask group (difference, -8.6 per 1000 HCP-seasons [95% CI, -28.2 to 10.9]; P = .39); and 128 influenzalike illness events in the respirator group vs 166 in the mask group (difference, -11.3 per 1000 HCP-seasons [95% CI, -23.8 to 1.3]; P = .08). In the respirator group, 89.4% of participants reported "always" or "sometimes" wearing their assigned devices vs 90.2% in the mask group. Conclusions and Relevance Among outpatient health care personnel, N95 respirators vs medical masks as worn by participants in this trial resulted in no significant difference in the incidence of laboratory-confirmed influenza. Trial Registration ClinicalTrials.gov Identifier: NCT01249625.
Collapse
Affiliation(s)
- Lewis J. Radonovich
- National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Michael S. Simberkoff
- Veterans Affairs New York Harbor Healthcare System, New York
- New York University School of Medicine, New York
| | - Mary T. Bessesen
- Veterans Affairs Eastern Colorado Healthcare System, Denver
- University of Colorado School of Medicine, Aurora
| | | | - Derek A. T. Cummings
- University of Florida, Gainesville
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Jenna G. Los
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amanda E. Krosche
- Johns Hopkins School of Medicine, Baltimore, Maryland
- Weill Cornell Medicine, New York, New York
| | - Cynthia L. Gibert
- Veterans Affairs Medical Center, Washington, DC
- George Washington University School of Medical and Health Sciences, Washington, DC
| | - Geoffrey J. Gorse
- Veterans Affairs St Louis Healthcare System, St Louis, Missouri
- St Louis University School of Medicine, St Louis, Missouri
| | - Ann-Christine Nyquist
- University of Colorado School of Medicine, Aurora
- Children’s Hospital Colorado, Aurora
| | | | - Maria C. Rodriguez-Barradas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
- Baylor College of Medicine, Houston, Texas
| | - Connie Savor Price
- University of Colorado School of Medicine, Aurora
- Denver Health Medical Center, Denver, Colorado
| | - Trish M. Perl
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
8
|
Zhang Y, Hu A, Andini N, Yang S. A 'culture' shift: Application of molecular techniques for diagnosing polymicrobial infections. Biotechnol Adv 2019; 37:476-490. [PMID: 30797092 PMCID: PMC6447436 DOI: 10.1016/j.biotechadv.2019.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
With the advancement of microbiological discovery, it is evident that many infections, particularly bloodstream infections, are polymicrobial in nature. Consequently, new challenges have emerged in identifying the numerous etiologic organisms in an accurate and timely manner using the current diagnostic standard. Various molecular diagnostic methods have been utilized as an effort to provide a fast and reliable identification in lieu or parallel to the conventional culture-based methods. These technologies are mostly based on nucleic acid, proteins, or physical properties of the pathogens with differing advantages and limitations. This review evaluates the different molecular methods and technologies currently available to diagnose polymicrobial infections, which will help determine the most appropriate option for future diagnosis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Anne Hu
- Emergency Medicine, Stanford University, Stanford, California 94305, USA
| | - Nadya Andini
- Emergency Medicine, Stanford University, Stanford, California 94305, USA
| | - Samuel Yang
- Emergency Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
9
|
Kailasa SK, Koduru JR, Park TJ, Wu HF, Lin YC. Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst 2019; 144:1073-1103. [DOI: 10.1039/c8an02034e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospray ionization and rapid evaporative ionization mass spectrometric techniques have attracted much attention in the identification of microorganisms, and in the diagnosis of bacterial infections from clinical samples.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
- Department of Chemistry
| | | | - Tae Jung Park
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Halal Industrialization Technology
- Chung-Ang University
- Seoul 06974
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| | - Ying-Chi Lin
- School of Pharmacy
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
10
|
Kuypers J, Chu HY, Gaydos CA, Katz J, Khatry SK, LeClerq SC, Tielsch JM, Steinhoff MC, Englund JA. Molecular characterization of influenza viruses from women and infants in Sarlahi, Nepal. Diagn Microbiol Infect Dis 2018; 93:305-310. [PMID: 30528424 DOI: 10.1016/j.diagmicrobio.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022]
Abstract
We used RT-PCR-electrospray ionization-mass spectrometry to identify subtypes and strains of influenza viruses detected during a maternal influenza immunization study in Nepal from May 2011 to April 2014. Hemagglutinin (HA) gene amino acid (aa) sequences of inferred reference strains were compared to those of the vaccines to determine impact of aa relatedness on vaccine efficacy (VE) and disease severity. Three influenza subtypes and many strains were identified. A(H3N2) strains with less than 13 aa differences in HA compared to vaccine strains (matched) showed higher VE than strains with 13 or more differences (mismatched). Yamagata lineage B strains, which were mismatched to the Victoria strain in the vaccine, demonstrated lower VE compared to Victoria strains. Differences in VE were not statistically significant. All A(H1N1pdm) matched the vaccine strain, with 10 or fewer aa differences. Except for women infected with vaccine-matched strains of influenza A, clinical signs and symptoms did not differ between vaccinated and unvaccinated participants.
Collapse
Affiliation(s)
- Jane Kuypers
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Joanne Katz
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Steven C LeClerq
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA; Nepal Nutrition Intervention Project, Kathmandu, Nepal
| | - James M Tielsch
- Department of Global Health, George Washington University, Washington, DC, USA
| | - Mark C Steinhoff
- Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Janet A Englund
- Seattle Children's Hospital and Research Foundation, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Wang H, Deng J, Tang YW. Profile of the Alere i Influenza A & B assay: a pioneering molecular point-of-care test. Expert Rev Mol Diagn 2018; 18:403-409. [PMID: 29688086 PMCID: PMC6153442 DOI: 10.1080/14737159.2018.1466703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alere i Influenza A & B assay incorporates the Nicking Enzyme Amplification Reaction technique on the Alere i instrument to detect and differentiate influenza virus (Flu) A and B nucleic acids in specific specimens. Areas covered: The Alere i Influenza A & B assay was cleared by the US Food and Drug Administration for use with nasal swabs (NS) and nasopharyngeal swabs, either directly or in viral transport medium. Notably, direct use on NS was the first ever CLIA-waived nucleic acid-based test. Previously published evaluations have reported sensitivities and specificities of 55.2-100% and 62.5-100% for Flu A and 45.2-100% and 53.6-100% for Flu B, respectively. Expert commentary: The Alere i Influenza A & B assay provides a rapid and simple platform for detection and differentiation of Flu A and B. Efforts are expected to further improve sensitivity and user-friendliness for effective and widespread use in the true point-of-care setting.
Collapse
Affiliation(s)
- Hongmei Wang
- Division of Infectious Diseases, Shenzhen Children Hospital, Shenzhen, China
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jikui Deng
- Division of Infectious Diseases, Shenzhen Children Hospital, Shenzhen, China
| | - Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
12
|
Steinhoff MC, Katz J, Englund JA, Khatry SK, Shrestha L, Kuypers J, Stewart L, Mullany LC, Chu HY, LeClerq SC, Kozuki N, McNeal M, Reedy AM, Tielsch JM. Year-round influenza immunisation during pregnancy in Nepal: a phase 4, randomised, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2017; 17:981-989. [PMID: 28522338 DOI: 10.1016/s1473-3099(17)30252-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Influenza immunisation during pregnancy is recommended but not widely implemented in some low-income regions. We assessed the safety and efficacy in mothers and infants of year-round maternal influenza immunisation in Nepal, where influenza viruses circulate throughout the year. METHODS In this phase 4, randomised, placebo-controlled trial, we enrolled two consecutive sequential annual cohorts of pregnant women from the Sarlahi district in southern Nepal. We randomised mothers 1:1 to receive seasonally recommended trivalent inactivated influenza vaccine or saline placebo in blocks of eight, stratified by gestational age at enrolment (17-25 weeks vs 26-34 weeks). Women were eligible if they were married, 15-40 years of age, 17-34 weeks' gestation at enrolment, and had not previously received any influenza vaccine that season. We collected serum samples before and after immunisation, and cord blood from a subset of women and infants. Staff masked to allocation made home visits every week from enrolment to 6 months after delivery. Midnasal swabs for respiratory virus PCR testing were collected during maternal acute febrile respiratory infections, and from infants with any respiratory symptom. We assessed vaccine immunogenicity, safety, and three primary outcomes: the incidence of maternal influenza-like illness in pregnancy and 0-180 days postpartum, the incidence of low birthweight (<2500 g), and the incidence of laboratory-confirmed infant influenza disease from 0 to 180 days. This trial is registered with ClinicalTrials.gov, number NCT01034254. FINDINGS From April 25, 2011, to Sept 9, 2013, we enrolled 3693 women in two cohorts of 2090 (1041 assigned to placebo and 1049 to vaccine) and 1603 (805 assigned to placebo and 798 to vaccine), with 3646 liveborn infants (cohort 1, 999 in placebo group and 1010 in vaccine group; cohort 2, 805 in placebo group and 798 in vaccine group). Immunisation reduced maternal febrile influenza-like illness with an overall efficacy of 19% (95% CI 1 to 34) in the combined cohorts; 9% efficacy (-16 to 29) in the first cohort, and 36% efficacy (9 to 55) in the second cohort. For laboratory-confirmed influenza infections in infants aged 0-6 months, immunisation had an overall efficacy for the combined cohorts of 30% (95% CI 5 to 48); in the first cohort, the efficacy was 16% (-19 to 41), and in the second cohort it was 60% (26 to 88). Maternal immunisation reduced the rates of low birthweight by 15% (95% CI 3-25) in both cohorts combined. The rate of small for gestational age infants was not modified by immunisation. The number of adverse events was similar regardless of immunisation status. Miscarriage occurred in three (0·2%) participants in the placebo group versus five (0·3%) in the vaccine group, stillbirth occurred in 31 (1·7%) versus 33 (1·8%), and congenital defects occurred in 18 (1·0%) versus 20 (1·1%). Five women died in the placebo group and three died in the vaccine group. The number of infant deaths at age 0-6 months was similar in each group (50 in the placebo group and 61 in the vaccine group). No serious adverse events were associated with receipt of immunisation. INTERPRETATION Year-round maternal influenza immunisation significantly reduced maternal influenza-like illness, influenza in infants, and low birthweight over the entire course of the study, indicating the strategy could be useful in subtropical regions. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Mark C Steinhoff
- Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Joanne Katz
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Janet A Englund
- Seattle Children's Hospital and Research Foundation, University of Washington, Seattle, WA, USA
| | | | - Laxman Shrestha
- Tribhuvan University, Department of Pediatrics and Child Health, Institute of Medicine, Kathmandu, Nepal
| | - Jane Kuypers
- School of Medicine, University of Washington, Molecular Virology Laboratory, Seattle, WA, USA
| | - Laveta Stewart
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luke C Mullany
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Helen Y Chu
- School of Medicine, University of Washington, Seattle, WA, USA; Harborview Medical Center, Seattle, WA, USA
| | - Steven C LeClerq
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Nepal Nutrition Intervention Project, Sarlahi, Kathmandu, Nepal
| | - Naoko Kozuki
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica McNeal
- Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adriana M Reedy
- Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Tielsch
- Department of Global Health Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
13
|
Otto CC, Kaplan SE, Stiles J, Mikhlina A, Lee C, Babady NE, Tang YW. Rapid Molecular Detection and Differentiation of Influenza Viruses A and B. J Vis Exp 2017. [PMID: 28190065 DOI: 10.3791/54312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Influenza is a contagious respiratory illness caused by influenza viruses A and B in humans and causes a significant amount of morbidity and mortality every year. The Influenza A and B assay was the first CLIA-waived molecular rapid flu test available. The Influenza A and B test works by employing isothermal amplification with influenza-specific primers followed by target detection with molecular beacon probes. Here, the performance of the Influenza A and B assay on frozen, archived nasopharyngeal swab (NPS) specimens stored in viral transport medium (VTM) were compared to a respiratory panel assay. The performance of the Influenza A and B assay was evaluated by comparing the results to the respiratory panel reference method. The sensitivity for total influenza virus A was 67.5% (95% CI (CI), 56.6-78.5) and the specificity was 86.9% (CI, 71.0-100). For influenza virus B testing, the sensitivity and specificity were 90.2% (CI, 68.5-100) and 98.8% (CI, 68.5-100), respectively. This system has the advantage of a significantly shorter test time than any other currently available molecular assay and the simple, pipette-free procedure runs on a fully integrated, closed, small-footprint system. Overall, the Influenza A and B assay evaluated in this study has the potential to serve as a point-of-care rapid influenza diagnostic test.
Collapse
Affiliation(s)
- Caitlin C Otto
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - Samuel E Kaplan
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - Jeffrey Stiles
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - Albina Mikhlina
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - Cindy Lee
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - N Esther Babady
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center;
| |
Collapse
|
14
|
Moghadami M. A Narrative Review of Influenza: A Seasonal and Pandemic Disease. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:2-13. [PMID: 28293045 PMCID: PMC5337761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Influenza is an acute respiratory disease caused by the influenza A or B virus. It often occurs in outbreaks and epidemics worldwide, mainly during the winter season. Significant numbers of influenza virus particles are present in the respiratory secretions of infected persons, so infection can be transmitted by sneezing and coughing via large particle droplets. The mean duration of influenza virus shedding in immunocompetent adult patients is around 5 days but may continue for up to 10 days or more-particularly in children, elderly adults, patients with chronic illnesses, and immunocompromised hosts. Influenza typically begins with the abrupt onset of high-grade fever, myalgia, headache, and malaise. These manifestations are accompanied by symptoms of respiratory tract illnesses such as nonproductive cough, sore throat, and nasal discharge. After a typical course, influenza can affect other organs such as the lungs, brain, and heart more than it can affect the respiratory tract and cause hospitalization. The best way to prevent influenza is to administer annual vaccinations. Among severely ill patients, an early commencement of antiviral treatment (<2 d from illness onset) is associated with reduced morbidity and mortality, with greater benefits allied to an earlier initiation of treatment. Given the significance of the disease burden, we reviewed the latest findings in the diagnosis and management of influenza.
Collapse
Affiliation(s)
- Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz Iran,Correspondence: Mohsen Moghadami, MD; Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz Iran Tel: +98 917 3115262 Fax: +98 71 32308045
| |
Collapse
|
15
|
Miyaguchi H. Improved Polymerase Chain Reaction-restriction Fragment Length Polymorphism Genotyping of Toxic Pufferfish by Liquid Chromatography/Mass Spectrometry. J Vis Exp 2016:54402. [PMID: 27684516 PMCID: PMC5092034 DOI: 10.3791/54402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An improved version of a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method for genotyping toxic pufferfish species by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is described. DNA extraction is carried out using a silica membrane-based DNA extraction kit. After the PCR amplification using a detergent-free PCR buffer, restriction enzymes are added to the solution without purifying the reaction solution. A reverse-phase silica monolith column and a Fourier transform high resolution mass spectrometer having a modified Kingdon trap analyzer are employed for separation and detection, respectively. The mobile phase, consisting of 400 mM 1,1,1,3,3,3-hexafluoro-2-propanol, 15 mM triethylamine (pH 7.9) and methanol, is delivered at a flow rate of 0.4 ml/min. The cycle time for LC/ESI-MS analysis is 8 min including equilibration of the column. Deconvolution software having an isotope distribution model of the oligonucleotide is used to calculate the corresponding monoisotopic mass from the mass spectrum. For analysis of oligonucleotides (range 26-79 nucleotides), mass accuracy was 0.62 ± 0.74 ppm (n = 280) and excellent accuracy and precision were sustained for 180 hr without use of a lock mass standard.
Collapse
|
16
|
Leonard DG. Respiratory Infections. MOLECULAR PATHOLOGY IN CLINICAL PRACTICE 2016. [PMCID: PMC7123443 DOI: 10.1007/978-3-319-19674-9_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The majority of respiratory tract infections (RTIs) are community acquired and are the single most common cause of physician office visits and among the most common causes of hospitalizations. The morbidity and mortality associated with RTIs are significant and the financial and social burden high due to lost time at work and school. The scope of clinical symptoms can significantly overlap among the respiratory pathogens, and the severity of disease can vary depending on patient age, underlying disease, and immune status, thereby leading to inaccurate presumptions about disease etiology. The rapid and accurate diagnosis of the causative agent of RTIs improves patient care, reduces morbidity and mortality, promotes effective hospital bed utilization and antibiotic stewardship, and reduces length of stay. This chapter focuses on the clinical utility, advantages, and disadvantages of viral and bacterial tests cleared by the Food and Drug Administration (FDA), and new promising technologies for the detection of bacterial agents of pneumonia currently in development or in US FDA clinical trials are briefly reviewed.
Collapse
Affiliation(s)
- Debra G.B. Leonard
- Pathology and Laboratory Medicine, University of Vermont College of Medicine and University of Vermont Medical Center, Burlington, Vermont USA
| |
Collapse
|
17
|
Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Chen L, Tian Y, Chen S, Liesenfeld O. Performance of the Cobas(®) Influenza A/B Assay for Rapid Pcr-Based Detection of Influenza Compared to Prodesse ProFlu+ and Viral Culture. Eur J Microbiol Immunol (Bp) 2015; 5:236-45. [PMID: 26716012 PMCID: PMC4681351 DOI: 10.1556/1886.2015.00046] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
Rapid and accurate diagnosis of influenza is important for patient management and infection control. We determined the performance of the cobas® Influenza A/B assay, a rapid automated nucleic acid assay performed on the cobas® Liat System for qualitative detection of influenza A and influenza B from nasopharyngeal (NP) swab specimens. Retrospective frozen and prospectively collected NP swabs from patients with signs and symptoms of influenza collected in universal transport medium (UTM) were tested at multiple sites including CLIA-waived sites using the cobas® Influenza A/B assay. Results were compared to the Prodesse Pro-Flu+ assay and to viral culture. Compared to the Prodesse ProFlu+ Assay, sensitivities of the cobas® Influenza A/B assay for influenza A and B were 97.7 and 98.6%, respectively; specificity was 99.2 and 99.4%. Compared to viral culture, the cobas® Influenza A/B assay showed sensitivities of 97.5 and 96.9% for influenza virus A and B, respectively; specificities were 97.9% for both viruses. Polymerase chain reaction (PCR)/sequencing showed that the majority of viral culture negative but cobas® Influenza A/B positive results were true positive results, indicating that the cobas® Influenza A/B assay has higher sensitivity compared to viral culture. In conclusion, the excellent accuracy, rapid time to result, and remarkable ease of use make the cobas® Influenza A/B nucleic acid assay for use on the cobas® Liat System a highly suitable point-of-care solution for the management of patients with suspected influenza A and B infection.
Collapse
Affiliation(s)
- L Chen
- Roche Molecular Systems , Marlborough 01752, MA, USA
| | - Y Tian
- Roche Molecular Systems , Marlborough 01752, MA, USA
| | - S Chen
- Roche Molecular Systems , Marlborough 01752, MA, USA
| | - O Liesenfeld
- Medical and Scientific Affairs, Roche Molecular Systems , Pleasanton 94588, CA, USA
| |
Collapse
|
19
|
Duncan R, Kourout M, Grigorenko E, Fisher C, Dong M. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls. Expert Rev Mol Diagn 2015; 16:83-95. [PMID: 26581018 DOI: 10.1586/14737159.2016.1112272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The large number of blood-borne viruses, bacteria and parasites currently of concern, as well as many newly emerging pathogens, presents a daunting challenge to protection of the safety of blood for transfusion and diagnosing infectious diseases. Focusing on nucleic acid diagnostic tests, multiplex devices are coming into use with many more in various developmental stages that promise to offer solutions to the clinical need. The characteristics, advantages and disadvantages of platforms in clinical use and at the research and development stage are examined here. The presence of multiple assays and associated reagents operating simultaneously on one platform, implementation in traditional clinical laboratories and regulatory review will present special challenges. Fortunately, clinical laboratories have made dramatic technical progress in the last two decades and regulatory agencies have publicly expressed support for development of multiplex devices.
Collapse
Affiliation(s)
- Robert Duncan
- a Center for Biologics Evaluation and Research , US FDA , Silver Spring , MD , USA
| | - Moussa Kourout
- a Center for Biologics Evaluation and Research , US FDA , Silver Spring , MD , USA
| | | | - Carolyn Fisher
- a Center for Biologics Evaluation and Research , US FDA , Silver Spring , MD , USA
| | - Ming Dong
- a Center for Biologics Evaluation and Research , US FDA , Silver Spring , MD , USA
| |
Collapse
|
20
|
Dubourg G, Raoult D. Emerging methodologies for pathogen identification in positive blood culture testing. Expert Rev Mol Diagn 2015; 16:97-111. [PMID: 26559655 DOI: 10.1586/14737159.2016.1112274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bloodstream infections (BSIs) represent a major cause of death in developed countries and are associated with long-term loss of functions. Blood culture remains the gold standard for BSI diagnosis, as it is easy to perform and displays a good analytical sensitivity. However, its major drawback remains the long turnaround time, which can result in inappropriate therapy, fall of survival rate, emergence of antibiotic resistance and increase of medical costs. Over the last 10 years, molecular tools have been the alternative to blood cultures, allowing early identification of pathogens involved in sepsis, as well detection of critical antibiotic resistance genes. Besides, the advent of MALDI-TOF revolutionized practice in routine microbiology significantly reduced the time to result. Reviewed here are recent improvements in early BSI diagnosis and these authors' view for the future is presented, including innovative high-throughput technologies.
Collapse
Affiliation(s)
- Grégory Dubourg
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Didier Raoult
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
21
|
Shih HI, Wang HC, Su IJ, Hsu HC, Wang JR, Sun HFS, Chou CH, Ko WC, Hsieh MI, Wu CJ. Viral Respiratory Tract Infections in Adult Patients Attending Outpatient and Emergency Departments, Taiwan, 2012-2013: A PCR/Electrospray Ionization Mass Spectrometry Study. Medicine (Baltimore) 2015; 94:e1545. [PMID: 26402811 PMCID: PMC4635751 DOI: 10.1097/md.0000000000001545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Viral etiologies of respiratory tract infections (RTIs) have been less studied in adult than in pediatric populations. Furthermore, the ability of PCR/electrospray ionization mass spectrometry (PCR/ESI-MS) to detect enteroviruses and rhinoviruses in respiratory samples has not been well evaluated. We sought to use PCR/ESI-MS to comprehensively investigate the viral epidemiology of adult RTIs, including testing for rhinoviruses and enteroviruses. Nasopharyngeal or throat swabs from 267 adults with acute RTIs (212 upper RTIs and 55 lower RTIs) who visited a local clinic or the outpatient or emergency departments of a medical center in Taiwan between October 2012 and June 2013 were tested for respiratory viruses by both virus isolation and PCR/ESI-MS. Throat swabs from 15 patients with bacterial infections and 27 individuals without active infections were included as control samples. Respiratory viruses were found in 23.6%, 47.2%, and 47.9% of the 267 cases by virus isolation, PCR/ESI-MS, and both methods, respectively. When both methods were used, the influenza A virus (24.3%) and rhinoviruses (9.4%) were the most frequently identified viruses, whereas human coronaviruses, human metapneumovirus (hMPV), enteroviruses, adenoviruses, respiratory syncytial virus, and parainfluenza viruses were identified in small proportions of cases (<5% of cases for each type of virus). Coinfection was observed in 4.1% of cases. In the control group, only 1 (2.4%) sample tested positive for a respiratory virus by PCR/ESI-MS. Patients who were undergoing steroid treatment, had an active malignancy, or suffered from chronic obstructive pulmonary disease (COPD) were at risk for rhinovirus, hMPV, or parainfluenza infections, respectively. Overall, immunocompromised patients, patients with COPD, and patients receiving dialysis were at risk for noninfluenza respiratory virus infection. Rhinoviruses (12.7%), influenza A virus (10.9%), and parainfluenza viruses (7.3%) were the most common viruses involved in the 55 cases of lower RTIs. The factors of parainfluenza infection, old age, and immunosuppression were independently associated with lower RTIs. In conclusion, PCR/ESI-MS improved the diagnostic yield for viral RTIs. Non-influenza respiratory virus infections were associated with patients with comorbidities and with lower RTIs. Additional studies that delineate the clinical need for including non-influenza respiratory viruses in the diagnostic work-up in these populations are warranted.
Collapse
Affiliation(s)
- Hsin-I Shih
- From the Departments of Emergency Medicine (H-IS, H-CH); Public Health (H-IS); Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University (C-HC, W-CK, C-JW); National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (H-CW, I-JS, J-RW, M-IH, C-JW); Department of Medical Laboratory Science and Biotechnology (J-RW); and Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (HSS)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanchez JL, Cooper MJ, Myers CA, Cummings JF, Vest KG, Russell KL, Sanchez JL, Hiser MJ, Gaydos CA. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin Microbiol Rev 2015; 28:743-800. [PMID: 26085551 PMCID: PMC4475643 DOI: 10.1128/cmr.00039-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influenza and coronavirus diagnostic test development and surveillance methods, (iv) influenza virus transmission and severity prediction modeling efforts, and (v) evaluation and implementation of nonvaccine, nonpharmacologic interventions.
Collapse
Affiliation(s)
- Jose L Sanchez
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Michael J Cooper
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | | | - James F Cummings
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kelly G Vest
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kevin L Russell
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Joyce L Sanchez
- Mayo Clinic, Division of General Internal Medicine, Rochester, Minnesota, USA
| | - Michelle J Hiser
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA Oak Ridge Institute for Science and Education, Postgraduate Research Participation Program, U.S. Army Public Health Command, Aberdeen Proving Ground, Aberdeen, Maryland, USA
| | - Charlotte A Gaydos
- International STD, Respiratory, and Biothreat Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 2015; 27:783-822. [PMID: 25278575 DOI: 10.1128/cmr.00003-14] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory.
Collapse
|
24
|
Lin Y, Fu Y, Xu M, Su L, Cao L, Xu J, Cheng X. Evaluation of a PCR/ESI-MS platform to identify respiratory viruses from nasopharyngeal aspirates. J Med Virol 2015; 87:1867-71. [PMID: 25959799 PMCID: PMC7166901 DOI: 10.1002/jmv.24262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 11/24/2022]
Abstract
Acute respiratory tract infection is a major cause of morbidity and mortality worldwide, particularly in infants and young children. High‐throughput, accurate, broad‐range tools for etiologic diagnosis are critical for effective epidemic control. In this study, the diagnostic capacities of an Ibis platform based on the PCR/ESI‐MS assay were evaluated using clinical samples. Nasopharyngeal aspirates (NPAs) were collected from 120 children (<5 years old) who were hospitalized with lower respiratory tract infections between November 2010 and October 2011. The respiratory virus detection assay was performed using the PCR/ESI‐MS assay and the DFA. The discordant PCR/ESI‐MS and DFA results were resolved with RT‐PCR plus sequencing. The overall agreement for PCR/ESI‐MS and DFA was 98.3% (118/120). Compared with the results from DFA, the sensitivity and specificity of the PCR/ESI‐MS assay were 100% and 97.5%, respectively. The PCR/ESI‐MS assay also detected more multiple virus infections and revealed more detailed subtype information than DFA. Among the 12 original specimens with discordant results between PCR/ESI‐MS and DFA, 11 had confirmed PCR/ESI‐MS results. Thus, the PCR/ESI‐MS assay is a high‐throughput, sensitive, specific and promising method to detect and subtype conventional viruses in respiratory tract infections and allows rapid identification of mixed pathogens. J. Med. Virol. 87:1867–1871, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Lin
- Department of Laboratory Medicine, Huashan Hospital of Fudan University, Shanghai, China.,Department of Center Laboratory, Jingan District Center Hospital of Shanghai, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Liyun Su
- Department of Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lingfeng Cao
- Department of Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Hardick J, Dugas A, Goheen J, Rothman R, Gaydos C. Prospective comparison of RT-PCR/ESI-MS to Prodesse ProFlu Plus and Cepheid GenXpert for the detection of Influenza A and B viruses. J Virol Methods 2015; 214:43-5. [PMID: 25681525 PMCID: PMC4560249 DOI: 10.1016/j.jviromet.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 11/16/2022]
Abstract
RT-PCR/ESI-MS was compared to two gold standards, Prodesse ProFlu Plus and Cepheid ExpertFlu.
RT-PCR/ESI-MS has previously demonstrated the capability to detect and identify respiratory viral pathogens in nasopharyngeal swabs. This study expands on previous research by performing a prospective evaluation of RT-PCR/ESI-MS to detect and identify Influenza A and B viruses compared to Prodesse ProFlu Plus and combined ProFlu Plus and Cepheid Xpert Flu. ProFlu Plus was also used as a gold standard for comparison for respiratory syncytial virus detection. Using ProFlu Plus as a gold standard, RT-PCR/ESI-MS had sensitivity and specificity of 82.1% (23/28) and 100% (258/258), respectively, for Influenza A, 100% (16/16) and 99.6% (269/270), respectively for Influenza B, and 88.6% (39/44) and 99.6% (241/242) for any Influenza virus. Using matching results from ProFlu Plus and Xpert Flu as a gold standard, RT-PCR/ESI-MS had 85.2% (23/27) and 100% (259/259) sensitivity and specificity respectively for Influenza A, 100% (14/14) and 99.6% (270/272), respectively for Influenza B virus. Overall, RT-PCR/ESI-MS was not as sensitive as the combined gold standard of ProFlu Plus and Xpert Flu, although it has the capability of detecting other respiratory viruses.
Collapse
Affiliation(s)
- Justin Hardick
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, United States.
| | - Andrea Dugas
- Johns Hopkins University School of Medicine, Department of Emergency Medicine, United States
| | - Joshua Goheen
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, United States
| | - Richard Rothman
- Johns Hopkins University School of Medicine, Department of Emergency Medicine, United States
| | - Charlotte Gaydos
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, United States
| |
Collapse
|
26
|
Fleurbaaij F, van Leeuwen HC, Klychnikov OI, Kuijper EJ, Hensbergen PJ. Mass Spectrometry in Clinical Microbiology and Infectious Diseases. Chromatographia 2015. [DOI: 10.1007/s10337-014-2839-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Butt SA, Maceira VP, McCallen ME, Stellrecht KA. Comparison of three commercial RT-PCR systems for the detection of respiratory viruses. J Clin Virol 2014; 61:406-10. [PMID: 25183359 PMCID: PMC7172935 DOI: 10.1016/j.jcv.2014.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Due to the insensitivity of rapid tests for respiratory viruses, nucleic acid amplification tests are quickly becoming the standard of care. OBJECTIVES AND STUDY DESIGN The performance of the FilmArray Respiratory Panel (RP) and Verigene RV+ (RV+) were compared in a retrospective analysis of 89 clinical specimens previously determined to be positive for the following viruses by our test of record, Prodesse (Pro): influenza A (29, FluA), influenza B (13, FluB), respiratory syncytial virus (12, RSV), human metapneumovirus (10, hMPV), parainfluenza (14, PIV), and adenovirus (10, AdV). Samples positive for influenza A, B or RSV were tested by both methods, while the remainder were tested by RP only. True positives were defined as positive by two or more assays. RESULTS Limit of detection (LOD) analyses demonstrated Pro had the lowest LOD for all FluA strains tested, PIV1, PIV2 and AdV; RV+ had the lowest LOD for FluB; and RP had the lowest LOD for RSV, PIV3 and hMPV. Of the 55 samples tested by RV+, all 54 true positive samples were positive by RV+. Of the 89 samples tested by RP, 85 of the 88 true positive samples were positive by RP. From these results, the overall sensitivities for influenza A, B and RSV were 100% and 98% for RV+ and RP, respectively. The overall sensitivity of RP for all viruses was 97%. CONCLUSIONS In summary, these systems demonstrated excellent performance. Furthermore, each system has benefits which will ensure they will all have a niche in a clinical laboratory.
Collapse
Affiliation(s)
- S A Butt
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, United States
| | - V P Maceira
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, United States
| | - M E McCallen
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, United States
| | - K A Stellrecht
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, United States; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
28
|
Evaluation of Alere i Influenza A&B for rapid detection of influenza viruses A and B. J Clin Microbiol 2014; 52:3339-44. [PMID: 24989611 DOI: 10.1128/jcm.01132-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rapid and accurate diagnosis of influenza is important for infection control, as well as for patient management. Alere i Influenza A&B is an isothermal nucleic acid amplification-based integrated system for detection and differentiation of influenza virus A and influenza virus B. The performance of the Alere i Influenza A&B was screened using frozen nasopharyngeal-swab specimens collected in viral transport medium (VTM) that were originally tested fresh with the FilmArray Respiratory Panel (RP) assay during the 2012-2013 influenza outbreak. In total, 360 VTM specimens were selected for Alere i Influenza A&B testing: 40 influenza virus A H1N1-2009 (influenza virus A-1), 40 influenza virus A H3N2 (influenza virus A-3), 37 influenza virus A "equivocal" or "no subtype detected" (influenza virus A-u), 41 influenza virus B, and 202 influenza virus-negative specimens, as initially determined by the FilmArray RP assay. The Alere assay showed sensitivities of 87.2%, 92.5%, 25.0%, and 97.4% for influenza virus A-1, influenza virus A-3, influenza virus A-u, and influenza virus B, respectively, after discordant resolution by Prodesse ProFLU+ PCR. The specificities were 100% for both influenza virus A and influenza virus B. In general, the Alere i Influenza A&B provided good sensitivity, although the assay did show poorer sensitivity with samples determined to have low influenza virus A titers by Prodesse ProFlu+ PCR (a mean real-time PCR threshold cycle [CT] value of 31.9 ± 2.0), which included the majority of the samples called influenza virus A "equivocal" or "no subtype detected" by a single BioFire FilmArray RP test. The integrated, rapid, and simple characteristics of the Alere i Influenza A&B assay make it a potential candidate for point-of-care testing, with a test turnaround time of less than 15 min.
Collapse
|
29
|
Crutchfield CA, Clarke W. Present and Future Applications of High Resolution Mass Spectrometry in the Clinic. Discoveries (Craiova) 2014; 2:e17. [PMID: 32309546 PMCID: PMC6941556 DOI: 10.15190/d.2014.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High resolution mass spectrometers have directly enabled clinical applications of high clinical utility. These types of mass spectrometers are less known to the general public than their low resolution counterparts and are often ascribed to proteomics or biomarker discovery. This perception is rapidly changing as high resolution mass spectrometers see impact in the areas of clinical toxicology, forensic toxicology, microbiology, and molecular diagnostics as routine analyzers. Applications in these areas are made possible by the unique capacity of high resolution mass spectrometers, typically time-of flight or Orbitrap instruments, to characterize analytical species with sufficient mass resolution to better resolve molecular composition than lower resolution analyzers. This capacity confers a unique source of analytical specificity. In the future, this analytical specificity will likely be well applied to other clinical applications: mass spectrometry based tissue imaging, intraoperative determination of tumor boundaries, and evaluation of metabolic flux.
Collapse
Affiliation(s)
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Abstract
Over the past several years a wide variety of molecular assays for the detection of respiratory viruses has reached the market. The tests described herein range from kits containing primers and probes detecting specific groups of viruses, to self-contained systems requiring specialized instruments that extract nucleic acids and perform the polymerase chain reaction with little operator input. Some of the tests target just the viruses involved in large yearly epidemics such as influenza, or specific groups of viruses such as the adenoviruses or parainfluenza viruses; others can detect most of the known respiratory viruses and some bacterial agents.
Collapse
|
31
|
Hardick J, Sadiq S, Perelstein E, Peterson S, Rothman R, Gaydos CA. A case-control study evaluating RT-PCR/ESI-MS technology compared to direct fluorescent antibody and xTAG RVP PCR. Diagn Microbiol Infect Dis 2014; 79:187-9. [PMID: 24657170 PMCID: PMC4557781 DOI: 10.1016/j.diagmicrobio.2014.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 11/02/2022]
Abstract
Waste nasopharyngeal swabs (N = 244) were evaluated by the reverse-transcriptase polymerase chain reaction/electrospray ionization mass spectrometry PLEX-ID Broad Respiratory Virus Surveillance Kit version 2.5 compared to direct fluorescent antibody and xTAG Respiratory Virus Panel for percent agreement, sensitivity, and specificity. Sensitivity and specificity were 91% (111/122) and 95.1% (116/122), respectively. Sensitivity by virus, except parainfluenza, was 92.9-100%, and specificity was 99-100%.
Collapse
Affiliation(s)
- Justin Hardick
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, USA.
| | - Sufyan Sadiq
- Johns Hopkins University, Department of Emergency Medicine, Baltimore, MD, USA
| | | | - Stephen Peterson
- Johns Hopkins University, Department of Emergency Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, USA; Johns Hopkins University, Department of Emergency Medicine, Baltimore, MD, USA
| | - Charlotte A Gaydos
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, USA; Johns Hopkins University, Department of Emergency Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Comparison of the Simplexa™ Flu A/B & RSV kit (nucleic acid extraction-dependent assay) and the Prodessa ProFlu+™ assay for detecting influenza and respiratory syncytial viruses. Diagn Microbiol Infect Dis 2013; 80:50-2. [PMID: 25209363 DOI: 10.1016/j.diagmicrobio.2013.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 11/20/2022]
Abstract
The relative performance of 2 widely used reverse transcription polymerase chain reaction (RT-PCR) assays, the Focus diagnostics Simplexa™ Flu A/B & RSV kit (nucleic acid extraction-dependent assay) and the Prodessa Proflu+™ assay, was evaluated using 735 prospectively and retrospectively collected nasopharyngeal swab specimens. Overall, the assays showed positive and negative agreements of 100% and 99.7% for influenza A, 98.1% and 99.9% for influenza B, and 99.3% and 99.5% for respiratory syncytial virus. The relative analytical sensitivity of the 2 assays was also similar.
Collapse
|
33
|
Advances in multiparametric molecular diagnostics technologies for respiratory tract infections. Curr Opin Pulm Med 2013; 19:298-304. [PMID: 23425918 DOI: 10.1097/mcp.0b013e32835f1b32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Respiratory tract infections (RTIs) are caused by a variety of bacterial, viral, fungal, and other pathogens and cause millions of deaths each year. Current standard microbiological culture-based tests are laborious and time consuming. Thus, patients are initially treated empirically, leading to inappropriate use of antibiotics. The purpose of this article is to provide clinicians and scientists with a review of recently available commercial multiparametric molecular diagnostics tests for the detection of RTIs so that they can be considered for use instead of, or in combination with, traditional culture techniques. RECENT FINDINGS Several technologies have become commercially available for the multiparametric molecular detection of RTIs in the past decade including tests based on PCR-array, PCR-mass spectrometry, and multiplex qPCR technologies. The majority of these tests are for the detection of viruses, but more recently companies have begun to focus on detection of viruses, bacteria, and associated drug resistances in a single product to maximize the information provided to the clinician by a single test. SUMMARY We describe the recent advances in commercial multiparametric molecular diagnostics technologies for the diagnosis of RTIs. Combining the specific and sensitive molecular detection of bacteria, viruses, fungi, and drug resistances is key if molecular methods are to replace traditional culture. The reliability of the molecular drug-resistance markers chosen, the need for the quantitative detection of some organisms, and throughput are also important considerations for new technology developers.
Collapse
|
34
|
Identification of Mycobacterium species and Mycobacterium tuberculosis complex resistance determinants by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol 2013; 51:3492-8. [PMID: 23946518 DOI: 10.1128/jcm.01408-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PCR coupled with electrospray ionization mass spectrometry (PCR-ESI-MS) is a novel technology that has recently been used to identify pathogens from clinical specimens or after culture within about 6 h. We evaluated the MDR-TB (multidrug-resistant tuberculosis) assay, which uses PCR-ESI-MS for detection and identification of Mycobacterium spp. and Mycobacterium tuberculosis complex (MTBC) resistance determinants from solid and broth Middlebrook culture media. The performance of the MDR-TB assay was compared to identification using nucleic acid hybridization probes and 16S rRNA gene sequencing for 68 MTBC and 97 nontuberculous mycobacterial (NTM) isolates grown on agar and 107 cultures grown in Bactec MGIT broth. MTBC resistance profiles from the MDR-TB assay were compared to results with the agar proportion method. The PCR-ESI-MS system correctly identified all MTBC isolates and 97.9% and 95.8% of the NTM isolates from characterized agar cultures and MGIT broth cultures to the species level, respectively. In comparison to the agar proportion method, the sensitivity and specificity for the detection of drug resistance using the MDR-TB assay were 100% and 92.3% for rifampin, 100% and 93.8% for isoniazid, 91.6% and 94.4% for ethambutol, and 100% and 100% for fluoroquinolones, respectively. The MDR-TB assay appears to be a rapid and accurate method for the simultaneous detection and identification of mycobacterial species and resistance determinants of MTBC from culture.
Collapse
|
35
|
Tang YW. Promoting translational research in human and veterinary medical virology. Vet Microbiol 2013; 165:2-6. [PMID: 23374654 DOI: 10.1016/j.vetmic.2012.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Translational research serves as a bench-to-field "translation" of basic scientific research into practical diagnostic procedures and therapies useful in human and veterinary clinical services. The productivity of translational research involving infectious diseases relevant to both human and animal health (e.g., influenza diagnosis and epidemiology using emerging molecular detection and identification methods) can be maximized when both human and veterinary medical virology disciplines are integrated. Influenza viruses are continually evolving through site-specific mutation and segment reassortment, and these processes occur in all potential carrier species - including birds, humans, and many agriculturally important animals. This evolutionary plasticity occasionally allows "novel" influenzas to move from animal hosts to humans, potentially causing destructive pandemics; therefore, a rapid laboratory technique that can detect and identify "novel" influenza viruses is clinically and epidemiologically desirable. A technique-focused translational research approach is pursued to enhance detection and characterization of emerging influenza viruses circulating in both humans and other animal hosts. The PLEX-ID System, which incorporates multi-locus PCR and electrospray ionization/mass spectrometry, uses deliberately nonspecific primers that amplify all known variants (all H/N subtypes) of influenza virus, including human, other mammalian, and avian influenzas, and is therefore likely to generate analyzable amplicons from any novel influenza that might emerge in any host. Novel technology development and implementation such as the PLEX-ID System forms a key component of human and veterinary medical virology translational research.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
36
|
Abstract
Community-acquired pneumonia (CAP) accounts for major morbidity and mortality in the United States. With improved broad-spectrum antibiotics, the implementation of diagnostic studies has declined and most patients do not have an etiologic pathogen of CAP identified. To enhance the appropriate use of antiviral agents and prevent overuse of antibiotics, the successful management of CAP requires rapid and accurate diagnosis of the etiologic agent of CAP. This article provides an overview of the new rapid molecular tests for the diagnosis of influenza, other respiratory viruses, and bacteria compared with nonmolecular tests and how their use for directed therapy can enhance and improve the management of CAP.
Collapse
Affiliation(s)
- Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
A Murillo L, Hardick J, Jeng K, Gaydos CA. Evaluation of the Pan Influenza detection kit utilizing the PLEX-ID and influenza samples from the 2011 respiratory season. J Virol Methods 2013; 193:173-6. [PMID: 23764420 DOI: 10.1016/j.jviromet.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
A comparison study was performed between the PLEX-ID and the CDC RT-PCR method for the detection and identification of Influenza A viruses using nasopharyngeal samples (N=75) collected between January and May 2011. Overall agreement was 89.3% (67/75 kappa=0.57 95% CI 0.3-0.89). Positive percent agreement was 92.3% (60/65); negative percent agreement was 70% (7/10). H1N1 pdm09 identified: 42.6% (32/75) and 54.7% (41/75) by PLEX-ID and CDC RT-PCR, respectively. H3N2 identified: 29.3% (22/75) and 32% (24/75) of samples by PLEX-ID and CDC RT-PCR, respectively. Negatives identified: 16% (12/75) and 13.3% (10/75), by PLEX-ID and CDC RT-PCR respectively. For influenza viruses identified as H1N1 pdm09, Influenza A virus A/NEW YORK/15/2009(H1N1 pdm09) was the most prevalent genotype at 50% (16/32), followed by A/CALIFORNIA/05/2009(H1N1 pdm09) at 18.2% (6/32). Updated assay plates containing additional primers designed for H1N1 pdm09 HA and NA genes were utilized for this evaluation. Among H1N1 pdm09 samples, the HA gene was conserved in 96.9% (31/32) of samples. The NA gene was conserved in 96.9% (31/32).
Collapse
Affiliation(s)
- Luis A Murillo
- The Johns Hopkins University School of Medicine, Division of Infectious Diseases, 855 North Wolfe Street, Rangos Building, Room 530, Baltimore, MD 21205, United States.
| | | | | | | |
Collapse
|
38
|
PCR-electrospray ionization mass spectrometry for direct detection of pathogens and antimicrobial resistance from heart valves in patients with infective endocarditis. J Clin Microbiol 2013; 51:2040-6. [PMID: 23596241 DOI: 10.1128/jcm.00304-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbiological diagnosis is pivotal to the appropriate management and treatment of infective endocarditis. We evaluated PCR-electrospray ionization mass spectrometry (PCR/ESI-MS) for bacterial and candidal detection using 83 formalin-fixed paraffin-embedded heart valves from subjects with endocarditis who had positive valve and/or blood cultures, 63 of whom had positive valvular Gram stains. PCR/ESI-MS yielded 55% positivity with concordant microbiology at the genus/species or organism group level (e.g., viridans group streptococci), 11% positivity with discordant microbiology, and 34% with no detection. PCR/ESI-MS detected all antimicrobial resistance encoded by mecA or vanA/B and identified a case of Tropheryma whipplei endocarditis not previously recognized.
Collapse
|
39
|
Identification of an influenza A H1N1/2009 virus with mutations in the matrix gene causing a negative result by a commercial molecular assay. J Clin Microbiol 2013; 51:2006-7. [PMID: 23554187 DOI: 10.1128/jcm.00446-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|