1
|
Cabrera R, Fernández-Barat L, Motos A, López-Aladid R, Vázquez N, Panigada M, Álvarez-Lerma F, López Y, Muñoz L, Castro P, Vila J, Torres A. Molecular characterization of methicillin-resistant Staphylococcus aureus clinical strains from the endotracheal tubes of patients with nosocomial pneumonia. Antimicrob Resist Infect Control 2020; 9:43. [PMID: 32111258 PMCID: PMC7049205 DOI: 10.1186/s13756-020-0679-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Among all cases of nosocomial pneumonia, Staphylococcus aureus is the second most prevalent pathogen (17.8%). In Europe, 29.9% of the isolates are oxacillin-resistant. The changing epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) nosocomial infections and the decreasing susceptibility to first-line antibiotics leave clinicians with few therapeutic options. The objective of our study was to determine the antimicrobial susceptibility, the associated molecular mechanisms of resistance and the epidemiological relatedness of MRSA strains isolated from the endotracheal tubes (ETT) of intubated critically ill patients in the intensive care unit (ICU) with nosocomial pneumonia caused by Staphylococcus aureus. METHODS The antimicrobial susceptibility to vancomycin, linezolid, ciprofloxacin, clindamycin, erythromycin, chloramphenicol, fusidic acid, gentamicin, quinupristin-dalfopristin, rifampicin, sulfamethoxazole/trimethoprim, and tetracycline were measured. Resistance mechanisms were then analyzed by polymerase chain reaction and sequencing. Molecular epidemiology was carried out by multi-locus sequence typing. RESULTS S. aureus isolates were resistant to ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, and fusidic acid. The most frequent mutations in quinolone-resistant S. aureus strains were S84L in the gyrA gene, V511A in the gyrB gene, S144P in the grlA gene, and K401R/E in the grlB gene. Strains resistant to erythromycin carried the ermC, ermA, and msrA genes; the same ermC and ermA genes were detected in strains resistant to clindamycin. The aac(6')-aph(2″) gene was related to gentamicin resistance, while resistance to tetracycline was related to tetK (efflux pump). The fusB gene was detected in the strain resistant to fusidic acid. The most frequent sequence types were ST22, ST8, and ST217, which were distributed in four clonal complexes (CC5, CC22, CC45, and CC59). CONCLUSIONS High levels of resistance to second-line antimicrobials threatens the treatment of nosocomial respiratory infections due to methicillin-resistant S. aureus with decreased susceptibility to linezolid and vancomycin. The wide genotypic diversity found reinforces the central role of ICU infection control in preventing nosocomial transmission.
Collapse
Affiliation(s)
- Roberto Cabrera
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain.
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain.
| | - Anna Motos
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain
| | - Rubén López-Aladid
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain
| | - Nil Vázquez
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain
| | - Mauro Panigada
- Department of Anesthesiology, Intensive Care and Emergency, U.O.C. Rianimazione e Terapia Intensiva, Fondazione IRCCS Ca' Granda, Policlinic Milan, Milan, Italy
| | - Francisco Álvarez-Lerma
- Critical Care Department, Hospital del Mar, Critical Illness Research Group (GREPAC), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Yuly López
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Laura Muñoz
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro Castro
- Internal Medicine Intensive Care Unit, Hospital Clínic, Barcelona, Spain
| | - Jordi Vila
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Center for net Biomedical Research Respiratory diseases, 06/06/0028)- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain.
- Respiratory Intensive Care Unit, Pulmonology Department, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
2
|
Boswihi SS, Udo EE, Mathew B, Noronha B, Verghese T, Tappa SB. Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Patients Admitted to Kuwait Hospitals in 2016-2017. Front Microbiol 2020; 10:2912. [PMID: 31969864 PMCID: PMC6960094 DOI: 10.3389/fmicb.2019.02912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/03/2019] [Indexed: 12/04/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been reported to colonize and cause infections in animals as well as in humans. LA-MRSA isolates have only recently been identified in patients admitted to Kuwait hospitals. This study was conducted to characterize LA-MRSA isolates obtained from patients admitted to Kuwait hospitals. A total of 202 (7.1%) of 2,823 MRSA isolates obtained from clinical samples in 2016 and 2017 in 11 public Kuwait hospitals were assigned to lineages previously known to be associated with livestock. They were characterized using antibiogram, spa typing, and DNA microarray for the assignment of clonal complexes (CCs) and detection of antibiotic resistance and virulence determinants. Identification as putative LA-MRSA clones was based on the molecular definition inferred from DNA microarray. The LA-MRSA isolates consisted of CC96 (N = 31), CC97 (N = 169), and CC398 (N = 2). Isolates belonging to CC96 and CC398 were resistant to erythromycin and clindamycin mediated by erm(A) and erm(C). CC97 isolates were multiresistant to gentamicin, kanamycin, erythromycin, clindamycin, tetracycline, chloramphenicol, fusidic acid, trimethoprim, and ciprofloxacin and harbored aacA-aphD, erm(A), erm(C), msr(A), tet(K), cat, fusC, and dfrS1. In total, 35 spa types were identified among the isolates. CC398 isolates consisted of t899 and t034. Ten spa types were identified among CC96 with t11822 (N = 13) as the most prevalent. CC97 consisted of 26 spa types with most belonging to t267 (N = 73) followed by t359 (N = 39). CC398 was composed of CC398-MRSA-IV and CC398-MRSA-V (PVL+). CC96 belonged to CC96-MRSA-IV and CC96-MRSA-IV (PVL+) Central Asian caMRSA/WA MRSA-119. CC97 consisted of six strains including CC97-MRSA-V (fusC +), CC97-MRSA-IV WA MRSA-54/63, CC97-MRSA-V, CC97-MRSA-(V+fus), CC97-MRSA-(mec VI+fus), and CC97-MRSA (mecV/VT+fus+ccrAB2). Whereas CC96 and CC97 isolates were identified in 2016 and 2017, CC398 isolates were detected only in 2016. This study identified four LA-MRSA clones among MRSA isolated from patients in Kuwait hospitals in 2016-2017 with CC97-MRSA-V (fusC +) as the dominant clone. The presence of LA-MRSA with different genetic backgrounds suggests its independent acquisition from different sources.
Collapse
Affiliation(s)
| | - Edet E. Udo
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | | | | | | |
Collapse
|
3
|
Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of β-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis 2019; 6:S69-S78. [PMID: 30895217 PMCID: PMC6419912 DOI: 10.1093/ofid/ofz004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Sequencing technologies and techniques have seen remarkable transformation and innovation that have significantly affected sequencing capability. Data analyses have replaced sequencing as the main challenge. This paper provides an overview on applying next-generation sequencing (NGS) and analysis and discusses the benefits and challenges. In addition, this document shows results from using NGS and bioinformatics tools to screen for β-lactamase genes and assess the epidemiological structure of Escherichia coli– and Klebsiella pneumoniae–causing bloodstream (BSIs) and urinary tract (UTIs) infections in patients hospitalized in the United States during the SENTRY Antimicrobial Surveillance Program for 2016. Methods A total of 3525 isolates (2751 E. coli and 774 K. pneumoniae) causing BSIs (n = 892) and UTIs (n = 2633) in hospitalized patients in the United States were included. Isolates were tested for susceptibility by broth microdilution, and those that met a minimum inhibitory concentration (MIC)–based screening criteria had their genomes sequenced and analyzed. Results A total of 11.6% and 16.1% of E. coli–causing UTIs and BSIs, respectively, met the MIC-based criteria, whereas 11.0% and 13.7% of K. pneumoniae isolates causing UTIs and BSIs, respectively, met the criteria. Among E. coli, blaCTX-M variants (87.6% overall) prevailed (60.5% of CTX-M group 1 and 26.9% of group 9). A total of 60.3% of K. pneumoniae isolates carried blaCTX-M variants (52.7% and 7.6% of groups 1 and 9, respectively). Two E. coli (0.6%) and 13 K. pneumoniae (12.9%) isolates harbored blaKPC. Among KPC-producing K. pneumoniae (2 from BSIs and 11 from UTIs), 84.6% (11/13) were ST258 (CC258). Seventeen and 38 unique clonal complexes (CCs) were noted in E. coli that caused BSIs and UTIs, respectively, and CC131 (or ST131) was the most common CC among BSI (53.6%) and UTI (58.2%) isolates. Twenty-three and 26 CCs were noted among K. pneumoniae–causing BSIs and UTIs, respectively. CC258 (28.3%) prevailed in UTI pathogens, whereas CC307 (15.0%) was the most common CC among BSI isolates. Conclusions This study provides a benchmark for the distribution of β-lactamase genes and the population structure information for the most common Enterobacteriaceae species responsible for BSIs and UTIs in US medical centers during the 2016 SENTRY Program.
Collapse
Affiliation(s)
| | | | | | - Vincent Cattoir
- University Hospital of Rennes, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance, Rennes, France.,University of Rennes 1, Unit Inserm U1230, Rennes, France
| | | |
Collapse
|
4
|
Bae E, Kim CK, Jang JH, Sung H, Choi Y, Kim MN. Impact of Community-Onset Methicillin-Resistant Staphylococcus aureus on Staphylococcus aureus Bacteremia in a Central Korea Veterans Health Service Hospital. Ann Lab Med 2019; 39:158-166. [PMID: 30430778 PMCID: PMC6240515 DOI: 10.3343/alm.2019.39.2.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/18/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND No study has examined the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Korean veterans' hospitals. We investigated the microbiological and clinical epidemiology of S. aureus bacteremia at the central Veterans Health Services (VHS) hospital in Korea. METHODS Patients with S. aureus bacteremia were consecutively enrolled from February to August 2015. Bacteremia was classified as hospital-acquired (HA), community-onset healthcare-associated (COHA), or community-acquired (CA). MRSA bacteremia risk factors were analyzed. Species identification, antimicrobial susceptibility, and presence of luk and tst were tested. Staphylococcal cassette chromosome mec (SCCmec) typing, spa sequence typing agr polymorphism typing, and multilocus sequence typing were performed. Biofilm production and δ-hemolysin activity were measured to determine agr function. RESULTS In total, 60 patients were enrolled (30 HA, 23 COHA, and seven CA bacteremia); 44 (73.3%) had MRSA bacteremia (26 HA, 16 COHA, and two CA). MRSA bacteremia occurred more frequently in non-CA patients and those who had received antibiotic treatment within the past month (P<0.05). The major MRSA strains comprised 24 ST5-agr2-SCCmecII, 11 ST72-agr 1-SCCmecIV, and five ST8-agr1-SCCmecIV strains. Of 26 agr2-SCCmecII strains, including two MSSA strains, 25 were multidrug-resistant, 18 were tst-positive, and 13 were agr-defective, whereas only five of the 18 agr1-SCCmecIV strains were multidrug-resistant, and all were tst-negative and agr-intact. agr1-SCCmecIV and ST8-agr1-SCCmecIV strains were more likely than agr2-SCCmecII strains to be COHA. CONCLUSIONS MRSA was highly prevalent in both COHA and HA bacteremia. The introduction of virulent CA-MRSA strains may be an important cause of increased HA-MRSA bacteremia in VHS hospitals.
Collapse
Affiliation(s)
- Eunsin Bae
- Department of Laboratory Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Choon Kwan Kim
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Jung Hyun Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - YounMi Choi
- Department of Laboratory Medicine, Veterans Health Service Medical Center, Seoul, Korea.
| | - Mi Na Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| |
Collapse
|
5
|
Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann AC, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:1745-1754. [PMID: 30635416 PMCID: PMC6358666 DOI: 10.1073/pnas.1814265116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Jamil M Ahmed
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Krishan Kumar
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - John Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Anna Stachel
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jason C Fisher
- Division of Pediatric Surgery, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Michael Phillips
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Paul J Planet
- Department of Pediatric Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jennifer Lighter
- Division of Pediatric Infectious Diseases, Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
6
|
Wurster JI, Bispo PJM, Van Tyne D, Cadorette JJ, Boody R, Gilmore MS. Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One 2018; 13:e0208518. [PMID: 30521630 PMCID: PMC6283574 DOI: 10.1371/journal.pone.0208518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that causes serious antibiotic-resistant infections. Its population structure is marked by the appearance and dissemination of successful lineages across different settings. To begin understanding the population structure of S. aureus causing ocular and otolaryngology infections, we characterized 262 isolates by antimicrobial sensitivity testing and multilocus sequence typing (MLST). Methicillin-resistant S. aureus were subjected to SCCmec typing and Panton-Valentine leukocidin (PVL) screening. Although we detected a high level of genetic diversity among methicillin-sensitive (MSSA) isolates, (63 sequence types—STs), the population was dominated by five lineages: ST30, ST5, ST8, ST15 and ST97. Resistance to penicillin, erythromycin and clindamycin was common among the major MSSA lineages, with fluctuations markedly impacted by genetic background. Isolates belonging to the predominant lineage, ST30, displayed high rates of resistance to penicillin (100%), erythromycin (71%), and clindamycin (63%). Overall, 21% of the isolates were methicillin-resistant (MRSA), with an apparent enrichment among otitis and orbital cellulitis isolates (>40%). MRSA isolates belonged to 14 STs grouped in 5 clonal complexes (CC), however, CC5 (56.1%) and CC8 (38.6%) dominated the population. Most CC5 strains were SCCmec type II, and resembled the hospital-adapted USA100 clone. CC8 strains were SCCmec type IV, and 86% were positive for the PVL toxin, common features of the community-acquired clone USA300. CC5 strains harboring a SCCmec type IV, typical for the USA800 clone, comprised 15.5% of the population. USA100 strains were highly resistant to clindamycin, erythromycin and levofloxacin (100%), while USA300 strains were frequently resistant to erythromycin (89%) but displayed lower rates of resistance to levofloxacin (39%) and clindamycin (17%). Our data demonstrate that the ocular and otolaryngology S. aureus populations are composed of strains that are commonly resistant to clinically relevant antibiotics, and are associated with the major epidemic clonal complexes of both community and hospital origins.
Collapse
Affiliation(s)
- Jenna I. Wurster
- Infectious Diseases Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Paulo J. M. Bispo
- Infectious Diseases Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- * E-mail: (MSG); (PB)
| | - Daria Van Tyne
- Infectious Diseases Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts, United States of America
| | - James J. Cadorette
- Henry Whittier Porter Bacteriology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Rick Boody
- Henry Whittier Porter Bacteriology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Michael S. Gilmore
- Infectious Diseases Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston Massachusetts, United States of America
- * E-mail: (MSG); (PB)
| |
Collapse
|
7
|
Sader HS, Rhomberg PR, Doyle TB, Flamm RK, Mendes RE. Evaluation of the Revised Ceftaroline Disk Diffusion Breakpoints When Testing a Challenge Collection of Methicillin-Resistant Staphylococcus aureus Isolates. J Clin Microbiol 2018; 56:e00777-18. [PMID: 30257898 PMCID: PMC6258841 DOI: 10.1128/jcm.00777-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
We assessed ceftaroline disk diffusion breakpoints for Staphylococcus aureus when applying revised Clinical and Laboratory Standards Institute (CLSI) ceftaroline MIC breakpoints. Disk-MIC correlation was evaluated by testing a challenge collection (n = 158) of methicillin-resistant S. aureus (MRSA) isolates composed of 106 randomly selected isolates plus 52 isolates with decreased susceptibility to ceftaroline (MIC, 1 to 16 μg/ml). Disk diffusion was performed with 30-μg disks and Mueller-Hinton agar from 2 manufacturers each. Revised CLSI susceptible (S)/susceptible dose-dependent (SDD)/resistant (R) MIC breakpoints of ≤1/2 to 4/≥8 μg/ml were applied. The disk breakpoints that provided the lowest error rates were CLSI S/R breakpoints of ≥25 mm/≤19 mm, with no very major (VM) or major (Ma) errors and with minor (Mi) error rates of 0.0% for ≥2 doubling dilutions above the I or SDD (≥I + 2), 22.1% for I or SDD plus or minus 1 doubling dilution (I ± 1), and 2.3% for ≤2 doubling dilutions below the I or SDD ≤I - 2 (overall Mi error rate, 16.5%). No mutation in the penicillin-binding protein 2a (PBP2a) was observed in 5 of 15 isolates with a ceftaroline MIC of 2 μg/ml; 3 of 11 isolates with a ceftaroline MIC of 1 μg/ml exhibited mutations in the penicillin-binding domain (PBD; 1 isolate) or in the non-PBD (2 isolates). All isolates except 1, with a ceftaroline MIC of ≥4 μg/ml, showed ≥1 mutation in the PBD and/or non-PBD. In summary, results from the disk diffusion method showed a good correlation with those from the reference broth microdilution method. Our results also showed that the ceftaroline MIC distribution of isolates with no mutations in the PBP2a goes up to 4 μg/ml, and reference broth microdilution and disk diffusion methods do not properly separate wild-type from non-wild-type isolates.
Collapse
|
8
|
Hierarchy of human IgG recognition within the Staphylococcus aureus immunome. Sci Rep 2018; 8:13296. [PMID: 30185867 PMCID: PMC6125462 DOI: 10.1038/s41598-018-31424-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of serious infections associated with significant morbidity, by strains increasingly resistant to antibiotics. However, to date all candidate vaccines have failed to induce protective immune responses in humans. We need a more comprehensive understanding of the antigenic targets important in the context of human infection. To investigate infection-associated immune responses, patients were sampled at initial presentation and during convalescence from three types of clinical infection; skin and soft tissue infection (SSTI), prosthetic joint infection (PJI) and pediatric hematogenous osteomyelitis (PHO). Reactivity of serum IgG was tested with an array of recombinant proteins, representing over 2,652 in-vitro-translated open reading frames (ORFs) from a community-acquired methicillin-resistant S. aureus USA300 strain. High-level reactivity was demonstrated for 104 proteins with serum IgG in all patient samples. Overall, high-level IgG-reactivity was most commonly directed against a subset of secreted proteins. Although based on limited surveys, we found subsets of S. aureus proteins with differential reactivity with serum samples from patients with different clinical syndromes. Together, our studies have revealed a hierarchy within the diverse proteins of the S. aureus “immunome”, which will help to advance efforts to develop protective immunotherapeutic agents.
Collapse
|
9
|
Yamasaki F, Takeuchi S, Uehara Y, Matsushita M, Arise K, Morimoto N, Seo H. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus in community residents of Japan. J Gen Fam Med 2018; 19:77-81. [PMID: 29744260 PMCID: PMC5931346 DOI: 10.1002/jgf2.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
Background To implement effective precautions to avoid methicillin-resistant Staphylococcus aureus (MRSA) nosocomial infections, it is important to clarify when, how, and from whom MRSA was transmitted to the patients. However, MRSA strains obtained from outpatient population were not analyzed, and the transmission routes of MRSA in the community are not completely understood. The purpose of this study was to clarify whether MRSA is spreading in community settings or whether MRSA transmission still occurs only in healthcare institutions. Methods Surveillance cultures of 1274 residents living in a community were performed in two different areas, Kochi and Osaka prefectures of Japan. All isolated MRSA strains were evaluated using multilocus sequence typing (MLST) to clarify the transmission routes of MRSA. The results were compared with those of inpatients. Moreover, written questionnaires and medical records were analyzed. Results Analysis of surveillance cultures from residents living in the community in Japan revealed an MRSA colonization rate of 0.94%. The proportion of MRSA to S. aureus colonization was 2.6% in the 310 residents, which was significantly lower than in the 393 hospitalized patients (63.1%; P < .0001). MRSA strains in residents are different from the endemic strains in the hospitalized patients. Previous hospital admission is a risk factor for MRSA infection of the endemic strain in hospital. Conclusions Methicillin-resistant Staphylococcus aureus colonization in community setting is rare in Japan. MLST results suggest that some MRSA strains are moving to the community through previous hospital admissions; however, MRSA is not spreading in community settings.
Collapse
Affiliation(s)
- Fumi Yamasaki
- Department of General Medicine Kochi Medical School Hospital Nankoku Japan
| | - Seisho Takeuchi
- Department of General Medicine Kochi Medical School Hospital Nankoku Japan.,Department of Infection Control and Prevention Kochi Medical School Hospital Nankoku Japan
| | - Yoshio Uehara
- Department of General Medicine Kochi Medical School Hospital Nankoku Japan.,Department of Infection Control and Prevention Kochi Medical School Hospital Nankoku Japan
| | | | - Kazumi Arise
- Department of Infection Control and Prevention Kochi Medical School Hospital Nankoku Japan
| | - Norihito Morimoto
- Department of Infection Control and Prevention Kochi Medical School Hospital Nankoku Japan.,Department of Clinical Laboratory Kochi Medical School Hospital Nankoku Japan
| | - Hiromi Seo
- Department of General Medicine Kochi Medical School Hospital Nankoku Japan
| |
Collapse
|
10
|
Hook JL, Islam MN, Parker D, Prince AS, Bhattacharya S, Bhattacharya J. Disruption of staphylococcal aggregation protects against lethal lung injury. J Clin Invest 2018; 128:1074-1086. [PMID: 29431734 DOI: 10.1172/jci95823] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/04/2018] [Indexed: 01/23/2023] Open
Abstract
Infection by Staphylococcus aureus strain USA300 causes tissue injury, multiorgan failure, and high mortality. However, the mechanisms by which the bacteria adhere to, then stabilize on, mucosal surfaces before causing injury remain unclear. We addressed these issues through the first real-time determinations of USA300-alveolar interactions in live lungs. We found that within minutes, inhaled USA300 established stable, self-associated microaggregates in niches at curved, but not at flat, regions of the alveolar wall. The microaggregates released α-hemolysin toxin, causing localized alveolar injury, as indicated by epithelial dye loss, mitochondrial depolarization, and cytosolic Ca2+ increase. Spread of cytosolic Ca2+ through intercellular gap junctions to adjoining, uninfected alveoli caused pulmonary edema. Systemic pretreatment with vancomycin, a USA300-cidal antibiotic, failed to protect mice infected with inhaled WT USA300. However, vancomycin pretreatment markedly abrogated mortality in mice infected with mutant USA300 that lacked the aggregation-promoting factor PhnD. We interpret USA300-induced mortality as having resulted from rapid bacterial aggregation in alveolar niches. These findings indicate, for the first time to our knowledge, that alveolar microanatomy is critical in promoting the aggregation and, hence, in causing USA300-induced alveolar injury. We propose that in addition to antibiotics, strategies for bacterial disaggregation may constitute novel therapy against USA300-induced lung injury.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mohammad N Islam
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | | | - Sunita Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,Department of Pediatrics, and
| | - Jahar Bhattacharya
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine.,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Multimechanistic Monoclonal Antibodies (MAbs) Targeting Staphylococcus aureus Alpha-Toxin and Clumping Factor A: Activity and Efficacy Comparisons of a MAb Combination and an Engineered Bispecific Antibody Approach. Antimicrob Agents Chemother 2017; 61:AAC.00629-17. [PMID: 28584141 PMCID: PMC5527613 DOI: 10.1128/aac.00629-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022] Open
Abstract
Secreted alpha-toxin and surface-localized clumping factor A (ClfA) are key virulence determinants in Staphylococcus aureus bloodstream infections. We previously demonstrated that prophylaxis with a multimechanistic monoclonal antibody (MAb) combination against alpha-toxin (MEDI4893*) and ClfA (11H10) provided greater strain coverage and improved efficacy in an S. aureus lethal bacteremia model. Subsequently, 11H10 was found to exhibit reduced affinity and impaired inhibition of fibrinogen binding to ClfA002 expressed by members of a predominant hospital-associated methicillin-resistant S. aureus (MRSA) clone, ST5. Consequently, we identified another anti-ClfA MAb (SAR114) from human tonsillar B cells with >100-fold increased affinity for three prominent ClfA variants, including ClfA002, and potent inhibition of bacterial agglutination by 112 diverse clinical isolates. We next constructed bispecific Abs (BiSAbs) comprised of 11H10 or SAR114 as IgG scaffolds and grafted anti-alpha-toxin (MEDI4893*) single-chain variable fragment to the amino or carboxy terminus of the anti-ClfA heavy chains. Although the BiSAbs exhibited in vitro potencies similar to those of the parental MAbs, only 11H10-BiSAb, but not SAR114-BiSAb, showed protective activity in murine infection models comparable to the respective MAb combination. In vivo activity with SAR114-BiSAb was observed in infection models with S. aureus lacking ClfA. Our data suggest that high-affinity binding to ClfA sequesters the SAR114-BiSAb to the bacterial surface, thereby reducing both alpha-toxin neutralization and protection in vivo These results indicate that a MAb combination targeting ClfA and alpha-toxin is more promising for future development than the corresponding BiSAb.
Collapse
|
12
|
Sanchez EH, Mendes RE, Sader HS, Allison GM. In vivo emergence of ceftaroline resistance during therapy for MRSA vertebral osteomyelitis. J Antimicrob Chemother 2016; 71:1736-8. [PMID: 26861570 PMCID: PMC4867098 DOI: 10.1093/jac/dkw001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Mat Azis N, Pung HP, Abdul Rachman AR, Amin Nordin S, Sarchio SNE, Suhaili Z, Mohd Desa MN. A persistent antimicrobial resistance pattern and limited methicillin-resistance-associated genotype in a short-term Staphylococcus aureus carriage isolated from a student population. J Infect Public Health 2016; 10:156-164. [PMID: 27033676 DOI: 10.1016/j.jiph.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/24/2016] [Indexed: 02/02/2023] Open
Abstract
The aim of the present study was to assess and compare the antimicrobial susceptibility pattern against a panel of antibiotics and molecular and methicillin resistance-associated genotypes of 120 carriage S. aureus isolates previously isolated from a student population at two isolation events within a one-month interval. The antibiotic susceptibility of isolates was determined using the Kirby-Bauer disc-diffusion method (cefoxitin by Etest). The MRSA was screened using polymerase chain reaction for the presence of the mecA gene. The mecA-positive isolates were subjected to staphylococcal cassette chromosome (SCC) mec typing, multilocus sequence typing (MLST) and eBURST analysis. All isolates were characterized for the presence of the Panton-Valentine leukocidin (PVL) gene, an enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) pattern and the spa type. For the two occasions where S. aureus was isolated, the highest frequency of resistance was observed for penicillin (70% and 65%, respectively), with a lower rate against erythromycin and tetracycline (<12%). All isolates were susceptible to ciprofloxacin and gentamycin. As for methicillin resistance, eight isolates had minimum inhibitory concentrations (MIC) of resistant categories, but 10 isolates (8.33%) were positive for the mecA gene. The mecA-positive isolates belonged to SCCmec types I (n=9) and V (n=1). MLST was resolved for only three MRSAs, ST508 (n=1), ST88 (n=1) and ST96 (n=1). The results of the eBURST analysis showed that the MRSA isolates analyzed in the present study were potentially related to MRSA identified in other countries. Approximately half of the persistent S. aureus carriers harbored S. aureus of a similar spa type in the respective individuals during both isolation events. A persistent antimicrobial pattern and limited distinct MRSAs were observed over the short study period. The latter frequently exhibited SCCmec type I, commonly associated with hospital-acquired (HA) characteristics, but further delineation is needed to justify the origins of these bacteria.
Collapse
Affiliation(s)
- Norhidayah Mat Azis
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui P Pung
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul R Abdul Rachman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Seri N E Sarchio
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zarizal Suhaili
- School of Animal Sciences, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Tembila Campus, Besut, Malaysia
| | - Mohd N Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia.
| |
Collapse
|
14
|
Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS One 2016; 11:e0149541. [PMID: 26890675 PMCID: PMC4758708 DOI: 10.1371/journal.pone.0149541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/02/2016] [Indexed: 01/28/2023] Open
Abstract
Fifth-generation cephalosporins, ceftobiprole and ceftaroline, are promising drugs for treatment of bacterial infections from methicillin-resistant Staphylococcus aureus (MRSA). These antibiotics are able to bind native PBP2a, the penicillin-binding protein encoded by the mecA resistance determinant that mediates broad class resistance to nearly all other beta-lactam antibiotics, at clinically achievable concentrations. Mechanisms of resistance to ceftaroline based on mecA mutations have been previously described. Here we compare the genomes of 11 total parent-daughter strains of Staphylococcus aureus for which specific selection by serial passaging with ceftaroline or ceftobiprole was used to identify novel non-mecA mechanisms of resistance. All 5 ceftaroline-resistant strains, derived from 5 different parental strains, contained mutations directly upstream of the pbp4 gene (coding for the PBP4 protein), including four with the same thymidine insertion located 377 nucleotides upstream of the promoter site. In 4 of 5 independent ceftaroline-driven selections, we also isolated mutations to the same residue (Asn138) in PBP4. In addition, mutations in additional candidate genes such as ClpX endopeptidase, PP2C protein phosphatase and transcription terminator Rho, previously undescribed in the context of resistance to ceftaroline or ceftobiprole, were detected in multiple selections. These genomic findings suggest that non-mecA mechanisms, while yet to be encountered in the clinical setting, may also be important in mediating resistance to 5th-generation cephalosporins.
Collapse
Affiliation(s)
- Alexander L. Greninger
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| | - Som S. Chatterjee
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Liana C. Chan
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Stephanie M. Hamilton
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Henry F. Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| |
Collapse
|
15
|
Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus: Does Vancomycin Heteroresistance Matter? Antimicrob Agents Chemother 2016; 60:1708-16. [PMID: 26729497 DOI: 10.1128/aac.02388-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022] Open
Abstract
Vancomycin remains the mainstay treatment for methicillin-resistant Staphylococcus aureus (MRSA) infections, including pneumonia. There is concern regarding the emergence of vancomycin tolerance, caused by heterogeneous vancomycin-intermediate S. aureus (hVISA), and subsequent vancomycin treatment failure. Pneumonia is associated with high morbidity and mortality, especially with delays in appropriate therapy. This study evaluated the clinical outcomes of patients with hVISA pneumonia compared to those with vancomycin-susceptible S. aureus (VSSA) pneumonia. A retrospective cohort of patients with MRSA pneumonia from 2005 to 2014 was matched at a ratio of 2:1 VSSA to hVISA infections to compare patient characteristics, treatments, and outcomes. hVISA was determined by the 48-h population analysis profile area under the curve. Characteristics between VSSA and hVISA infections were compared by univariate analysis and multivariable logistic regression analysis to determine independent risk factors of inpatient mortality. Eighty-seven patients were included, representing 29 hVISA and 58 VSSA cases of pneumonia. There were no significant differences in demographics or baseline characteristics. Sequential organ failure assessment (SOFA) scores were a median of 7 (interquartile ratio [IQR], 5 to 8) in hVISA patients and 5 (IQR, 3 to 8) in VSSA (P = 0.092) patients. Inpatient mortality was significantly higher in hVISA patients (44.8% versus 24.1%; P = 0.049). Predictors of inpatient mortality upon multivariable regression were SOFA score (adjusted odds ratio [aOR], 1.36; 95% confidence interval [CI], 1.08 to 1.70), Panton-Valentine leukocidin (PVL) positivity (aOR, 6.63; 95% CI, 1.79 to 24.64), and hVISA phenotype (aOR, 3.95; 95% CI, 1.18 to 13.21). Patients with hVISA pneumonia experienced significantly higher inpatient mortality than those with VSSA pneumonia. There is a need to consider the presence of vancomycin heteroresistance in pneumonia caused by MRSA in order to potentially improve clinical outcomes.
Collapse
|
16
|
Performance of BD Max StaphSR for Screening of Methicillin-Resistant Staphylococcus aureus Isolates among a Contemporary and Diverse Collection from 146 Institutions Located in Nine U.S. Census Regions: Prevalence of mecA Dropout Mutants. J Clin Microbiol 2015; 54:204-7. [PMID: 26537444 DOI: 10.1128/jcm.02047-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 01/01/2023] Open
Abstract
This study determined the performance of BD Max StaphSR and the rate of methicillin-resistant Staphylococcus aureus (MRSA) with an unrecognized staphylococcal cassette chromosome mec (SCCmec) right-extremity junction (MREJ) region among 907 methicillin-resistant S. aureus (MRSA) and 900 methicillin-susceptible S. aureus (MSSA) isolates. The rate of mecA/mecC dropout mutants was also evaluated. Only three MRSA isolates (99.7% sensitivity; 904/907) were classified as MSSA by the BD Max StaphSR assay, due to negative results for MREJ. Eight MSSA isolates (99.1% sensitivity; 892/900) were assigned as MRSA. However, six of these MSSA isolates had the mecA gene confirmed by PCR and sequencing (99.8% sensitivity; 898/900). Overall, 7.1% (64/900) of MSSA isolates showed results compatible with a mecA dropout genotype.
Collapse
|
17
|
Endovascular infections caused by methicillin-resistant Staphylococcus aureus are linked to clonal complex-specific alterations in binding and invasion domains of fibronectin-binding protein A as well as the occurrence of fnbB. Infect Immun 2015; 83:4772-80. [PMID: 26416903 DOI: 10.1128/iai.01074-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022] Open
Abstract
Endovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and foster initiation of disease, and (ii) CC45-like FnBPs promote cell invasion, a key attribute in persistent endovascular infections.
Collapse
|
18
|
Mendes RE, Deshpande LM, Costello AJ, Farrell DJ, Jones RN, Flamm RK. Genotypic Characterization of Methicillin-Resistant Staphylococcus aureus Recovered at Baseline from Phase 3 Pneumonia Clinical Trials for Ceftobiprole. Microb Drug Resist 2015; 22:53-8. [PMID: 26230870 PMCID: PMC4722542 DOI: 10.1089/mdr.2014.0307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Baseline methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients with nosocomial and community-acquired pneumonia collected during Phase 3 trials for ceftobiprole were characterized. Eighty-four unique isolates from patients enrolled in Europe (50.0%), Asia-Western Pacific region (APAC; 20.2%), North America (19.0%), Latin America (8.3%), and South Africa (2.4%) were included. Antimicrobial susceptibility testing was performed by broth microdilution and isolates screened for Panton-Valentine leukocidin. SCCmec and agr types were determined. Strains were subjected to pulsed-field gel electrophoresis and spa typing. Clonal complexes (CCs) were assigned based on spa and/or multilocus sequence typing. Most isolates were CC5-MRSA-I/II/IV (44.0%; 37/84), followed by CC8-MRSA-IV (22.6%; 19/84) and CC239-MRSA-III (21.4%; 18/84). Other MRSA formed seven clonal clusters. Isolates from North America were associated with USA100, while those from South America belonged to the Cordobes/Chilean CC. A greater clonal diversity was observed in Europe; however, each country had CC5, CC8, or CC239 as prevalent lineages. Isolates from APAC were CC5-MRSA-II (47.1%; 8/17) or CC239-MRSA-III (47.1%; 8/17). Isolates carrying SCCmec I and III had ceftobiprole MIC50 values of 2 μg/ml, while those isolates with SCCmec II and IV had MIC50 values of 1 μg/ml. Ceftobiprole inhibited 96% and 100.0% of the isolates at ≤2 and ≤4 μg/ml, respectively. These isolates represented common circulating MRSA clones. Ceftobiprole demonstrated in vitro activity with a slight variation of minimum inhibitory concentrations (MICs) according to SCCmec or clonal type.
Collapse
|
19
|
Healthcare- and Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) and Fatal Pneumonia with Pediatric Deaths in Krasnoyarsk, Siberian Russia: Unique MRSA's Multiple Virulence Factors, Genome, and Stepwise Evolution. PLoS One 2015; 10:e0128017. [PMID: 26047024 PMCID: PMC4457420 DOI: 10.1371/journal.pone.0128017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common multidrug-resistant (MDR) pathogen. We herein discussed MRSA and its infections in Krasnoyarsk, Siberian Russia between 2007 and 2011. The incidence of MRSA in 3,662 subjects was 22.0% and 2.9% for healthcare- and community-associated MRSA (HA- and CA-MRSA), respectively. The 15-day mortality rates for MRSA hospital- and community-acquired pneumonia (HAP and CAP) were 6.5% and 50%, respectively. MRSA CAP cases included pediatric deaths; of the MRSA pneumonia episodes available, ≥27.3% were associated with bacteremia. Most cases of HA-MRSA examined exhibited ST239/spa3(t037)/SCCmecIII.1.1.2 (designated as ST239Kras), while all CA-MRSA cases examined were ST8/spa1(t008)/SCCmecIV.3.1.1(IVc) (designated as ST8Kras). ST239Kras and ST8Kras strongly expressed cytolytic peptide (phenol-soluble modulin α, PSMα; and δ-hemolysin, Hld) genes, similar to CA-MRSA. ST239Kras pneumonia may have been attributed to a unique set of multiple virulence factors (MVFs): toxic shock syndrome toxin-1 (TSST-1), elevated PSMα/Hld expression, α-hemolysin, the staphylococcal enterotoxin SEK/SEQ, the immune evasion factor SCIN/SAK, and collagen adhesin. Regarding ST8Kras, SEA was included in MVFs, some of which were common to ST239Kras. The ST239Kras (strain OC3) genome contained: a completely unique phage, φSa7-like (W), with no att repetition; S. aureus pathogenicity island SaPI2R, the first TSST-1 gene-positive (tst+) SaPI in the ST239 lineage; and a super copy of IS256 (≥22 copies/genome). ST239Kras carried the Brazilian SCCmecIII.1.1.2 and United Kingdom-type tst. ST239Kras and ST8Kras were MDR, with the same levofloxacin resistance mutations; small, but transmissible chloramphenicol resistance plasmids spread widely enough to not be ignored. These results suggest that novel MDR and MVF+ HA- and CA-MRSA (ST239Kras and ST8Kras) emerged in Siberian Russia (Krasnoyarsk) associated with fatal pneumonia, and also with ST239Kras, a new (Siberian Russian) clade of the ST239 lineage, which was created through stepwise evolution during its potential transmission route of Brazil-Europe-Russia/Krasnoyarsk, thereby selective advantages from unique MVFs and the MDR.
Collapse
|
20
|
Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Antimicrob Agents Chemother 2015; 59:2583-7. [PMID: 25691627 DOI: 10.1128/aac.05119-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are responsible for a wide variety of human infections. The investigational antibacterial Debio1450 (previously AFN-1720), a prodrug of Debio1452 (previously AFN-1252), specifically targets staphylococci without significant activity against other Gram-positive or Gram-negative species. Debio1452 inhibits FabI, an enzyme critical to fatty acid biosynthesis in staphylococci. The activity of Debio1452 against CoNS, methicillin-susceptible S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA), including significant clones, was determined. A globally diverse collection of 574 patient isolates from 35 countries was tested that included CoNS (6 species, 103 strains), MSSA (154 strains), MRSA (163 strains), and molecularly characterized strains (including spa-typed MRSA clones; 154 strains). The isolates were tested for susceptibility by CLSI broth microdilution methods against Debio1452 and 10 comparators. The susceptibility rates for the comparators were determined using CLSI and EUCAST breakpoint criteria. All S. aureus and CoNS strains were inhibited by Debio1452 concentrations of ≤ 0.12 and ≤ 0.5 μg/ml, respectively. The MIC50s for MSSA, MRSA, and molecularly characterized MRSA strains were 0.004 μg/ml, and the MIC90s ranged from 0.008 to 0.03 μg/ml. The MICs were higher for the CoNS isolates (MIC50/90, 0.015/0.12 μg/ml). Among S. aureus strains, resistance was common for erythromycin (61.6%), levofloxacin (49.0%), clindamycin (27.6%), tetracycline (15.7%), and trimethoprim-sulfamethoxazole (7.0%). Debio1452 demonstrated potent activity against MSSA, MRSA, and CoNS. Debio1452 showed significantly greater activity overall (MIC50, 0.004 μg/ml) than the other agents tested against these staphylococcal species, which included dominant MRSA clones and strains resistant to currently utilized antimicrobial agents.
Collapse
|
21
|
Update on linezolid in vitro activity through the Zyvox Annual Appraisal of Potency and Spectrum Program, 2013. Antimicrob Agents Chemother 2015; 59:2454-7. [PMID: 25645839 DOI: 10.1128/aac.04784-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Linezolid showed MIC50s and MIC90s of 1 μg/ml (for both) against Staphylococcus aureus. Two S. aureus strains exhibited higher MICs (4 to 8 μg/ml) caused by cfr and/or target site mutations, including the first detection of cfr in Poland. Linezolid (MIC50 and MIC90, 0.5 and 1 μg/ml) had potent MICs against coagulase-negative staphylococci (CoNS). Four CoNS had MICs of 16 to 128 μg/ml due to alterations in 23S rRNA and/or L3/L4. Linezolid inhibited all enterococci and streptococci at ≤2 μg/ml, except for one Enterococcus faecium strain (MIC, 8 μg/ml; G2576T [Escherichia coli numbering] mutation).
Collapse
|
22
|
Telavancin in vitro activity against a collection of methicillin-resistant Staphylococcus aureus isolates, including resistant subsets, from the United States. Antimicrob Agents Chemother 2015; 59:1811-4. [PMID: 25561335 DOI: 10.1128/aac.04616-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telavancin had MIC50, MIC90, and MIC100 values of 0.03, 0.06, and 0.12 μg/ml, respectively, against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and non-multidrug-resistant (non-MDR) and MDR subsets. MRSA with elevated MIC values for vancomycin (2 to 4 μg/ml) or daptomycin (1 to 2 μg/ml) had telavancin MIC50 (0.06 μg/ml) values 2-fold higher than those of isolates with lower MIC results (MIC50, 0.03 μg/ml). However, telavancin had MIC90 and MIC100 results of 0.06 and 0.12 μg/ml (100% susceptible), respectively, regardless of the MRSA subset.
Collapse
|
23
|
Rose HR, Holzman RS, Altman DR, Smyth DS, Wasserman GA, Kafer JM, Wible M, Mendes RE, Torres VJ, Shopsin B. Cytotoxic Virulence Predicts Mortality in Nosocomial Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2014; 211:1862-74. [PMID: 25298028 DOI: 10.1093/infdis/jiu554] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022] Open
Abstract
The current study identified bacterial factors that may improve management of methicillin-resistant Staphylococcus aureus (MRSA) nosocomial pneumonia. Isolates were obtained from 386 patients enrolled in a randomized, controlled study of antibiotic efficacy. Isolates were screened for production of virulence factors and for vancomycin susceptibility. After adjustment for host factors such as severity of illness and treatment modality, cytotoxic activity was strongly and inversely associated with mortality; however, it had no effect on clinical cure. Isolates having low cytotoxicity, which were derived largely from healthcare-associated clones, exhibited a greater prevalence of vancomycin heteroresistance, and they were recovered more often from patients who were older and frailer. Additionally, a clone with low cytotoxic activity was associated with death and poor clinical improvement. Clone specificity and attenuated virulence appear to be associated with outcome. To our knowledge, these are the first correlations between MRSA virulence and mortality in nosocomial pneumonia.
Collapse
Affiliation(s)
- Hannah R Rose
- Division of Infectious Diseases, Department of Medicine
| | | | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jared M Kafer
- Division of Infectious Diseases, Department of Medicine
| | | | | | | | - Bo Shopsin
- Division of Infectious Diseases, Department of Medicine
| |
Collapse
|
24
|
Kachrimanidou M, Tsorlini E, Katsifa E, Vlachou S, Kyriakidou S, Xanthopoulou K, Tsergouli K, Samourli T, Papa A. Prevalence and molecular epidemiology of methicillin-resistant Staphylococcus aureus in a tertiary Greek hospital. Hippokratia 2014; 18:24-27. [PMID: 25125947 PMCID: PMC4103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of health- and community-associated infections; its prevalence in Greece is among the highest in Europe. We investigated the prevalence and molecular epidemiology of MRSA in a tertiary Greek hospital. MATERIAL AND METHODS Spa typing and random polymorphic DNA analysis were used to investigate the molecular epidemiology of 28 MRSA isolates during May 2010 to May 2011 in a tertiary hospital in Northern Greece. RESULTS Nine spa types were detected; t003 was the predominant (32.1%) one, detected in various wards and throughout the study period, while t037 was recovered only from intensive care unit patients, and only in April 2011, suggestive of an epidemic. Additional rare types were detected for the first time in Greece. CONCLUSIONS Spa typing and random polymorphic DNA analysis gave an insight into the epidemiology of MRSA in a Northern Greece hospital. Concerning the distribution in the hospital, the predominant spa type t003 was present in various wards, and was constantly detected throughout the study period, very suggestive of an epidemic, while other types were detected only in specific wards. Our data underline the need for surveillance, typing and constant reassessment of existing strategies to control MRSA.
Collapse
Affiliation(s)
- M Kachrimanidou
- 1 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece ; Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - E Tsorlini
- Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - E Katsifa
- Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - S Vlachou
- Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - S Kyriakidou
- Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - K Xanthopoulou
- 1 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| | - K Tsergouli
- 1 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| | - T Samourli
- Department of Microbiology, of George Papanikolaou Hospital, Thessaloniki, Greece
| | - A Papa
- 1 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
25
|
Tadros M, Williams V, Coleman BL, McGeer AJ, Haider S, Lee C, Iacovides H, Rubinstein E, John M, Johnston L, McNeil S, Katz K, Laffin N, Suh KN, Powis J, Smith S, Taylor G, Watt C, Simor AE. Epidemiology and outcome of pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) in Canadian hospitals. PLoS One 2013; 8:e75171. [PMID: 24069391 PMCID: PMC3775759 DOI: 10.1371/journal.pone.0075171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/12/2013] [Indexed: 11/23/2022] Open
Abstract
Background MRSA remains a leading cause of hospital-acquired (HAP) and healthcare-associated pneumonia (HCAP). We describe the epidemiology and outcome of MRSA pneumonia in Canadian hospitals, and identify factors contributing to mortality. Methods Prospective surveillance for MRSA pneumonia in adults was done for one year (2011) in 11 Canadian hospitals. Standard criteria for MRSA HAP, HCAP, ventilator-associated pneumonia (VAP), and community-acquired pneumonia (CAP) were used to identify cases. MRSA isolates underwent antimicrobial susceptibility testing, and were characterized by pulsed-field gel electrophoresis (PFGE) and Panton-Valentine leukocidin (PVL) gene detection. The primary outcome was all-cause mortality at 30 days. A multivariable analysis was done to examine the association between various host and microbial factors and mortality. Results A total of 161 patients with MRSA pneumonia were identified: 90 (56%) with HAP, 26 (16%) HCAP, and 45 (28%) CAP; 23 (14%) patients had VAP. The mean (± SD) incidence of MRSA HAP was 0.32 (± 0.26) per 10,000 patient-days, and of MRSA VAP was 0.30 (± 0.5) per 1,000 ventilator-days. The 30-day all-cause mortality was 28.0%. In multivariable analysis, variables associated with mortality were the presence of multiorgan failure (OR 8.1; 95% CI 2.5-26.0), and infection with an isolate with reduced susceptibility to vancomycin (OR 2.5, 95% CI 1.0-6.3). Conclusions MRSA pneumonia is associated with significant mortality. Severity of disease at presentation, and infection caused by an isolate with elevated MIC to vancomcyin are associated with increased mortality. Additional studies are required to better understand the impact of host and microbial variables on outcome.
Collapse
Affiliation(s)
| | | | - Brenda L. Coleman
- University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Allison J. McGeer
- University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shariq Haider
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | - Michael John
- London Health Sciences Centre, London, Ontario, Canada
| | - Lynn Johnston
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Shelly McNeil
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Kevin Katz
- North York General Hospital, Toronto, Ontario, Canada
| | | | | | - Jeff Powis
- University of Toronto, Toronto, Ontario, Canada
- Toronto East General Hospital, Toronto, Ontario, Canada
| | | | - Geoff Taylor
- University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Christine Watt
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Andrew E. Simor
- University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, Lagace-Wiens PRS, Walkty A, Karlowsky JA, Schweizer F, Hoban DJ, Zhanel GG, Hoban DJ, Adam HJ, Karlowsky JA, Baxter MR, Nichol KA, Lagace-Wiens PRS, Walkty A. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother 2013; 68 Suppl 1:i7-22. [DOI: 10.1093/jac/dkt022] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Fu J, Ye X, Chen C, Chen S. The efficacy and safety of linezolid and glycopeptides in the treatment of Staphylococcus aureus infections. PLoS One 2013; 8:e58240. [PMID: 23484002 PMCID: PMC3590119 DOI: 10.1371/journal.pone.0058240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/01/2013] [Indexed: 01/22/2023] Open
Abstract
To assess the effectiveness and safety of linezolid in comparison with glycopeptides (vancomycin and teicoplanin) for the treatment of Staphylococcus aureus infections, we conducted a meta-analysis of relevant randomized controlled trials. A thorough search of Pubmed and other databases was performed. Thirteen trials on 3863 clinically assessed patients were included. Linezolid was slightly more effective than glycopeptides in the intent-to-treat population (odds ratio [OR], 1.05; 95% confidence interval [CI], 1.01–1.10), was more effective in clinically assessed patients (OR 95% CI: 1.38, 1.17–1.64) and in all microbiologically assessed patients (OR 95% CI: 1.38, 1.15–1.65). Linezolid was associated with better treatment in skin and soft-tissue infections (SSTIs) patients (OR 95% CI: 1.61, 1.22–2.12), but not in bacteraemia (OR 95% CI: 1.24, 0.78–1.97) or pneumonia (OR 95% CI: 1.25, 0.97–1.60) patients. No difference of mortality between linezolid and glycopeptides was seen in the pooled trials (OR 95% CI: 0.98, 0.83–1.15). While linezolid was associated with more haematological (OR 95% CI: 2.23, 1.07–4.65) and gastrointestinal events (OR 95% CI: 2.34, 1.53–3.59), a significantly fewer events of skin adverse effects (OR 95% CI: 0.27, 0.16–0.46) and nephrotoxicity (OR 95% CI: 0.45, 0.28–0.72) were recorded in linezolid. Based on the analysis of the pooled data of randomized control trials, linezolid should be a better choice for treatment of patients with S. aureus infections, especially in SSTIs patients than glycopeptides. However, when physicians choose to use linezolid, risk of haematological and gastrointestinal events should be taken into account according to the characteristics of the specific patient populations.
Collapse
Affiliation(s)
- Jinjian Fu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Molecular Epidemiology, Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Department of Laboratory Medicine, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xiaohua Ye
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Molecular Epidemiology, Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Cha Chen
- Department of Laboratory Medicine, Guangzhou High Education Mega Centre Hospital, Branch of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Sidong Chen
- Guangdong Key Laboratory of Molecular Epidemiology, Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|