1
|
Ma L, Zhu Y, Zhu La ALT, Lourenco JM, Callaway TR, Bu D. Schizochytrium sp. and lactoferrin supplementation alleviates Escherichia coli K99-induced diarrhea in preweaning dairy calves. J Dairy Sci 2024; 107:1603-1619. [PMID: 37769949 DOI: 10.3168/jds.2023-23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1β, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingkun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing 100193, China.
| |
Collapse
|
2
|
Beshiru A, Okoh AI, Igbinosa EO. Processed ready-to-eat (RTE) foods sold in Yenagoa Nigeria were colonized by diarrheagenic Escherichia coli which constitute a probable hazard to human health. PLoS One 2022; 17:e0266059. [PMID: 35381048 PMCID: PMC8982850 DOI: 10.1371/journal.pone.0266059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to recover diarrheagenic Escherichia coli strains from processed ready-to-eat (RTE) foods in Yenagoa, Nigeria and characterize them using culture-based and molecular methods. Three hundred RTE food samples were collected randomly from different food outlets between February 2021 and August 2021 and assessed for the occurrence of E. coli using standard bacteriological procedures. The virulence factor formation and antibiotic susceptibility profile of the isolates was carried out using standard microbiological procedures. Polymerase chain reaction (PCR) was used to confirm the identity of the isolates via specific primers and further used to assay the diarrheagenic determinants of the E. coli isolates. The prevalence of E. coli positive samples based on the proliferation of E. coli on Chromocult coliform agar forming purple to violet colonies was 80(26.7%). The population density of E. coli from the RTE foods ranged from 0–4.3 × 104 ± 1.47 CFU/g. The recovered E. coli isolates (n = 62) were resistant to antibiotics in different proportions such as ampicillin 62(100%), aztreonam 47(75.81%) and chloramphenicol 43(69.35%). All the recovered E. coli isolates were resistant to ≥ 2 antibiotics. The multiple antibiotic-resistant index (MARI) ranged from 0.13–0.94 with 47(75.8%) of isolates having MARI >2. A total of 48(77.4%) of the isolates were multidrug-resistant (MDR). The proportion of extracellular virulence factor formation is as follows: protease 12(19.35%), curli 39(62.9%), cellulose 21(33.89%), ornithine decarboxylase 19(30.65%) and aesculin hydrolysis 14(22.58%). The overall proportion of diarrheagenic E. coli was 33/62(53.2%). The distributions of typical diarrheagenic E. coli includes: tETEC 9(14.5%), tEPEC 13(20.9%), tEAEC 6(9.7%), tEIEC 2(3.2%) and tEHEC 3(4.8%). The proportions of atypical strains include aETEC 10(16.1%), aEAEC 5(8.1%), aEPEC 1(1.6%) and aEIEC 3(4.8%). This study demonstrated that some RTE foods sold in Yenagoa, Nigeria, are contaminated and constitute a probable human health hazard. Thus, there is a need for intensive surveillance of this isolate in RTE foods variety to spot evolving AMR phenotypes and avert food-borne infections.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Anthony I. Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| | - Etinosa O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
- * E-mail:
| |
Collapse
|
3
|
Miotto M, Ossai SA, Meredith JE, Barretta C, Kist A, Prudencio ES, R. W. Vieira C, Parveen S. Genotypic and phenotypic characterization of Escherichia coli isolated from mollusks in Brazil and the United States. Microbiologyopen 2019; 8:e00738. [PMID: 30311420 PMCID: PMC6528596 DOI: 10.1002/mbo3.738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to determine the serogroups, antimicrobial resistance and genetic diversity of Escherichia coli isolates from samples of bivalve mollusks collected along Santa Catarina coast, Brazil, and from the Chesapeake Bay, Maryland, USA. One hundred forty-one E. coli isolates were characterized for serogroups with 181 specific O antisera and antimicrobial susceptibility using the disk diffusion method. The genetic diversity was assessed using pulsed-field gel electrophoresis (PFGE). The results showed that among the isolates, 19.9% were classified as multi-drug resistant (MDR) and resistance was most frequently observed to cephalothin, nitrofurantoin, and ampicillin. The predominant serogroups were O6, O8, and O38. Some serogroups were recognized as pathogenic E. coli. PFGE dendrograms indicated extensive genetic diversity among the isolates. Although characteristics of the E. coli isolates were highly variable, it is important to note that E. coli belonging to pathogenic serogroups and MDR isolates are present in mollusks of both study areas. This is the first report on the phenotypic and genotypic characterization of E. coli from mollusks from Santa Catarina and the Chesapeake Bay that should encourage studies focusing on comparison of isolates across countries.
Collapse
Affiliation(s)
- Marília Miotto
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Sylvia A. Ossai
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| | - Joan E. Meredith
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| | - Clarissa Barretta
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Airton Kist
- Laboratory of Computational and Applied Statistics, Department of Mathematics and StatisticsState University of Ponta GrossaPonta GrossaParanaBrazil
| | - Elane S. Prudencio
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Cleide R. W. Vieira
- Department of Food Science and TechnologyFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Salina Parveen
- Food Science and Technology ProgramUniversity of Maryland Eastern ShorePrincess AnneMaryland
| |
Collapse
|
4
|
Sun X, Gao Y, Wang X, Hu G, Wang Y, Feng B, Hu Y, Mu X, Zhang Y, Dong H. Escherichia coli O 101-induced diarrhea develops gut microbial dysbiosis in rats. Exp Ther Med 2018; 17:824-834. [PMID: 30651869 DOI: 10.3892/etm.2018.6997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea is a devastating disease and one of the third leading causes of infectious disease-associated mortalities worldwide. Despite recent advances in the identification of the association between gut microbiota and diarrhea, a lack of understanding exists on the status of gut microbiota in rats treated with ETEC. In the present study, a rat model of Escherichia (E.) coli O101-induced diarrhea was established. The diarrhea incidence and index, as well as histological changes, were assessed. In addition, Illumina MiSeq sequencing of V3-V4 hypervariable regions of 16S ribosomal RNA was employed to investigate the changes in the gut microbiota profiles in the feces of the diarrhea rats. The results indicated that E. coli O101 increased the diarrhea index and injury in the intestinal tissues, whereas it decreased the bacterial richness and shifted the distribution pattern of the bacterial communities in the phylum, order and genus levels in the fecal samples. Notably, the proportion of bacteria Prevotella, Enterococcus and Akkermansia was significantly decreased, while the pathogenic bacteria Escherichia/Shigella were significantly increased in diarrhea rats. Taken together, the gut microbiota is closely associated with E. coli O101-induced diarrhea in lower microbial diversity and dysbiosis of gut microbiota at different taxonomical levels.
Collapse
Affiliation(s)
- Xiangwan Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ying Gao
- Department of Biology, Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN 37132-0001, USA
| | - Xin Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Yun Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Bo Feng
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Xiang Mu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ying Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, P.R. China
| |
Collapse
|
5
|
Konishi N, Obata H, Kai A, Ohtsuka K, Nishikawa Y, Terajima J, Hara-Kudo Y. Major Vehicles and O-Serogroups in Foodborne Enterotoxigenic Escherichia coli Outbreaks in Japan, and Effective Detection Methods of the Pathogen in Food Associated with An Outbreak. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2018; 59:161-166. [DOI: 10.3358/shokueishi.59.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | | | - Jun Terajima
- Division of Microbiology, National Institute of Health Sciences
| | | |
Collapse
|
6
|
Zegeye ED, Govasli ML, Sommerfelt H, Puntervoll P. Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin. Hum Vaccin Immunother 2018; 15:1379-1388. [PMID: 30081709 PMCID: PMC6663125 DOI: 10.1080/21645515.2018.1496768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea-related illness and death among children under 5 years of age in low– and middle-income countries (LMIC). Recent studies have found that it is the ETEC subtypes that produce the heat-stable enterotoxin (ST), irrespective of whether they also secrete the heat-labile enterotoxin (LT), which contribute most importantly to the disease burden in children from LMIC. Therefore, adding an ST toxoid would importantly complement ongoing ETEC vaccine development efforts. The ST’s potent toxicity, its structural similarity to the endogenous peptides guanylin and uroguanylin, and its poor immunogenicity have all complicated the advancement of ST-based vaccine development. Recent remarkable progress, however, including the unprecedented screening for optimal ST mutants, mapping of cross-reacting ST epitopes and improved ST-carrier coupling strategies (bioconjugation and genetic fusion), enables the rational design of safe, immunogenic, and well-defined ST-based vaccine candidates.
Collapse
Affiliation(s)
| | | | - Halvor Sommerfelt
- b Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care , University of Bergen , Bergen , Norway.,c Norwegian Institute of Public Health , Oslo , Norway
| | - Pål Puntervoll
- a Centre for Applied Biotechnology , Uni Research AS , Bergen , Norway
| |
Collapse
|
7
|
Outbreak of CTX-M-15-Producing Enterotoxigenic Escherichia coli O159:H20 in the Republic of Korea in 2016. Antimicrob Agents Chemother 2017; 61:AAC.00339-17. [PMID: 28652229 DOI: 10.1128/aac.00339-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
We investigated an outbreak of enterotoxigenic Escherichia coli (ETEC) O159:H20 associated with the consumption of a tossed-noodle dish in a high school in 2016. Thirty-three ETEC strains isolated from clinical and food samples were genetically indistinguishable. The outbreak strains were resistant to third-generation cephalosporins and harbored a blaCTX-M-15 gene on a 97-kb self-transferable IncK plasmid. This is the first outbreak caused by CTX-M-15-producing ETEC strains.
Collapse
|
8
|
Iguchi A, von Mentzer A, Kikuchi T, Thomson NR. An untypeable enterotoxigenic Escherichia coli represents one of the dominant types causing human disease. Microb Genom 2017; 3:e000121. [PMID: 29114400 PMCID: PMC5643014 DOI: 10.1099/mgen.0.000121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/04/2017] [Indexed: 12/02/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in children below 5 years of age in endemic areas, and is a primary cause of diarrhoea in travellers visiting developing countries. Epidemiological analysis of E. coli pathovars is traditionally carried out based on the results of serotyping. However, genomic analysis of a global ETEC collection of 362 isolates taken from patients revealed nine novel O-antigen biosynthesis gene clusters that were previously unrecognized, and have collectively been called unclassified. When put in the context of all isolates sequenced, one of the novel O-genotypes, OgN5, was found to be the second most common ETEC O-genotype causing disease, after O6, in a globally representative ETEC collection. It’s also clear that ETEC OgN5 isolates have spread globally. These novel O-genotypes have now been included in our comprehensive O-genotyping scheme, and can be detected using a PCR-based and an in silico typing method. This will assist in epidemiological studies, as well as in ETEC vaccine development.
Collapse
Affiliation(s)
| | - Astrid von Mentzer
- 2University of Gothenburg, Gothenburg, Sweden.,3Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | |
Collapse
|
9
|
Li Y, Luo Q, Shi X, Lin Y, Qiu Y, Lv D, Jiang Y, Chen Q, Jiang M, Ma H, Cheng J, Hu Q. Phenotypic and Genotypic Characterization of Clinical Enterotoxigenic Escherichia coli Isolates from Shenzhen, China. Foodborne Pathog Dis 2017; 14:333-340. [DOI: 10.1089/fpd.2016.2233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiang Luo
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yiman Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dongyue Lv
- School of Life Sciences, Shenzhen University, Shenzhen, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- School of Life Sciences, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Zhang S, Wu Q, Zhang J, Lai Z, Zhu X. Prevalence, genetic diversity, and antibiotic resistance of enterotoxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.03.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zeng M, Shi W, Chang H, Wang A, He L, Fu P, Xu X, Wang C. Clonal Spread of Enterotoxigenic Escherichia coli O128:H45 Strain in the Neonate Unit. Jpn J Infect Dis 2015; 69:127-30. [PMID: 26166503 DOI: 10.7883/yoken.jjid.2015.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) has the potential to cause nosocomial infantile diarrhea in a hospital setting. We detected 12 ETEC serotype O128:H45 isolates from diarrheal neonates in our neonatal unit from July through October 2012. These infants developed hospital-acquired and epidemiologically related diarrhea. Pulsed-field gel electrophoresis analysis and multilocus sequence typing of these 12 isolates suggested that a specific clone of ETEC serotype O128:H45-CS21-ST2332 caused nosocomial diarrhea among neonates. Of concern, this ETEC clone strain was resistant to multiple drugs, particularly third-generation cephalosporins.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kartsev NN, Fursova NK, Pachkunov DM, Bannov VA, Eruslanov BV, Svetoch EA, Dyatlov IA. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia. PLoS One 2015; 10:e0123357. [PMID: 25923803 PMCID: PMC4414545 DOI: 10.1371/journal.pone.0123357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
Enterotoxin-producing Escherichia coli (ETEC) are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011–2012. It was shown that all ETEC under study (n=18) had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia) and Vladivostok city (Far-East region, Russia). Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6), О6 (n = 4), О25 (n = 5), О26 (n = 2), and O115 (n = 1). Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3) as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates—to two drugs, one isolate—to three drugs, two isolates—to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10), blaCTX-M-15 (n = 1), class 1 integron (n = 3) carrying resistance cassettes to aminoglycosides and sulphonamides dfrA17-aadA5 and dfrA12-orfF-aadA2. One isolate ETEC_Ef-6 was found to be a multidrug-resistant (MDR) pathogen that carried both the beta-lactamase gene and class 1 integron. These data suggest the circulation of ETEC in Russia. Further investigations are necessary to study the spread of the revealed ETEC sequence types (STs) and serotypes. Their role in the etiology of diarrhea should be also estimated.
Collapse
Affiliation(s)
- Nikolay N. Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
- * E-mail:
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Dmitry M. Pachkunov
- Department of Innovation Research, Volga State Technological University, Yoshkar-Ola, Russian Federation
| | - Vasiliy A. Bannov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Boris V. Eruslanov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Edward A. Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Ivan A. Dyatlov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| |
Collapse
|
13
|
Molecular analysis and antimicrobial susceptibility of enterotoxigenic Escherichia coli from diarrheal patients. Diagn Microbiol Infect Dis 2014; 81:126-31. [PMID: 25533613 DOI: 10.1016/j.diagmicrobio.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
A total of 123 enterotoxigenic Escherichia coli (ETEC) isolates from diarrheal patients from June to December 2012 in Shanghai, China, were examined to determine their genetic relatedness using multilocus sequence typing and pulsed-field gel electrophoresis (PFGE) and for the presence of virulence genes and antimicrobial susceptibility. Twenty-nine sequence types (STs) and 63 PFGE patterns were identified, and results from the 2 subtyping methods correlated well. The 12 isolates of PFGE cluster B all belonged to ST-2332 and were associated with nosocomial neonatal diarrhea. Isolates of a cluster usually had the same set of virulence factors, whereas isolates of different PFGE clusters carried diverse combinations of virulence determinants. Isolates belonging to ST-2332 and ST-182 (n=9) were resistant to at least 6 antimicrobials. Our findings highlighted the need of active surveillance programs for infectious diseases collecting data at both epidemiological and genetic levels that can detect high-risk lineages of pathogens in order to rapidly identify disease outbreaks.
Collapse
|
14
|
An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products. Epidemiol Infect 2014; 143:486-93. [DOI: 10.1017/s0950268814001058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYWe investigated an outbreak of gastroenteritis following a Christmas buffet served on 4–9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20–15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.
Collapse
|
15
|
Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from northern Colombia, South America. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236260. [PMID: 24877071 PMCID: PMC4022111 DOI: 10.1155/2014/236260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types.
Collapse
|
16
|
Cho JI, Joo IS, Park KS, Han MK, Son NR, Jeong SJ, Heo J, Kim YJ, Oh MH, Kim SH, Lee SH. Characterization of pathogenic Escherichia coli strains linked to an outbreak associated with kimchi consumption in South Korea, 2012. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-014-0028-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
17
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 831] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|