1
|
Gozi KS, da Silva CR, do Valle Barroso M, Barboza JP, Peiró JR, Madec JY, Haenni M, Mendes LCN, Nogueira MCL, Casella T. Dissemination and characterization of Escherichia coli resistant to extended-cephalosporins in feedlot lambs: A two-year two-population study. Comp Immunol Microbiol Infect Dis 2024; 114:102258. [PMID: 39413622 DOI: 10.1016/j.cimid.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Dissemination of antimicrobial resistance in food animals is a One Health concern, but sheep production has been overlooked. This study aimed to explore the dissemination of Escherichia coli resistant to extended-spectrum cephalosporins (ESC) in feedlot lambs. Two pens were sampled on two occasions, and carcasses and other mammals living around were also tested. E. coli were recovered and antibiotic resistance determined. blaCTX-M/CMY genes and their genetic localization were characterized. Whole genome sequencing (WGS) was performed to confirm clonal relationship. The most prevalent ESC-resistance genes in the 108 E. coli isolates were blaCTX-M-55 (53.7 %), blaCTX-M-2 (14.8 %) and blaCMY-2 (13.9 %). Most blaCTX-M-55 genes were found on the chromosome, but IncA/C, IncHI1, IncHI2 and IncF plasmids were also identified. Genetic diversity was observed even though ST6448 was by far the most frequent ST. WGS analysis showed high similarity among isolates recovered from feedlot lambs, animals in the surroundings and lambs' carcasses, proving the clonal and plasmidic dissemination.
Collapse
Affiliation(s)
- Katia Suemi Gozi
- Centro de Investigação de Microrganismos, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.
| | - Caroline Rodrigues da Silva
- Centro de Investigação de Microrganismos, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.
| | - Marlon do Valle Barroso
- Centro de Investigação de Microrganismos, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.
| | | | - Juliana Regina Peiró
- Faculdade de Medicina Veterinária, São Paulo State University (UNESP), Araçatuba, Brazil.
| | - Jean-Yves Madec
- Unité d'Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, Lyon, France.
| | - Marisa Haenni
- Unité d'Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, Lyon, France.
| | | | - Mara Corrêa Lelles Nogueira
- Centro de Investigação de Microrganismos, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.
| | - Tiago Casella
- Centro de Investigação de Microrganismos, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil.
| |
Collapse
|
2
|
Distribution of virulence factors, antimicrobial resistance genes and phylogenetic relatedness among Shiga toxin-producing Escherichia coli serogroup O91 from human infections. Int J Med Microbiol 2021; 311:151541. [PMID: 34757276 DOI: 10.1016/j.ijmm.2021.151541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to the serogroup O91 are among the most common non-O157 STEC serogroups associated with human illness in Europe. This study aimed to analyse the virulence factors, antimicrobial resistance genes and phylogenetic relatedness among 48 clinical STEC O91 isolates collected during 2003-2019 in Switzerland. The isolates were subjected to whole genome sequencing using short-read sequencing technologies and a subset of isolates additionally to long-read sequencing. They belonged to O91:H10 (n=6), O91:H14 (n=40), and O91:H21 (n=2). Multilocus sequence typing showed that the O91:H10 isolates all belonged to sequence type (ST)641, while the O91:H14 isolates were assigned to ST33, ST9700, or were non-typeable. Both O91:H21 isolates belonged to ST442. Shiga toxin gene stx1a was the most common Shiga toxin gene subtype among the isolates, followed by stx2b, stx2d and stx2a. All isolates were LEE-negative and carried one or two copies of the IrgA adhesin gene iha. In a subset of long-read sequenced isolates, modules of the Locus of Adhesion and Autoaggregation pathogenicity island (LAA-PAI) carrying iha and other genes such as hes, lesP or agn43 were identified. A large proportion of STEC O91:H14 carried the subtilase cytotoxin gene subA, colicin genes (cba, cea, cib and cma) or microcin genes (mcmA, mchB, mchC and mchF). STEC O91:H14 were further distinguished from STEC O91:H10/H21 by one or more virulence factors found in extraintestinal pathogenic E. coli (ExPEC), including hlyF, iucC/iutA, kpsE and traT. The hlyF gene was identified on a novel mosaic plasmid that was unrelated to hlyF+ plasmids described previously in STEC. Core genome phylogenetic analysis revealed that STEC O91:H10 and STEC O91:H21 were clonally conserved, whereas STEC O91:H14 were clonally diverse. Among three STEC O91:H14 isolates, a number of resistance genes were identified, including genes that mediate resistance to aminoglycosides (aadA, aadA2, aadA9, aadA23, aph(3'')-Ib and aph(6)-Id), chloramphenicol (cmlA), sulphonamides (sul2 and sul3), and trimethoprim (drfA12). Our data contribute to understanding the genetic diversity and differing levels of virulence potential within the STEC O91 serogroup.
Collapse
|
3
|
Treier A, Stephan R, Stevens MJA, Cernela N, Nüesch-Inderbinen M. High Occurrence of Shiga Toxin-Producing Escherichia coli in Raw Meat-Based Diets for Companion Animals-A Public Health Issue. Microorganisms 2021; 9:microorganisms9081556. [PMID: 34442635 PMCID: PMC8398718 DOI: 10.3390/microorganisms9081556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Feeding pets raw meat-based diets (RMBDs) is becoming increasingly popular but comes with a risk of pathogenic bacteria, including Shiga toxin-producing Escherichia coli (STEC). In humans, STEC may cause gastrointestinal illnesses, including diarrhea, hemorrhagic colitis (HC), and the hemolytic uremic syndrome (HUS). The aim of this study was to evaluate commercially available RMBDs with regard to the occurrence of STEC. Of 59 RMBD samples, 59% tested positive by real-time PCR for the presence of Shiga toxin genes stx1 and/or stx2. STECs were recovered from 41% of the 59 samples, and strains were subjected to serotyping and virulence gene profiling, using whole genome sequencing (WGS)-based methods. Of 28 strains, 29% carried stx2a or stx2d, which are linked to STEC with high pathogenic potential. Twenty different serotypes were identified, including STEC O26:H11, O91:H10, O91:H14, O145:H28, O146:H21, and O146:H28, which are within the most common non-O157 serogroups associated with human STEC-related illnesses worldwide. Considering the low infectious dose and potential severity of disease manifestations, the high occurrence of STEC in RMBDs poses an important health risk for persons handling raw pet food and persons with close contact to pets fed on RMBDs, and is of concern in the field of public health.
Collapse
|
4
|
Angappan M, Ghatak S, Milton AAP, Verma AK, Inbaraj S, Chaudhuri P, Agarwal RK, Thomas P. Detection of novel sequence types and zoonotic transmission potentiality among strains of Shiga toxigenic Escherichia coli (STEC) from dairy calves, animal handlers and associated environments. Braz J Microbiol 2021; 52:2541-2546. [PMID: 34241826 DOI: 10.1007/s42770-021-00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/27/2021] [Indexed: 11/26/2022] Open
Abstract
Shiga toxigenic Escherichia coli (STEC) is one of the most important food-borne zoonotic bacterial pathogens responsible for causing gastrointestinal infections, haemorrhagic colitis and haemolytic uremic syndrome. The present study was aimed to isolate and characterize STEC from neonatal dairy calves, animal handlers and their surrounding environment and to establish the genetic relationship among isolates by multilocus sequence typing (MLST). A total number of 115 samples were collected and processed for the isolation of E. coli. The occurrence rate of E. coli was 92.2% (106/115), of which, 18 were typed as STEC. Antibacterial susceptibility analysis revealed 11 (61.1%) strains as multiple drug-resistant (MDR). MLST analysis has delineated 16 sequence types (STs) including nine novel STs. Among STs, ST58 dominated with three strains and was recovered from the environment and neonatal calves. Strains from neonatal calves and humans showed genetic relatedness with significant bootstrap support values indicative of zoonotic transmission potentiality. Analysis of 211 global isolates belonging to 61 STs indicated predominant STs (ST 21, ST 33 and ST 3416) that can be either host-specific (ST 33 and ST 3416) or can be shared among human and bovine hosts (ST 21). The MLST analysis indicates genetic relatedness among isolates and the results predispose inter-host transmission and zoonotic spread.
Collapse
Affiliation(s)
- Madesh Angappan
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | | | - Asha Kumari Verma
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sophia Inbaraj
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Rajesh Kumar Agarwal
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
5
|
Lee JB, Kim SK, Wi SM, Cho YJ, Hahn TW, Yu JY, Kim S, Hong S, Kim J, Yoon JW. Molecular epidemiology of sequence type 33 of Shiga toxin-producing Escherichia coli O91:H14 isolates from human patients and retail meats in Korea. J Vet Sci 2019; 20:87-90. [PMID: 30481987 PMCID: PMC6351770 DOI: 10.4142/jvs.2019.20.1.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Sequence type (ST) 33 of Shiga toxin-producing Escherichia coli (STEC) strain O91:H14 has been proposed as a potential domestic clone of STEC in Korea because of its high prevalence among human patients with mild diarrhea or asymptomatic carriers. Herein, the clonal diversity of 17 STEC O91:H14 isolates of ST33 during 2003 to 2014 was analyzed by pulsed-field gel electrophoresis, including 14 isolates from human patients and 3 from retail meats. Their virulence characteristics, acid resistance, and antimicrobial susceptibility were also determined. Our results showed that all isolates were clustered mainly into three different pulsotypes and were likely low pathogenic without antimicrobial resistance.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Kye Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seon Mi Wi
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Young-Jae Cho
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Yon Yu
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28159, Korea
| | - Sungsun Kim
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28159, Korea
| | - Sahyun Hong
- Division of Bacterial Disease, Center for Laboratory Control of Infectious Diseases, Center for Disease Control and Prevention, Cheongju 28159, Korea
| | - Jonghyun Kim
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28159, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
6
|
Lee JB, Han D, Lee HT, Wi SM, Park JH, Jo JW, Cho YJ, Hahn TW, Lee S, Kang B, Kwak HS, Kim J, Yoon JW. Pathogenic and phylogenetic characteristics of non-O157 Shiga toxin-producing Escherichia coli isolates from retail meats in South Korea. J Vet Sci 2018; 19:251-259. [PMID: 29284205 PMCID: PMC5879073 DOI: 10.4142/jvs.2018.19.2.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the pathogenic and phylogenetic characteristics of seven Shiga toxin (Stx)-producing Escherichia coli (STEC) isolates from 434 retail meats collected in Korea during 2006 to 2012. The experimental analyses revealed that all isolates (i) were identified as non-O157 STEC, including O91:H14 (3 isolates), O121:H10 (2 isolates), O91:H21 (1 isolate), and O18:H20 (1 isolate), (ii) carried diverse Stx subtype genes (stx1, stx2c, stx2e, or stx1 + stx2b) whose expression levels varied strain by strain, and (iii) lacked the locus of enterocyte effacement (LEE) pathogenicity island, a major virulence factor of STEC, but they possessed one or more alternative virulence genes encoding cytotoxins (Cdt and SubAB) and/or adhesins (Saa, Iha, and EcpA). Notably, a significant heterogeneity in glutamate-induced acid resistance was observed among the STEC isolates (p < 0.05). In addition, phylogenetic analyses demonstrated that all three STEC O91:H14 isolates were categorized into sequence type (ST) 33, of which two beef isolates were identical in their pulsotypes. Similar results were observed with two O121:H10 pork isolates (ST641; 88.2% similarity). Interestingly, 96.0% of the 100 human STEC isolates collected in Korea during 2003 to 2014 were serotyped as O91:H14, and the ST33 lineage was confirmed in approximately 72.2% (13/18 isolates) of human STEC O91:H14 isolates from diarrheal patients.
Collapse
Affiliation(s)
- June Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Dalmuri Han
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyung Tae Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seon Mi Wi
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jeong Hoon Park
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jung-Woo Jo
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Young-Jae Cho
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Sunjin Lee
- Division of Enteric Diseases, Centers for Infectious Diseases, National Research Institute of Health, Cheongju 28159, Korea
| | - Byunghak Kang
- Division of Enteric Diseases, Centers for Infectious Diseases, National Research Institute of Health, Cheongju 28159, Korea
| | - Hyo Sun Kwak
- Division of Enteric Diseases, Centers for Infectious Diseases, National Research Institute of Health, Cheongju 28159, Korea
| | - Jonghyun Kim
- Division of Enteric Diseases, Centers for Infectious Diseases, National Research Institute of Health, Cheongju 28159, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|