1
|
Yang X, Yang S, Liu S, Liu S, Zhang J, Guo W, Wang J, Song Z, Xue L, Chen M, Wu S, Wei X, Wu Q. Characterization of quinolone resistance in Salmonella enterica serovar Typhimurium and its monophasic variants from food and patients in China. J Glob Antimicrob Resist 2023; 35:216-222. [PMID: 37797810 DOI: 10.1016/j.jgar.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES The study aimed to characterize the quinolone resistance of Salmonella enterica serovar Typhimurium and its monophasic variant (Salmonella enterica serovar 1,4,[5],12:i:-) isolated from food and patients in China. METHODS All of the isolates were assessed for quinolone susceptibility via the broth microdilution method. Then, the isolates were checked for mutations within quinolone resistance-determining regions of gyrA, gyrB, parC, and parE and were examined for plasmid-mediated quinolone resistance genes. RESULTS High rates of resistance to nalidixic acid in the S. Typhimurium (70.7%) and S. 1,4,[5],12:i:- (41.9%) isolates were observed, and a considerable proportion of isolates with reduced susceptibility to ciprofloxacin and levofloxacin were also detected. The high frequency of mutations in GyrA (60.8%) and a variety of genes (aac[6']-Ib-cr [23.2%], oqxAB [19.2%], qnrS [13.6%], and qnrA [3.2%]) conferring quinolone resistance in these Salmonella isolates were noteworthy. Lastly, the isolates carrying qnrS for transferability and transmission of the quinolone resistance were analysed by conjugation. Multiple locus variable-number tandem repeat analysis profiles indicated that some qnrS-positive isolates were clonally related, whilst the other isolates were genetically divergent. This suggested that both clonal spread of resistant strains and horizontal transmission of the plasmid-mediated resistance genes contributed to the dissemination of qnrS-positive Salmonella isolates. CONCLUSION This study highlights the prevalence of quinolone-resistant S. Typhimurium and S. 1,4,[5],12:i:- in China, posing a threat to public health.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shiyuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shengrong Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuxiang Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhongjian Song
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Vázquez X, García P, García V, de Toro M, Ladero V, Heinisch JJ, Fernández J, Rodicio R, Rodicio MR. Genomic analysis and phylogenetic position of the complex IncC plasmid found in the Spanish monophasic clone of Salmonella enterica serovar Typhimurium. Sci Rep 2021; 11:11482. [PMID: 34075064 PMCID: PMC8169936 DOI: 10.1038/s41598-021-90299-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/07/2021] [Indexed: 11/12/2022] Open
Abstract
pUO-STmRV1 is an IncC plasmid discovered in the Spanish clone of the emergent monophasic variant of Salmonella enterica serovar Typhimurium, which has probably contributed to its epidemiological success. The sequence of the entire plasmid determined herein revealed a largely degenerated backbone with accessory DNA incorporated at four different locations. The acquired DNA constitutes more than two-thirds of the pUO-STmRV1 genome and originates from plasmids of different incompatibility groups, including IncF (such as R100 and pSLT, the virulence plasmid specific of S. Typhimurium), IncN and IncI, from the integrative element GIsul2, or from yet unknown sources. In addition to pSLT virulence genes, the plasmid carries genes conferring resistance to widely-used antibiotics and heavy metals, together with a wealth of genetic elements involved in DNA mobility. The latter comprise class 1 integrons, transposons, pseudo-transposons, and insertion sequences, strikingly with 14 copies of IS26, which could have played a crucial role in the assembly of the complex plasmid. Typing of pUO-STmRV1 revealed backbone features characteristically associated with type 1 and type 2 IncC plasmids and could therefore be regarded as a hybrid plasmid. However, a rooted phylogenetic tree based on core genes indicates that it rather belongs to an ancient lineage which diverged at an early stage from the branch leading to most extant IncC plasmids detected so far. pUO-STmRV1 may have evolved at a time when uncontrolled use of antibiotics and biocides favored the accumulation of multiple resistance genes within an IncC backbone. The resulting plasmid thus allowed the Spanish clone to withstand a wide variety of adverse conditions, while simultaneously promoting its own propagation through vertical transmission.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Patricia García
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Department of Microbiology, University Hospital A Coruña (CHUAC)-Biomedical Research Institute A Coruña (INIBIC), 15006, A Coruña, Spain
| | - Vanesa García
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), 27002, Lug, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain
| | - Víctor Ladero
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300, Villaviciosa, Spain.,Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Jürgen J Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Javier Fernández
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - M Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain. .,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
3
|
Seribelli AA, da Silva P, da Cruz MF, de Almeida F, Frazão MR, Medeiros MIC, Rodrigues DDP, Kich JD, de Jesus Benevides L, Soares SDC, Allard MW, Falcão JP. Insights about the epidemiology of Salmonella Typhimurium isolates from different sources in Brazil using comparative genomics. Gut Pathog 2021; 13:27. [PMID: 33910644 PMCID: PMC8082823 DOI: 10.1186/s13099-021-00423-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. RESULTS The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. CONCLUSIONS The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs' results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.
Collapse
Affiliation(s)
- Amanda Ap Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Patrick da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, UNESP - Departamento de Ciências Biológicas, Rodovia Araraquara-Jaú Km 1, Araraquara, SP, Brazil
| | - Marcelo Ferreira da Cruz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Fernanda de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | - Miliane R Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil
| | | | | | - Jalusa D Kich
- Empresa Brasileira de Pesquisa Agropecuária - Suínos e Aves - EMBRAPA, Concórdia, SC, Brazil
| | | | | | - Marc W Allard
- Food and Drug Administration-FDA, College Park, MD, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Clark CG, Landgraff C, Robertson J, Pollari F, Parker S, Nadon C, Gannon VPJ, Johnson R, Nash J. Distribution of heavy metal resistance elements in Canadian Salmonella 4,[5],12:i:- populations and association with the monophasic genotypes and phenotype. PLoS One 2020; 15:e0236436. [PMID: 32716946 PMCID: PMC7384650 DOI: 10.1371/journal.pone.0236436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella 4,[5],12:i:- are monophasic S. Typhimurium variants incapable of producing the second-phase flagellar antigen. They have emerged since the mid-1990s to become one of the most prevalent Salmonella serotypes causing human disease world-wide. Multiple genetic events associated with different genetic elements can result in the monophasic phenotype. Several jurisdictions have reported the emergence of a Salmonella 4,[5],12:i:- clone with SGI-4 and a genetic element (MREL) encoding a mercury resistance operon and antibiotic resistance loci that disrupts the second phase antigen region near the iroB locus in the Salmonella genome. We have sequenced 810 human and animal Canadian Salmonella 4,[5],12:i:- isolates and determined that isolates with SGI-4 and the mercury resistance element (MREL; also known as RR1&RR2) constitute several global clades containing various proportions of Canadian, US, and European isolates. Detailed analysis of the data provides a clearer picture of how these heavy metal elements interact with bacteria within the Salmonella population to produce the monophasic phenotype. Insertion of the MREL near iroB is associated with several deletions and rearrangements of the adjacent flaAB hin region, which may be useful for defining human case clusters that could represent outbreaks. Plasmids carrying genes encoding silver, copper, mercury, and antimicrobial resistance appear to be derived from IS26 mediated acquisition of these genes from genomes carrying SGI-4 and the MREL. Animal isolates with the mercury and As/Cu/Ag resistance elements are strongly associated with porcine sources in Canada as has been shown previously for other jurisdictions. The data acquired in these investigations, as well as from the extensive literature on the subject, may aid source attribution in outbreaks of the organism and interventions to decrease the prevalence of this clone and reduce its impact on human disease.
Collapse
Affiliation(s)
- Clifford G Clark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chrystal Landgraff
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James Robertson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Frank Pollari
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Stephen Parker
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- PulseNet Canada, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Victor P J Gannon
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Canada
| | - Roger Johnson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - John Nash
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis 2019; 17:87-97. [PMID: 31532231 DOI: 10.1089/fpd.2019.2676] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica remains an important foodborne pathogen in all regions of the world, with Typhimurium as one of the most frequent serotypes causing foodborne disease. However, the past two decades have seen a rapid worldwide emergence of a new Salmonella serotype, namely monophasic variant of S. Typhimurium, whose antigenic formula is 1,4,[5],12:i:-. It has become one of the 2-5 most common Salmonella serotypes responsible for animal and human infections in different regions. The global epidemic of monophasic S. 1,4,[5],12:i:- has mainly been characterized by an increase in multidrug-resistant S. 1,4,[5],12:i:- isolated in Europe since 1997. The unexpected link to swine has escalated monophasic S. Typhimurium infections to the status of a global public health emergency. The large-scale application of whole genome sequencing (WGS) in the last 10 years has revealed the phylogenetic associations of the bacterium and its antimicrobial resistance (AMR) genes. Local and global transmission reconstructed by WGS have shown that different clones have emerged following multiple independent events worldwide, and have elucidated the role of this zoonotic pathogen in the spread of AMR. This article discusses our current knowledge of the global ecology, epidemiology, transmission, bacterial adaptation, and evolution of this emerging Salmonella serotype.
Collapse
Affiliation(s)
- Honghu Sun
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China.,Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Yuping Wan
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
6
|
Campos J, Mourão J, Peixe L, Antunes P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019; 8:E19. [PMID: 30700039 PMCID: PMC6470815 DOI: 10.3390/pathogens8010019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonellosis remains one of the most frequent foodborne zoonosis, constituting a worldwide major public health concern. The most frequent sources of human infections are food products of animal origin, being pork meat one of the most relevant. Currently, particular pig food production well-adapted and persistent Salmonella enterica serotypes (e.g., Salmonella Typhimurium, Salmonella 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen) are frequently reported associated with human infections in diverse industrialized countries. The dissemination of those clinically-relevant Salmonella serotypes/clones has been related to the intensification of pig production chain and to an increase in the international trade of pigs and pork meat. Those changes that occurred over the years along the food chain may act as food chain drivers leading to new problems and challenges, compromising the successful control of Salmonella. Among those, the emergence of antibiotic resistance in non-typhoidal Salmonella associated with antimicrobials use in the pig production chain is of special concern for public health. The transmission of pig-related multidrug-resistant Salmonella serotypes, clones and/or genetic elements carrying clinically-relevant antibiotic resistance genes, frequently associated with metal tolerance genes, from pigs and pork meat to humans, has been reported and highlights the contribution of different drivers to the antibiotic resistance burden. Gathered data strengthen the need for global mandatory interventions and strategies for effective Salmonella control and surveillance across the pig production chain. The purpose of this review was to provide an overview of the role of pig and pork meat in human salmonellosis at a global scale, highlighting the main factors contributing to the persistence and dissemination of clinically-relevant pig-related Salmonella serotypes and clones.
Collapse
Affiliation(s)
- Joana Campos
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Joana Mourão
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Luísa Peixe
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Antunes
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal; Rua Dr. Roberto Frias, 4200 Porto, Portugal.
| |
Collapse
|
7
|
Palma F, Manfreda G, Silva M, Parisi A, Barker DOR, Taboada EN, Pasquali F, Rossi M. Genome-wide identification of geographical segregated genetic markers in Salmonella enterica serovar Typhimurium variant 4,[5],12:i:. Sci Rep 2018; 8:15251. [PMID: 30323193 PMCID: PMC6189080 DOI: 10.1038/s41598-018-33266-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/22/2018] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica ser. Typhimurium monophasic variant 4,[5],12:i:- has been associated with food-borne epidemics worldwide and swine appeared to be the main reservoir in most of the countries of isolation. However, the monomorphic nature of this serovar has, so far, hindered identification of the source due to expansion of clonal lineages in multiple hosts and food producing systems. Since geographically structured genetic signals can shape bacterial populations, identification of biogeographical markers in S. 1,4,[5],12:i:- genomes can contribute to improving source attribution. In this study, the phylogeographical structure of 148 geographically and temporally related Italian S. 1,4,[5],12:i:- has been investigated. The Italian isolates belong to a large population of clonal S. Typhimurium/1,4,[5],12:i:- isolates collected worldwide in two decades showing up to 2.5% of allele differences. Phylogenetic reconstruction revealed that isolates from the same geographical origin form highly supported monophyletic groups, suggesting discrete geographical segregation. These monophyletic groups are characterized by the gene content of a large sopE-containing prophage. Within this prophage, genome-wide comparison identified several genes overrepresented in strains of Italian origin. This suggests that certain lineages may be characterized by the acquisition of specific accessory genetic markers useful for improving identification of the source in ongoing epidemics.
Collapse
Affiliation(s)
- Federica Palma
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy.
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Mickael Silva
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Dillon O R Barker
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Canada
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Bologna, Italy
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Ngoi ST, Yap KP, Thong KL. Genomic characterization of endemic Salmonella enterica serovar Typhimurium and Salmonella enterica serovar I 4,[5],12:i:- isolated in Malaysia. INFECTION GENETICS AND EVOLUTION 2018; 62:109-121. [PMID: 29684710 DOI: 10.1016/j.meegid.2018.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and the monophasic variant Salmonella I 4,[5],12:i:- are two clinically-important non-typhoidal Salmonella serovars worldwide. However, the genomic information of these two organisms, especially the monophasic variant, is still lacking in Malaysia. The objective of the study was to compare the genomic features of a monophasic variant and two endemic S. Typhimurium strains isolated from humans. All three strains were subjected to whole genome sequencing followed by comparative genomic and phylogenetic analyses. Extensive genomic deletion in the fljAB operon (from STM2757 to iroB) is responsible for the monophasic phenotype of STM032/04. The two S. Typhimurium genomes (STM001/70 and STM057/05) were essentially identical, despite being isolated 35 years apart. All three strains were of sequence type ST19. Both S. Typhimurium genomes shared unique prophage regions not identified in the monophasic STM032/04 genome. Core genome phylogenetic analyses showed that the monophasic STM032/04 was closely-related to the S. Typhimurium LT2, forming a distinctive clade separated from the two endemic S. Typhimurium strains in Malaysia. The presence of serovar Typhimurium-specific mdh gene, conserved Gifsy and Fels-1 prophages, and the close genomic resemblance with S. Typhimurium LT2 suggested that the monophasic STM032/04 was originated from an LT2-like S. Typhimurium ancestor in Malaysia, following an evolutionary path different from the S. Typhimurium strains. In conclusion, the monophasic Salmonella I 4,[5],12:i:- and the S. Typhimurium strains isolated in Malaysia descended from different phylogenetic lineages. The high genomic resemblance between the two S. Typhimurium strains isolated for at least 35 years apart indicated their successful evolutionary lineage. The identification of multiple virulence and antimicrobial resistance determinants in the Salmonella I 4,[5],12:i:- and S. Typhimurium genomes explained the pathogenic nature of the organisms.
Collapse
Affiliation(s)
- Soo Tein Ngoi
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien-Pong Yap
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Fernandes L, Centeno MM, Couto N, Nunes T, Almeida V, Alban L, Pomba C. Longitudinal characterization of monophasic Salmonella Typhimurium throughout the pig's life cycle. Vet Microbiol 2016; 192:231-237. [PMID: 27527788 DOI: 10.1016/j.vetmic.2016.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
Swine have been described as an important reservoir of multidrug resistant monophasic Salmonella Typhimurium, though information on its ecology is scarce. A longitudinal study was performed in order to elucidate the Salmonella 4,[5],12:i:- dynamics throughout the pig's production cycle. A total of 209 faecal samples were collected from 10 sows and in six sampling times during the life of 70 pigs from a Portuguese industrial farm, and 43 isolates of S. 4,[5],12:i:- were identified and characterized regarding clonality and antimicrobial resistance phenotype and genotype. Most isolates (n=42) exhibited resistance to at least ampicillin, kanamycin, neomycin, streptomycin, tetracycline and sulfonamides (encoded by blaTEM, aphAI-IAB, strA, strB, tetB and sul2, respectively). Isolates obtained during the finishing phase showed additional resistance to chloramphenicol and florfenicol (floR), gentamicin and netilmicin (aac(3')-IV). To our knowledge, this study is the first description of aphAI-IAB in S. 4,[5],12:i:-. PFGE analysis showed uneven distribution of isolates into three clusters, A (n=34), B (n=8) and C (n=1). PFGE cluster A was predominant in sows (n=5) and piglets in the farrowing phase (n=17) and in pigs in the early finishing phase (n=11) suggesting a carryover from birth to adult age. The introduction of PFGE cluster B isolates in adulthood could have had an external source, reinforcing the relevance of environmental transmission in the farm ecosystem. This study reveals a dynamic interaction between monophasic S. Typhimurium and the pressures exerted under an intensive swine production setting.
Collapse
Affiliation(s)
- Laura Fernandes
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Maria Madalena Centeno
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Natacha Couto
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Telmo Nunes
- Epidemiology Unit, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Virgílio Almeida
- Epidemiology Unit, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Lis Alban
- Danish Agriculture & Food Council, Axelborg, Axeltorv 3DK-1609 Copenhagen V, Denmark
| | - Constança Pomba
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa (FMV-UL), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal.
| |
Collapse
|
11
|
García P, Malorny B, Rodicio MR, Stephan R, Hächler H, Guerra B, Lucarelli C. Horizontal Acquisition of a Multidrug-Resistance Module (R-type ASSuT) Is Responsible for the Monophasic Phenotype in a Widespread Clone of Salmonella Serovar 4,[5],12:i:. Front Microbiol 2016; 7:680. [PMID: 27242707 PMCID: PMC4861720 DOI: 10.3389/fmicb.2016.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium incapable of expressing the second-phase flagellar antigen (fljAB operon), and it is recognized to be one of the most prevalent serovars causing human infections. A clonal lineage characterized by phage type DT193, PulseNet PFGE profile STYMXB.0131 and multidrug resistance to ampicillin, streptomycin, sulphonamides and tetracycline (R-type ASSuT) is commonly circulating in Europe. In this study we determined the deletions affecting the fljAB operon and the resistance region responsible for the R-type ASSuT in a strain of Salmonella enterica serovar 4,5,12:i:- DT193/STYMXB.0131, through an approach based on PCRs and Southern blot hybridization of genomic DNA. Using a set of nine specific PCRs, the prevalence of the resistance region was assessed in a collection of 144 S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains isolated from Germany, Switzerland and Italy. A 28 kb-region is embedded between the loci STM2759 and iroB, replacing the DNA located in between, including the fljAB operon. It encompasses the genes bla TEM-1, strA-strB, sul2 and tet(B) responsible for the R-type ASSuT together with genes involved in plasmid replication and orfs of unknown function characteristically located on IncH1 plasmids. Its location and internal structure is fairly conserved in S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains regardless of the isolation source or country. Hence, in the S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 clonal lineage widespread in Germany, Switzerland and Italy, a resistance region derived from IncH1 plasmids has replaced the chromosomal region encoding the second flagellar phase and is an example of the stabilization of new plasmid-derived genetic material due to integration into the bacterial chromosome.
Collapse
Affiliation(s)
- Patricia García
- Department of Functional Biology, Area of Microbiology, University of OviedoOviedo, Spain
| | - Burkhard Malorny
- Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | - M. Rosario Rodicio
- Department of Functional Biology, Area of Microbiology, University of OviedoOviedo, Spain
| | - Roger Stephan
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Herbert Hächler
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Beatriz Guerra
- Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | - Claudia Lucarelli
- Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di SanitàRome, Italy
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and ControlStockholm, Sweden
| |
Collapse
|
12
|
Andrés-Barranco S, Vico JP, Marín CM, Herrera-León S, Mainar-Jaime RC. Characterization of Salmonella enterica Serovar Typhimurium Isolates from Pigs and Pig Environment-Related Sources and Evidence of New Circulating Monophasic Strains in Spain. J Food Prot 2016; 79:407-12. [PMID: 26939650 DOI: 10.4315/0362-028x.jfp-15-430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A total of 117 Salmonella enterica serovar Typhimurium and 59 monophasic Salmonella Typhimurium (S. enterica serovar 4,[5],12:i:-) strains isolated between 2008 and 2012 from pig, wild bird, rodent, and farm environment samples from the northeast of Spain were characterized by phage typing, antibiotic susceptibility testing, and multiple-locus variable-number tandem repeat analysis in order to evaluate their phenotypic and genetic relatedness. In Salmonella 4,[5],12:i:-, the most prevalent phage types were U311 (40.7%) and DT195 (22%), which did not correspond with the so-called Spanish clone and generally showed a different resistance pattern (ASSuT). Antibiotic resistance was found in 85.8% of the isolates, with 94.1% of them displaying multidrug resistance. Multiple-locus variable-number tandem repeat analysis identified 92 different profiles, six of them shared by both serovars. The minimum spanning tree showed one major cluster that included 95% of the Salmonella 4,[5],12:i:- isolates, which came from different animal sources, geographic locations, and time periods, suggesting high clonality among those Salmonella strains and the ability to spread among pig farms. Overall, isolates of Salmonella 4,[5],12:i:- were more similar to European strains than to the well-characterized Spanish clone. The spread of these new strains of Salmonella 4,[5],12:i:- would likely have been favored by the important pig trade between this Spanish region and other European countries. The overall high prevalence of multidrug resistance observed in these new strains should be noted.
Collapse
Affiliation(s)
- Sara Andrés-Barranco
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2 - (CITA-Universidad de Zaragoza), Avenida Montañana 930, 50059, Zaragoza, Spain
| | - Juan Pablo Vico
- CONICET-UCC Unidad Asociada: Área Ingeniería, Ciencias Agrarias, Biológicas y de la Salud, Avenida Armada Argentina 3555, 5017 Córdoba, Argentina
| | - Clara María Marín
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2 - (CITA-Universidad de Zaragoza), Avenida Montañana 930, 50059, Zaragoza, Spain
| | - Silvia Herrera-León
- Seccón de Enterobacterias, Servicio de Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Raú Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Avenida Miguel Servet 177, 50013, Zaragoza, Spain.
| |
Collapse
|
13
|
Yang X, Wu Q, Zhang J, Huang J, Guo W, Cai S. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China. PLoS One 2015; 10:e0137967. [PMID: 26360603 PMCID: PMC4567320 DOI: 10.1371/journal.pone.0137967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more comprehensive and representative, providing valuable information for epidemiological studies, risk management, and public health strategies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
- * E-mail:
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jiahui Huang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Weipeng Guo
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Shuzhen Cai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| |
Collapse
|
14
|
Gomes-Neves E, Manageiro V, Ferreira E, Correia da Costa JM, Caniça M. First description of food-borne Salmonella enterica resistance regions R1 and R3 associated with IS26 elements. Res Microbiol 2015; 166:570-3. [DOI: 10.1016/j.resmic.2015.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022]
|
15
|
Barco L, Barrucci F, Cortini E, Ramon E, Olsen JE, Luzzi I, Lettini AA, Ricci A. Ascertaining the relationship between Salmonella Typhimurium and Salmonella 4,[5],12:i:- by MLVA and inferring the sources of human salmonellosis due to the two serovars in Italy. Front Microbiol 2015; 6:301. [PMID: 25983720 PMCID: PMC4415582 DOI: 10.3389/fmicb.2015.00301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022] Open
Abstract
The current picture of human salmonellosis shows Salmonella Typhimurium and S. 4,[5],12:i:- as the most common serovars in Italy. The aims of this study were to investigate the genetic relationship between these serovars, as well as to test the possibility of inferring sources of human salmonellosis due to S. Typhimurium and S. 4,[5],12:i:- by using multilocus variable-number tandem repeat analysis (MLVA) subtyping data. Single isolates from 268 human sporadic cases and 325 veterinary isolates (from pig, cattle, chicken, and turkey) collected over the period 2009-2011 were typed by MLVA, and the similarities of MLVA profiles were investigated using different analytical approaches. Results showed that isolates of S. 4,[5],12:i:- were more clonal compared to S. Typhimurium and that clones of both serovars from different non-human sources were very close to those which were responsible for human infections, suggesting that source attribution by MLVA typing should be possible. However, using the Asymmetric Island Model it was not possible to obtain a confident ranking of sources responsible for human infections based on MLVA profiles. The source assignments provided by the model could have been jeopardized by the high heterogeneity found within each source and the negligible divergence between sources as well as by the limited source data available, especially for some species.
Collapse
Affiliation(s)
- Lisa Barco
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| | - Federica Barrucci
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| | - Enzo Cortini
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| | - Elena Ramon
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, CopenhagenDenmark
| | - Ida Luzzi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, RomeItaly
| | - Antonia A. Lettini
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| | - Antonia Ricci
- Food Safety Department, OIE and National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, LegnaroItaly
| |
Collapse
|
16
|
Vela AI, Casas-Díaz E, Fernández-Garayzábal JF, Serrano E, Agustí S, Porrero MC, Sánchez del Rey V, Marco I, Lavín S, Domínguez L. Estimation of cultivable bacterial diversity in the cloacae and pharynx in Eurasian griffon vultures (Gyps fulvus). MICROBIAL ECOLOGY 2015; 69:597-607. [PMID: 25388757 DOI: 10.1007/s00248-014-0513-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
In this work, we describe the biodiversity of cloacal and pharynx culture-based bacteria (commensal and pathogenic), in 75 Eurasian griffon vultures (Gyps fulvus) from two geographic areas. We address the question of whether the cultivable microbiota of vultures is organised into assemblages occurring by chance. In addition, we assess bacterial diversity in both anatomic regions and geographic areas. Bacterial diversity was represented by 26 Gram-negative and 20 Gram-positive genera. The most common genera were Escherichia, Enterococcus, Staphylococcus, Clostridium and Lactococcus. Escherichia coli and Enterococcus faecalis were the most common species in cloacal and pharyngeal samples. Staphylococcus and Erysipelothrix were isolated from the pharynx and Salmonella and Corynebacterium from the cloacae, and no Campylobacter was isolated from the cloacal swabs. Ten cloacal swabs were positive for Salmonella, of which five isolates were Salmonella enterica serotype 4,(5),12:i:-, one isolate was S. enterica serotype Derby, three isolates were S. enterica serotype 61:k:1,5,7 and one isolate was S. enterica serotype Infantis. The null modelling approach revealed that the commensal bacteria of vultures are not structured in assemblages. On the other hand, differences in bacterial genus and species richness between cloacal and pharyngeal samples or between geographic areas were clear, with the pharynx in vultures from both geographic areas being richer. The results of this study indicate also that vultures can serve as a reservoir of certain pathogenic zoonotic bacteria. The dissemination of these zoonotic pathogens in wildlife could be prevented by periodic sanitary surveys.
Collapse
Affiliation(s)
- Ana I Vela
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mourão J, Machado J, Novais C, Antunes P, Peixe L. Characterization of the emerging clinically-relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- (monophasic variant of S. Typhimurium) clones. Eur J Clin Microbiol Infect Dis 2014; 33:2249-57. [PMID: 25022446 DOI: 10.1007/s10096-014-2180-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
Abstract
To better understand the recent success/emergence of Salmonella enterica serotype 4,[5],12:i:- we characterized the population diversity, fljAB deletion patterns, antibiotic resistance features and associated genetic elements of a comprehensive collection obtained in the last decade from Portugal (2002-2010). One hundred thirty-one isolates from human clinical specimens, food, environment and piggeries, verified by PCR as S. 4,[5],12:i:-, were studied for clonality (Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing), antibiotic resistance by phenotypic (disk diffusion and/or agar dilution) and genotypic (PCR/Restriction Fragment Length Polymorphism and sequencing, genomic location) methods and fljAB-deletions (PCR). Plasmid analysis included determination of size, content and characterization of the incompatibility group (PCR-Based Replicon Typing and I-CeuI/S1-hybridization). Results showed three multidrug-resistant (MDR) clones circulating and causing infections, associated with particular phenotypic and genotypic features. Most of the isolates belonged to the widespread European (ASSuT phenotype, RR1-RR2 resistance regions, ST34) and Spanish (carrying a sul3-type III integron within IncA/C plasmids, ST19) clones circulating in Europe. A third clone, here designated Southern European clone (carrying a sul3-type I integron within IncR plasmids, ST19), presents a fljAB region different from the previous clones and similar to the US strains, despite differences in the MDR mobile genetic platforms. The success of S. 4,[5],12:i:- might be related to the selective advantage offered by MDR profiles associated with stable genetic elements, also carrying virulence features, along with well adapted clones to the animal food production and causing human infections.
Collapse
Affiliation(s)
- J Mourão
- REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
18
|
Argüello H, Sørensen G, Carvajal A, Baggesen DL, Rubio P, Pedersen K. Characterization of the EmergingSalmonella4,[5],12:i:- in Danish Animal Production. Foodborne Pathog Dis 2014; 11:366-72. [DOI: 10.1089/fpd.2013.1672] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hector Argüello
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Science, University of León, León, Spain
| | - Gitte Sørensen
- Technical University of Denmark, National Food Institute, Søborg, Denmark
| | - Ana Carvajal
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Science, University of León, León, Spain
| | - Dorte Lau Baggesen
- Technical University of Denmark, National Food Institute, Søborg, Denmark
| | - Pedro Rubio
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Science, University of León, León, Spain
| | - Karl Pedersen
- Technical University of Denmark, National Food Institute, Søborg, Denmark
| |
Collapse
|
19
|
García P, Hopkins KL, García V, Beutlich J, Mendoza MC, Threlfall J, Mevius D, Helmuth R, Rodicio MR, Guerra B. Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar Typhimurium monophasic variant 4,[5],12:i:- strains circulating in Europe. PLoS One 2014; 9:e89635. [PMID: 24586926 PMCID: PMC3935914 DOI: 10.1371/journal.pone.0089635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Plasmids encoding resistance and virulence properties in multidrug resistant (MDR) Salmonella enterica (S.) serovar Typhimurium monophasic variant 4,[5],12:i:- isolates recovered from pigs and humans (2006-2008) in Europe were characterised. The isolates were selected based on the detection by PCR-amplification of S. Typhimurium virulence plasmid pSLT genes and were analysed by multi-locus sequence typing (MLST). The resistance genes present in the isolates and the association of these genes with integrons, transposons and insertion sequences were characterised by PCR-sequencing, and their plasmid location was determined by alkaline lysis and by S1-nuclease pulsed-field gel electrophoresis (PFGE) Southern-blot hybridisation. Plasmids were further analysed by replicon typing, plasmid MLST and conjugation experiments. The 10 S. 4,[5],12,i:- selected isolates belonged to ST19. Each isolate carried a large plasmid in which MDR with pSLT-associated virulence genes were located. After analysis, eight different plasmids of three incompatibility groups (IncA/C, IncR and IncF) were detected. Two IncA/C plasmids represented novel variants within the plasmid family of the S. 4,[5],12:i:- Spanish clone, and carried an empty class 1 integron with a conventional qacEΔ1-sul1 3′ conserved segment or an In-sul3 type III with estX-psp-aadA2-cmlA1-aadA1-qacH variable region linked to tnpA440-sul3, part of Tn2, Tn21 and Tn1721 transposons, and ISCR2. Four newly described IncR plasmids contained the resistance genes within In-sul3 type I (dfrA12-orfF-aadA2-cmlA1-aadA1-qacH/tnpA440-sul3) and part of Tn10 [tet(B)]. Two pSLT-derivatives with FIIs-ST1+FIB-ST17 replicons carried cmlA1-[aadA1-aadA2]-sul3-dfrA12 and blaTEM-1 genes linked to an In-sul3 type I integron and to Tn2, respectively. In conclusion, three emerging European clones of S. 4,[5],12:i:- harboured MDR plasmids encoding additional virulence functions that could contribute significantly to their evolutionary success.
Collapse
Affiliation(s)
- Patricia García
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Katie L. Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England (PHE), London, United Kingdom
| | - Vanesa García
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Janine Beutlich
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M. Carmen Mendoza
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - John Threlfall
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England (PHE), London, United Kingdom
| | - Dik Mevius
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI), Lelystad, The Netherlands
| | - Reiner Helmuth
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M. Rosario Rodicio
- Department of Functional Biology, Area of Microbiology, University of Oviedo, Oviedo, Asturias, Spain
| | - Beatriz Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
- * E-mail:
| | | |
Collapse
|
20
|
Gomes-Neves E, Antunes P, Manageiro V, Gärtner F, Caniça M, da Costa JMC, Peixe L. Clinically relevant multidrug resistant Salmonella enterica in swine and meat handlers at the abattoir. Vet Microbiol 2014; 168:229-33. [DOI: 10.1016/j.vetmic.2013.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
|