1
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Viloria Winnett A, Akana R, Shelby N, Davich H, Caldera S, Yamada T, Reyna JRB, Romano AE, Carter AM, Kim MK, Thomson M, Tognazzini C, Feaster M, Goh YY, Chew YC, Ismagilov RF. Extreme differences in SARS-CoV-2 viral loads among respiratory specimen types during presumed pre-infectious and infectious periods. PNAS NEXUS 2023; 2:pgad033. [PMID: 36926220 PMCID: PMC10013338 DOI: 10.1093/pnasnexus/pgad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023]
Abstract
SARS-CoV-2 viral-load measurements from a single-specimen type are used to establish diagnostic strategies, interpret clinical-trial results for vaccines and therapeutics, model viral transmission, and understand virus-host interactions. However, measurements from a single-specimen type are implicitly assumed to be representative of other specimen types. We quantified viral-load timecourses from individuals who began daily self-sampling of saliva, anterior-nares (nasal), and oropharyngeal (throat) swabs before or at the incidence of infection with the Omicron variant. Viral loads in different specimen types from the same person at the same timepoint exhibited extreme differences, up to 109 copies/mL. These differences were not due to variation in sample self-collection, which was consistent. For most individuals, longitudinal viral-load timecourses in different specimen types did not correlate. Throat-swab and saliva viral loads began to rise as many as 7 days earlier than nasal-swab viral loads in most individuals, leading to very low clinical sensitivity of nasal swabs during the first days of infection. Individuals frequently exhibited presumably infectious viral loads in one specimen type while viral loads were low or undetectable in other specimen types. Therefore, defining an individual as infectious based on assessment of a single-specimen type underestimates the infectious period, and overestimates the ability of that specimen type to detect infectious individuals. For diagnostic COVID-19 testing, these three single-specimen types have low clinical sensitivity, whereas a combined throat-nasal swab, and assays with high analytical sensitivity, was inferred to have significantly better clinical sensitivity to detect presumed pre-infectious and infectious individuals.
Collapse
Affiliation(s)
| | - Reid Akana
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Natasha Shelby
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Hannah Davich
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Saharai Caldera
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Taikun Yamada
- Pangea Laboratory LLC, 14762 Bentley Cir, Tustin, CA 92780, USA.,Zymo Research Corp., 17062 Murphy Ave, Irvine, CA 92614, USA
| | | | - Anna E Romano
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Alyssa M Carter
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Mi Kyung Kim
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Matt Thomson
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Colten Tognazzini
- Pasadena Public Health Department, 1845 N. Fair Oaks Ave, Pasadena, CA 91103, USA
| | - Matthew Feaster
- Pasadena Public Health Department, 1845 N. Fair Oaks Ave, Pasadena, CA 91103, USA
| | - Ying-Ying Goh
- Pasadena Public Health Department, 1845 N. Fair Oaks Ave, Pasadena, CA 91103, USA
| | - Yap Ching Chew
- Pangea Laboratory LLC, 14762 Bentley Cir, Tustin, CA 92780, USA.,Zymo Research Corp., 17062 Murphy Ave, Irvine, CA 92614, USA
| | - Rustem F Ismagilov
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Tsang NNY, So HC, Cowling BJ, Leung GM, Ip DKM. Performance of saline and water gargling for SARS-CoV-2 reverse transcriptase PCR testing: a systematic review and meta-analysis. Eur Respir Rev 2022; 31:220014. [PMID: 36130785 PMCID: PMC9724820 DOI: 10.1183/16000617.0014-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
The performance of gargling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase (RT)-PCR testing has not been previously reviewed. This review systematically assessed the performance of saline and water gargling for SARS-CoV-2 RT-PCR testing in the settings of diagnosing and monitoring viral shedding.We included original studies comparing the performance of gargling and (oropharyngeal-)nasopharyngeal swabs for SARS-CoV-2 RT-PCR testing. Studies conducted in either suspected individuals or confirmed cases were included and analysed separately. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were examined using random-effects models.Gargles achieved a high overall sensitivity (91%), specificity (97%), PPV (95%) and NPV (91%) for SARS-CoV-2 RT-PCR testing. Studies using saline gargle and water gargle have an overall sensitivity of 97% and 86%, respectively. The sensitivity values were largely maintained for saline and water gargling on stratified analysis, for both diagnosis (96% and 92%) and viral shedding monitoring (98% and 78%). A higher sensitivity was also reported by studies using sterile saline (100%), a smaller amount of gargling solution (92% versus 87%) and a longer gargling duration (95% versus 86%).Our results supported the use of gargling as a sampling approach for SARS-CoV-2 RT-PCR testing, which achieved a high sensitivity for both diagnosis and viral shedding monitoring purposes. Further investigation on the comparative performance of different gargling mediums is needed to draw a definitive conclusion.
Collapse
Affiliation(s)
- Nicole Ngai Yung Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hau Chi So
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dennis Kai Ming Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Würstle S, Erber J, Hanselmann M, Hoffmann D, Werfel S, Hering S, Weidlich S, Schneider J, Franke R, Maier M, Henkel AG, Schmid RM, Protzer U, Laxy M, Spinner CD. A Telemedicine-Guided Self-Collection Approach for PCR-Based SARS-CoV-2 Testing: Comparative Study. JMIR Form Res 2022; 6:e32564. [PMID: 34803022 PMCID: PMC8729873 DOI: 10.2196/32564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Large-scale, polymerase chain reaction (PCR)-based SARS-CoV-2 testing is expensive, resource intensive, and time consuming. A self-collection approach is a probable alternative; however, its feasibility, cost, and ability to prevent infections need to be evaluated. Objective This study aims to compare an innovative self-collection approach with a regular SARS-CoV-2 testing strategy in a large European industrial manufacturing site. Methods The feasibility of a telemedicine-guided PCR-based self-collection approach was assessed for 150 employees (intervention group) and compared with a regular SARS-CoV-2 testing approach used for 143 employees (control group). Acceptance, ergonomics, and efficacy were evaluated using a software application. A simulation model was implemented to evaluate the effectiveness. An interactive R shiny app was created to enable customized simulations. Results The test results were successfully communicated to and interpreted without uncertainty by 76% (114/150) and 76.9% (110/143) of the participants in the intervention and control groups, respectively (P=.96). The ratings for acceptability, ergonomics, and efficacy among intervention group participants were noninferior when compared to those among control group participants (acceptability: 71.6% vs 37.6%; ergonomics: 88.1% vs 74.5%; efficacy: 86.4% vs 77.5%). The self-collection approach was found to be less time consuming (23 min vs 38 min; P<.001). The simulation model indicated that both testing approaches reduce the risk of infection, and the self-collection approach tends to be slightly less effective owing to its lower sensitivity. Conclusions The self-collection approach for SARS-CoV-2 diagnosis was found to be technically feasible and well rated in terms of acceptance, ergonomics, and efficacy. The simulation model facilitates the evaluation of test effectiveness; nonetheless, considering context specificity, appropriate adaptation by companies is required.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Erber
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Hanselmann
- Department for Sport and Health Sciences, Professorship of Public Health and Prevention, Technical University of Munich, Munich, Germany
| | - Dieter Hoffmann
- School of Medicine / Helmholtz Zentrum München, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Stanislas Werfel
- Department of Nephrology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Svenja Hering
- School of Medicine / Helmholtz Zentrum München, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jochen Schneider
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Andreas G Henkel
- Department of Information Technology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ulrike Protzer
- School of Medicine / Helmholtz Zentrum München, Institute of Virology, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner site, Munich, Germany
| | - Michael Laxy
- Department for Sport and Health Sciences, Professorship of Public Health and Prevention, Technical University of Munich, Munich, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner site, Munich, Germany
| |
Collapse
|
5
|
Choi SJ, Jung J, Kim ES, Kim HB, Park JS, Park KU, Lee H, Lee E, Choe PG, Kim JY, Lee EJ, Song KH. Diagnostic Performance, Stability, and Usability of Self-Collected Combo Swabs and Saliva for Coronavirus Disease 2019 Diagnosis: A Case-Control Study. Infect Chemother 2022; 54:517-528. [PMID: 36196610 PMCID: PMC9533156 DOI: 10.3947/ic.2022.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background Self-sampling procedures to detect severe acute respiratory syndrome coronavirus 2 is important for patients who have difficulty visiting the hospital and may decrease the burden for health care workers (HCWs). The objective of this study was to evaluate the diagnostic performance, stability and usability of self-collected nasal and oral combo swabs and saliva specimens. Materials and Methods We conducted a case-control study with 50 patients with coronavirus disease 2019 (COVID-19) and 50 healthy volunteers from March, 2021 to June, 2021. We performed real-time reverse-transcription polymerase chain reaction to compare the diagnostic performance of self-collected specimens using positive percent agreements (PPAs). Results The PPAs between self-collected and HCW-collected specimens were 77.3 - 81.0% and 80.5 -86.7% for the combo swabs and saliva specimens, respectively. The PPAs increased to 88.9 - 89.2% and 81.2 - 82.1% with a cycle threshold value ≤30. Conclusion The diagnostic performance of self sampling was comparable to that of HCW sampling in patients with high viral loads and may thus assist in the early diagnosis of COVID-19.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jongtak Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyunju Lee
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Yeon Kim
- Department of Internal Medicine, Seongnam Citizens Medical Center, Seongnam, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Seongnam Citizens Medical Center, Seongnam, Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
6
|
Gadenstaetter AJ, Mayer CD, Landegger LD. Nasopharyngeal versus nasal swabs for detection of SARS-CoV-2: a systematic review. Rhinology 2021; 59:410-421. [PMID: 34666340 DOI: 10.4193/rhin21.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nasopharyngeal swabbing (NPS) coupled with RT-PCR is the current gold standard for detecting SARS-CoV-2 infections. However, numerous studies have recently demonstrated the advantages of alternative nasal specimen collection approaches over NPS specifically for COVID-19 diagnosis. The present review was conducted according to PRISMA guidelines and summarises the current literature to give a clear overview of nasal specimen collection methods for SARS-CoV-2 detection. Publications investigating NPS and at least one other form of nasal specimen collection in combination with RT-PCR for viral detection in the context of COVID-19 were assessed. We identified 425 articles and ultimately included 18 studies in this systematic review. The suitable publications evaluated different forms of nasal specimen collection, with anterior nasal swabbing (ANS) and midturbinate swabbing (MTS) being the most frequently examined techniques. The analysed studies report sensitivity and specificity results (67.5-96.2% and 97.9-100.0%, respectively) similar to those achieved via NPS, especially in the early stages of disease or when paired with an oropharyngeal swab. Results from these studies suggest that ANS and MTS are suitable alternatives to NPS for COVID-19 testing. Due to their ease of collection, ANS and MTS collection techniques may facilitate broader testing strategies and allow for economization of medical staff.
Collapse
Affiliation(s)
- A J Gadenstaetter
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - C D Mayer
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria 2 Department of Otolaryngology, Klinik Favoriten, Wiener Gesundheitsverbund, Vienna, Austria
| | - L D Landegger
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tsang NNY, So HC, Ng KY, Cowling BJ, Leung GM, Ip DKM. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2021; 21:1233-1245. [PMID: 33857405 PMCID: PMC8041361 DOI: 10.1016/s1473-3099(21)00146-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The comparative performance of different clinical sampling methods for diagnosis of SARS-CoV-2 infection by RT-PCR among populations with suspected infection remains unclear. This meta-analysis aims to systematically compare the diagnostic performance of different clinical specimen collection methods. METHODS In this systematic review and meta-analysis, we systematically searched PubMed, Embase, MEDLINE, Web of Science, medRxiv, bioRxiv, SSRN, and Research Square from Jan 1, 2000, to Nov 16, 2020. We included original clinical studies that examined the performance of nasopharyngeal swabs and any additional respiratory specimens for the diagnosis of SARS-CoV-2 infection among individuals presenting in ambulatory care. Studies without data on paired samples, or those that only examined different samples from confirmed SARS-CoV-2 cases were not useful for examining diagnostic performance of a test and were excluded. Diagnostic performance, including sensitivity, specificity, positive predictive value, and negative predictive value, was examined using random effects models and double arcsine transformation. FINDINGS Of the 5577 studies identified in our search, 23 studies including 7973 participants with 16 762 respiratory samples were included. Respiratory specimens examined in these studies included 7973 nasopharyngeal swabs, 1622 nasal swabs, 6110 saliva samples, 338 throat swabs, and 719 pooled nasal and throat swabs. Using nasopharyngeal swabs as the gold standard, pooled nasal and throat swabs gave the highest sensitivity of 97% (95% CI 93-100), whereas lower sensitivities were achieved by saliva (85%, 75-93) and nasal swabs (86%, 77-93) and a much lower sensitivity by throat swabs (68%, 35-94). A comparably high positive predictive value was obtained by pooled nasal and throat (97%, 90-100) and nasal swabs (96%, 87-100) and a slightly lower positive predictive value by saliva (93%, 88-97). Throat swabs have the lowest positive predictive value of 75% (95% CI 45-96). Comparably high specificities (range 97-99%) and negative predictive value (range 95-99%) were observed among different clinical specimens. Comparison between health-care-worker collection and self-collection for pooled nasal and throat swabs and nasal swabs showed comparable diagnostic performance. No significant heterogeneity was observed in the analysis of pooled nasal and throat swabs and throat swabs, whereas moderate to substantial heterogeneity (I2 ≥30%) was observed in studies on saliva and nasal swabs. INTERPRETATION Our review suggests that, compared with the gold standard of nasopharyngeal swabs, pooled nasal and throat swabs offered the best diagnostic performance of the alternative sampling approaches for diagnosis of SARS-CoV-2 infection in ambulatory care. Saliva and nasal swabs gave comparable and very good diagnostic performance and are clinically acceptable alternative specimen collection methods. Throat swabs gave a much lower sensitivity and positive predictive value and should not be recommended. Self-collection for pooled nasal and throat swabs and nasal swabs was not associated with any significant impairment of diagnostic accuracy. Our results also provide a useful reference framework for the proper interpretation of SARS-CoV-2 testing results using different clinical specimens. FUNDING Hong Kong Research Grants Council.
Collapse
Affiliation(s)
- Nicole Ngai Yung Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hau Chi So
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ka Yan Ng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dennis Kai Ming Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Tsang NNY, So HC, Ng KY, Cowling BJ, Leung GM, Ip DKM. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2021. [PMID: 33857405 DOI: 10.1016/s1473-3099(1021)00146-00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND The comparative performance of different clinical sampling methods for diagnosis of SARS-CoV-2 infection by RT-PCR among populations with suspected infection remains unclear. This meta-analysis aims to systematically compare the diagnostic performance of different clinical specimen collection methods. METHODS In this systematic review and meta-analysis, we systematically searched PubMed, Embase, MEDLINE, Web of Science, medRxiv, bioRxiv, SSRN, and Research Square from Jan 1, 2000, to Nov 16, 2020. We included original clinical studies that examined the performance of nasopharyngeal swabs and any additional respiratory specimens for the diagnosis of SARS-CoV-2 infection among individuals presenting in ambulatory care. Studies without data on paired samples, or those that only examined different samples from confirmed SARS-CoV-2 cases were not useful for examining diagnostic performance of a test and were excluded. Diagnostic performance, including sensitivity, specificity, positive predictive value, and negative predictive value, was examined using random effects models and double arcsine transformation. FINDINGS Of the 5577 studies identified in our search, 23 studies including 7973 participants with 16 762 respiratory samples were included. Respiratory specimens examined in these studies included 7973 nasopharyngeal swabs, 1622 nasal swabs, 6110 saliva samples, 338 throat swabs, and 719 pooled nasal and throat swabs. Using nasopharyngeal swabs as the gold standard, pooled nasal and throat swabs gave the highest sensitivity of 97% (95% CI 93-100), whereas lower sensitivities were achieved by saliva (85%, 75-93) and nasal swabs (86%, 77-93) and a much lower sensitivity by throat swabs (68%, 35-94). A comparably high positive predictive value was obtained by pooled nasal and throat (97%, 90-100) and nasal swabs (96%, 87-100) and a slightly lower positive predictive value by saliva (93%, 88-97). Throat swabs have the lowest positive predictive value of 75% (95% CI 45-96). Comparably high specificities (range 97-99%) and negative predictive value (range 95-99%) were observed among different clinical specimens. Comparison between health-care-worker collection and self-collection for pooled nasal and throat swabs and nasal swabs showed comparable diagnostic performance. No significant heterogeneity was observed in the analysis of pooled nasal and throat swabs and throat swabs, whereas moderate to substantial heterogeneity (I2 ≥30%) was observed in studies on saliva and nasal swabs. INTERPRETATION Our review suggests that, compared with the gold standard of nasopharyngeal swabs, pooled nasal and throat swabs offered the best diagnostic performance of the alternative sampling approaches for diagnosis of SARS-CoV-2 infection in ambulatory care. Saliva and nasal swabs gave comparable and very good diagnostic performance and are clinically acceptable alternative specimen collection methods. Throat swabs gave a much lower sensitivity and positive predictive value and should not be recommended. Self-collection for pooled nasal and throat swabs and nasal swabs was not associated with any significant impairment of diagnostic accuracy. Our results also provide a useful reference framework for the proper interpretation of SARS-CoV-2 testing results using different clinical specimens. FUNDING Hong Kong Research Grants Council.
Collapse
Affiliation(s)
- Nicole Ngai Yung Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hau Chi So
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ka Yan Ng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dennis Kai Ming Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
LeBlanc JJ, Pettipas J, Di Quinzio M, Hatchette TF, Patriquin G. Reliable detection of SARS-CoV-2 with patient-collected swabs and saline gargles: A three-headed comparison on multiple molecular platforms. J Virol Methods 2021; 295:114184. [PMID: 34029634 PMCID: PMC8141269 DOI: 10.1016/j.jviromet.2021.114184] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
With increasing demands for SARS-CoV-2 testing, as well as the shortages for testing supplies, collection devices, and trained healthcare workers (HCWs) to collect specimens, self-collection is an attractive prospect to reduce the need for HCWs and expenditure of personal protective equipment. Apart from the traditional nasopharyngeal swab used for SARS-CoV-2 detection, alternative specimens have been validated such as a combined swabs of the oropharynx and anterior nares (OP/N), or throat samples using saline gargles. Both the alternative specimen types are amenable to self-collection. Objectives. This study aimed to compare the sensitivity of HCW-collected (OP/N) swabs, self-collected OP/N swabs, and self-collected saline gargles. Among 38 individuals previously testing positive for SARS-CoV-2 (or their close contacts), two self-collected specimen types (OP/N and saline gargles) were compared to HCW-collected OP/N swabs. SARS-CoV-2 testing was performed on three molecular assays: a laboratory-developed test (LDT), and two commercial assays on automated platforms: Cobas 6800 (Roche Diagnostics) and Panther (Hologic). The sensitivity of self-collected OP/N swabs was equivalent to healthcare worker (HCW)-collected OP/N swabs at 100.0 % [92.6%-100.0%] for all three molecular tests. The sensitivity of saline gargles was not significantly different than HCW-collected OP/N swabs, but varied slightly between instruments at 93.8 % [85.9%-93.8%] for the LDT, 96.8 % [88.6%-96.8%] for the Cobas assay, and 96.7 % [89.2%-96.9%] for the Panther assay. Overall, self-collection using OP/N swabs or saline gargles are reasonable alternatives to HCW-based collections for SARS-CoV-2 detection, and could facilitate broader surveillance strategies.
Collapse
Affiliation(s)
- Jason J LeBlanc
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Departments of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Departments of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janice Pettipas
- Provincial Public Health Laboratory Network of Nova Scotia (PPHLN), Halifax, Nova Scotia, Canada
| | - Melanie Di Quinzio
- Departments of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Todd F Hatchette
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Departments of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Departments of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Glenn Patriquin
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
10
|
Bruxvoort K, Tenggardjaja CF, Slezak J, Gullett JC, Broder B, Park CH, Aragones M, Mercado C, Wong K, McLaren S, Jacobsen SJ. Variation in SARS-CoV-2 molecular test sensitivity by specimen types in a large sample of emergency department patients. Am J Emerg Med 2021; 50:381-387. [PMID: 34478943 PMCID: PMC8367656 DOI: 10.1016/j.ajem.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Provider-collected nasopharyngeal specimens for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular testing are the standard of care in many clinical settings, but patient-collected saliva and anterior nares specimens are less invasive and more flexible alternatives. Prior studies comparing specimen types for SARS-CoV-2 molecular testing have been limited by small sample sizes and low pretest probability. We conducted a large observational study among symptomatic adults at 7 emergency departments of Kaiser Permanente Southern California to examine sensitivity of SARS-CoV-2 molecular tests by specimen type and patient characteristics. METHODS Provider-collected nasopharyngeal/oropharyngeal (NP/OP) specimens and patient-collected saliva and anterior nares specimens were collected at the same visit and analyzed with the Roche cobas® SARS-CoV-2 assay. Patients were considered truly positive for SARS-CoV-2 if any of the three specimens was positive and negative if all three specimens were negative. Factors associated with discordant and missed positive results were examined with multivariable logistic regression. RESULTS Of 2112 patients, 350 (16.6%) were positive for SARS-CoV-2. Sensitivity of NP/OP was 93.7% (95% confidence interval [CI] 90.6%-96.0%), sensitivity of saliva was 87.7% (83.8%-91.0%), and sensitivity of anterior nares was 85.4% (81.3%-89.0%). Patients ages 18-39 years versus ≥40 years were more likely to have discordant results [adjusted odds ratio (aOR) 1.97 (1.12-3.45)], as were patients with <4 symptoms versus ≥4 [aOR 2.43 (1.39-4.25)]. Cycle threshold values were higher for saliva and anterior nares than NP/OP specimens, as well as for specimens in discordant versus concordant sets and patients with fewer symptoms. CONCLUSION This study provides robust evidence that patient-collected saliva and anterior nares are sensitive for SARS-CoV-2 molecular testing in emergency department settings, particularly among adults ages ≥40 years and those with multiple symptoms. Higher sensitivity of provider-collected NP/OP specimens must be weighed against the benefits of patient-collected specimens in tailored strategies for SARS-CoV-2 testing.
Collapse
Affiliation(s)
- Katia Bruxvoort
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA.
| | - Christopher F Tenggardjaja
- Department of Urology, Southern California Permanente Medical Group, 4867 Sunset Boulevard, Los Angeles, CA 90027, USA
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA
| | - Jonathan C Gullett
- Regional Reference Laboratories, Southern California Permanente Medical Group, 11668 Sherman Way, North Hollywood, CA 91605, USA
| | - Benjamin Broder
- Department of Quality and Clinical Analysis, Southern California Permanente Medical Group, 393 East Walnut Street, Pasadena, CA 91188, USA
| | - Claire H Park
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA; Currently with the Acute Communicable Disease Control Program, Los Angeles County Department of Public Health, 313 North Figueroa Street, Los Angeles, California 90012, USA
| | - Michael Aragones
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA
| | - Cheryl Mercado
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA
| | - Katherine Wong
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA
| | - Steven McLaren
- Regional Reference Laboratories, Southern California Permanente Medical Group, 11668 Sherman Way, North Hollywood, CA 91605, USA
| | - Steven J Jacobsen
- Department of Research & Evaluation, Kaiser Permanente Southern California, 100 South Los Robles Avenue, Pasadena, CA 91101, USA
| |
Collapse
|
11
|
Würstle S, Spinner CD, Voit F, Hoffmann D, Hering S, Weidlich S, Schneider J, Zink A, Treiber M, Iakoubov R, Schmid RM, Protzer U, Erber J. Self-sampling versus health care professional-guided swab collection for SARS-CoV-2 testing. Infection 2021; 49:927-934. [PMID: 33970430 PMCID: PMC8107404 DOI: 10.1007/s15010-021-01614-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022]
Abstract
Purpose To evaluate the diagnostic reliability and practicability of self-collected oropharyngeal swab samples for the detection of SARS-CoV-2 infection as self-sampling could enable broader testing availability and reduce both personal protective equipment and potential exposure. Methods Hospitalized SARS-CoV-2-infected patients were asked to collect two oropharyngeal swabs (SC-OPS1/2), and an additional oropharyngeal swab was collected by a health care professional (HCP-OPS). SARS-CoV-2 PCR testing for samples from 58 participants was performed, with a 48-h delay in half of the self-collected samples (SC-OPS2). The sensitivity, probability of concordance, and interrater reliability were calculated. Univariate and multivariate analyses were performed to assess predictive factors. Practicability was evaluated through a questionnaire. Results The test sensitivity for HCP-OPS, SC-OPS1, and SC-OPS2 was 88%, 78%, and 77%, respectively. Combining both SC-OPS results increased the estimated sensitivity to 88%. The concordance probability between HCP-OPS and SC-OPS1 was 77.6% and 82.5% between SC-OPS1 and SC-OPS2, respectively. Of the participants, 69% affirmed performing future self-sampling at home, and 34% preferred self-sampling over HCP-guided testing. Participants with both positive HCP-OPS1 and SC-OPS1 indicating no challenges during self-sampling had more differences in viral load levels between HCP-OPS1 and SC-OPS1 than those who indicated challenges. Increasing disease duration and the presence of anti-SARS-CoV-2-IgG correlated with negative test results in self-collected samples of previously confirmed SARS-CoV-2 positive individuals. Conclusion Oropharyngeal self-sampling is an applicable testing approach for SARS-CoV-2 diagnostics. Self-sampling tends to be more effective in early versus late infection and symptom onset, and the collection of two distinct samples is recommended to maintain high test sensitivity. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-021-01614-9.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Florian Voit
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Svenja Hering
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jochen Schneider
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Treiber
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Iakoubov
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Johanna Erber
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
12
|
Muller MS, Chhetri SB, Basham C, Rapp T, Lin FC, Lin K, Westreich D, Cerami C, Juliano JJ, Lin JT. Practical strategies for SARS-CoV-2 RT-PCR testing in resource-constrained settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33655269 PMCID: PMC7924294 DOI: 10.1101/2021.02.18.21251999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Standard nasopharyngeal swab testing for SARS-CoV-2 detection by PCR is not always feasible due to limitations in trained personnel, personal protective equipment, swabs, PCR reagents, and access to cold chain and biosafety hoods. Methods We piloted the collection of nasal mid-turbinate swabs amenable to self-testing, including both standard polyester flocked swabs as well as 3D printed plastic lattice swabs, placed into either viral transport media or an RNA stabilization agent. Quantitative SARS-CoV-2 viral detection by RT-qPCR was compared to that obtained by nasopharyngeal sampling as the reference standard. Pooling specimens in the lab versus pooling swabs at the point of collection was also evaluated. Results Among 275 participants, flocked nasal swabs identified 104/121 individuals who were PCR-positive for SARS-CoV-2 by nasopharyngeal sampling (sensitivity 87%, 95% CI 79-92%), mostly missing those with low viral load (<10^3 viral copies/uL). 3D-printed nasal swabs showed similar sensitivity. When nasal swabs were placed directly into an RNA stabilizer, the mean 1.4 log decrease in viral copies/uL compared to nasopharyngeal samples was reduced to <1 log, even when samples were left at room temperature for up to 7 days. Pooling sample specimens or swabs both successfully detected samples >102 viral copies/uL. Conclusions Nasal swabs are likely adequate for clinical diagnosis of acute infections to help expand testing capacity in resource-constrained settings. When collected into an RNA preservative that also inactivates infectious virus, nasal swabs yielded quantitative viral loads approximating those obtained by nasopharyngeal sampling.
Collapse
Affiliation(s)
- Meredith S Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Srijana Bhattarai Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Christopher Basham
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Tyler Rapp
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Feng-Chang Lin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Kelly Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Daniel Westreich
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| | - Carla Cerami
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC USA
| |
Collapse
|