Wang Z, Gu C, Sun L, Zhao F, Fu Y, Di L, Zhang J, Zhuang H, Jiang S, Wang H, Zhu F, Chen Y, Chen M, Ling X, Chen Y, Yu Y. Development of a novel core genome MLST scheme for tracing multidrug resistant Staphylococcus capitis.
Nat Commun 2022;
13:4254. [PMID:
35869070 PMCID:
PMC9307846 DOI:
10.1038/s41467-022-31908-x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus capitis, which causes bloodstream infections in neonatal intensive care units, is a common cause of healthcare-associated infections. Thus, a standardized high-resolution typing method to document the transmission and dissemination of multidrug-resistant S. capitis isolates is required. We aimed to establish a core genome multilocus sequence typing (cgMLST) scheme to surveil S. capitis. The cgMLST scheme was defined based on primary and validation genome sets and tested with outbreaks of linezolid-resistant isolates and a validation set. Phylogenetic analysis was performed to investigate the population structure and compare it with the result of cgMLST analysis. The S. capitis population consists of 1 dominant, NRCS-A, and 4 less common clones. In this work, a multidrug-resistant clone (L clone) with linezolid resistance is identified. With the features of type III SCCmec and multiple copies of mutations of G2576T and C2104T in the 23S rRNA, the L clone has been spreading silently across China.
Staphylococcus capitis is a common causative agent of bloodstream infections in neonatal intensive care units, with multidrug resistant isolates complicating treatment. Authors aimed to establish a core genome multilocus sequence typing (cgMLST) scheme to document the transmission and dissemination of multidrug-resistant S. capitis isolates.
Collapse