1
|
Wang J, Wang Q, Ping Y, Huang X, Yang T, Bi Y, Chang G, Chen S. Identification and characterization of chicken TRIM45 and its role as a negative regulator of ALV-J replication in vitro. Avian Pathol 2024:1-10. [PMID: 39417776 DOI: 10.1080/03079457.2024.2419039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RESEARCH HIGHLIGHTS Chicken TRIM45 RING domain and protein localization significantly differ from humans.TRIM45 negatively regulates ALV-J replication in vitro.TRIM45 inhibits ALV-J replication by inducing apoptosis in infected cells.
Collapse
Affiliation(s)
- Jiaxing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiangzhou Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yuyu Ping
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Xuan Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
2
|
Liu P, Jiang J, Chen Y, Gao F, Wang S, Yu M, Liu Y, Guo R, Zhang L, Xu Z, Wang C, Qi X, Zhang Y, Cui H, Duan Y, Wu S, Gao Y. Identification of Cables1 as a critical host factor that promotes ALV-J replication via genome-wide CRISPR/Cas9 gene knockout screening. J Biol Chem 2024; 300:107804. [PMID: 39307305 PMCID: PMC11532952 DOI: 10.1016/j.jbc.2024.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Avian leukosis virus subgroup J (ALV-J), a member of the genus Alpharetrovirus, possesses a small genome and exploits a vast array of host factors during its replication cycle. To identify host factors required for ALV-J replication and potentially guide the development of key therapeutic targets for ALV-J prevention, we employed a chicken genome-wide CRISPR/Cas9 knockout library to screen host factors involved in ALV-J infection within DF-1 cells. This screening revealed 42 host factors critical for ALV-J infection. Subsequent knockout assays showed that the absence of the genes encoding cycle-regulatory proteins, namely, Cables1, CDK1, and DHFR, significantly inhibited ALV-J replication. Notably, Cables1 knockout cell lines displayed the most pronounced inhibitory effect. Conversely, overexpression assays confirmed that Cables1 significantly promotes ALV-J replication. Immunoprecipitation assays further indicated that Cables1 specifically interacts with the viral protein p15 (viral protease) among all ALV-J proteins, enhancing ALV-J p15 polyubiquitination. Additionally, we identified 26 lysine residues of ALV-J p15 as key sites for ubiquitination, and their replacement with arginine attenuated the replication ability of ALV-J in both in vitro and in vivo assays. This study demonstrates that Cables1 is a critical replication-dependent host factor of ALV-J by enhancing p15 ubiquitination and thereby promoting viral replication. Overall, these findings contribute to a deeper understanding of the ALJ-V replication mechanism and offer a potential target for the prevention and control of ALV-J infection.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jinghua Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mengmeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ru Guo
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhuangzhuang Xu
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Caiying Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Xiaole Qi
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, PR China; Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Avian Immunosuppressive Diseases Division, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China; National Poultry Laboratory Animal Resource Center, Harbin, PR China.
| |
Collapse
|
3
|
Matoušková M, Plachý J, Kučerová D, Pecnová Ľ, Reinišová M, Geryk J, Karafiát V, Hron T, Hejnar J. Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance. PLoS Pathog 2024; 20:e1012468. [PMID: 39146367 PMCID: PMC11349186 DOI: 10.1371/journal.ppat.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
Collapse
Affiliation(s)
- Magda Matoušková
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Geryk
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Vít Karafiát
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Yu M, Zhang Y, Zhang L, Wang S, Liu Y, Xu Z, Liu P, Chen Y, Guo R, Meng L, Zhang T, Fan W, Qi X, Gao L, Zhang Y, Cui H, Gao Y. N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1. PLoS Pathog 2024; 20:e1011928. [PMID: 38324558 PMCID: PMC10878525 DOI: 10.1371/journal.ppat.1011928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/20/2024] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.
Collapse
Affiliation(s)
- Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhuangzhuang Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ru Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingzhai Meng
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenrui Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
5
|
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. 3'UTR of ALV-J can affect viral replication through promoting transcription and mRNA nuclear export. J Virol 2023; 97:e0115223. [PMID: 37902396 PMCID: PMC10688361 DOI: 10.1128/jvi.01152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.
Collapse
Affiliation(s)
- Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence on Avian Disease Research, Surrey, United Kingdom
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Sutherland M, Luk K, Courtman N, Ploeg R. Survey of the Clinical, Cytological, and Histopathological Features Associated with Neoplasms in Captive Avian Species in Melbourne, Australia. J Avian Med Surg 2023; 37:243-265. [PMID: 37962318 DOI: 10.1647/20-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Over a 3.5-year period, tissue samples from 141 companion and aviary birds with clinically suspected, naturally occurring solid neoplasms were collected via surgical biopsy (n = 53) or at necropsy examination (n = 88) from a population of birds presenting to an avian veterinary clinic in Melbourne, Australia. Neoplastic processes were identified in 73.7% (n = 104) of samples, with 83.7% (n = 87) being interpreted as malignant neoplasia and 16.3% (n = 17) being interpreted as benign neoplasia. The overall estimated prevalence of neoplasia in the study population (n = 5125) was 2.45% (95% confidence interval, 2-2.97%). The gastrointestinal and reproductive tracts were the most commonly affected systems. The most common presenting signs were nonspecific and included lethargy, coelomic distension, and inappetence. In 59 cases, fine-needle aspirates (FNAs) and impression smears were also obtained and evaluated cytologically. The accuracy of cytology for detecting neoplasia in birds and for determining whether a neoplastic process was benign or malignant was assessed by using histopathology as the "gold standard." There was complete agreement between the cytological and histopathological diagnoses in 72.8% (43/59) of cases. Cytology correctly identified 87.5% of these cases (35/40) as malignant neoplasms and 55.6% (5/9) as benign processes. There was no significant difference between the use of cytology and histopathology for the detection of malignant neoplasia in birds (P = 0.185). The accuracies of FNAs and impression smears for examining avian tumors were also compared. Overall, the best cell preservation was obtained by performing impression smears from tissues, with 62.2% (n = 28) returning high cellularity for cytological examination, compared to 53.8% (n = 14) when samples were obtained by FNA. This study provides an overview of the types and prevalence of neoplasms in a captive bird population from Australia, correlates physical examination findings with tumor types, and provides evidence that cytology is a reliable preliminary diagnostic tool for detecting neoplasia in birds.
Collapse
Affiliation(s)
| | - Kathy Luk
- Department of Veterinary Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Natalie Courtman
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Richard Ploeg
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| |
Collapse
|
7
|
Dou J, Wang Z, Li L, Lu Q, Jin X, Ling X, Cheng Z, Zhang T, Shao H, Zhai X, Luo Q. A Multiplex Quantitative Polymerase Chain Reaction for the Rapid Differential Detection of Subgroups A, B, J, and K Avian Leukosis Viruses. Viruses 2023; 15:1789. [PMID: 37766196 PMCID: PMC10535029 DOI: 10.3390/v15091789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Avian leukosis (AL), caused by avian leukosis virus (ALV), is a contagious tumor disease that results in significant economic losses for the poultry industry. Currently, ALV-A, B, J, and K subgroups are the most common in commercial poultry and cause possible coinfections. Therefore, close monitoring is necessary to avoid greater economic losses. In this study, a novel multiplex quantitative polymerase chain reaction (qPCR) assay was developed to detect ALV-A, ALV-B, ALV-J, and ALV-K with limits of detection of 40, 11, 13.7, and 96 copies/µL, respectively, and no cross-reactivity with other ALV subtypes and avian pathogens. We detected 852 cell cultures inoculated with clinical samples using this method, showing good consistency with conventional PCR and ELISA. The most prevalent ALV strain in Hubei Province, China, was still ALV-J (11.74%). Although single infections with ALV-A, ALV-B, and ALV-K were not found, coinfections with different subgroup strains were identified: 0.7% for ALV-A/J, 0.35% for ALV-B/J, 0.25% for ALV-J/K, and 0.12% for ALV-A/B/K and ALV-A/B/J. Therefore, our novel multiplex qPCR may be a useful tool for molecular epidemiology, clinical detection of ALV, and ALV eradication programs.
Collapse
Affiliation(s)
- Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zui Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Li Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinxin Jin
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xiaochun Ling
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Zhengyu Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinguo Zhai
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| |
Collapse
|
8
|
Cheng X, Yang J, Bi X, Yang Q, Zhou D, Zhang S, Ding L, Wang K, Hua S, Cheng Z. Molecular characteristics and pathogenicity of a Tibet-origin mutant avian leukosis virus subgroup J isolated from Tibetan chickens in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105415. [PMID: 36775048 DOI: 10.1016/j.meegid.2023.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Tibetan chicken is found in China Tibet (average altitude; ˃4500 m). However, little is known about avian leukosis virus subgroup J (ALV-J) found in Tibetan chickens. ALV-J is a typical alpharetrovirus that causes immunosuppression and myelocytomatosis and thus seriously affects the development of the poultry industry. In this study, Tibet-origin mutant ALV-J was isolated from Tibetan chickens and named RKZ-1-RKZ-5. A Myelocytomatosis outbreak occurred in a commercial Tibetan chicken farm in Shigatse of Rikaze, Tibet, China, in March 2022. About 20% of Tibetan chickens in the farm showed severe immunosuppression, and mortality increased to 5.6%. Histopathological examination showed typical myelocytomas in various tissues. Virus isolation and phylogenetic analysis demonstrated that ALV-J caused the disease. Gene-wide phylogenetic analysis showed the RKZ isolates were the original strains of the previously reported Tibetan isolates (TBC-J4 and TBC-J6) (identity; 94.5% to 94.9%). Furthermore, significant nucleotide mutations and deletions occurred in the hr1 and hr2 hypervariable regions of gp85 gene, 3'UTR, Y Box, and TATA Box of 3'LTR. Pathogenicity experiments demonstrated that the viral load, viremia, and viral shedding level were significantly higher in RKZ-1-infected chickens than in NX0101-infected chickens. Notably, RKZ-1 caused more severe cardiopulmonary damage in SPF chickens. These findings prove the origin of Tibet ALV-J and provide insights into the molecular characteristics and pathogenic ability of ALV-J in the plateau area. Therefore, this study may provide a basis for ALV-J prevention and eradication in Tibet.
Collapse
Affiliation(s)
- Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Jianhao Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Xiaoqing Bi
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Qi Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shuhan Hua
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China.
| |
Collapse
|
9
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Wu L, Li Y, Chen X, Yang Y, Fang C, Gu Y, Liu J, Liang X, Yang Y. Isolation and characterization of avian leukosis virus subgroup J associated with hemangioma and myelocytoma in layer chickens in China. Front Vet Sci 2022; 9:970818. [PMID: 36246325 PMCID: PMC9555167 DOI: 10.3389/fvets.2022.970818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
A strain of avian leukosis virus (ALV) belonging to a new envelope subgroup J (ALV-J) emerged in 1988 as a new subgroup of ALV and spread rapidly throughout the world. Due to the infection and spread of ALV-J, the global poultry industry experienced a significant loss. Although the disease had been prevented and controlled effectively by culling domestic chickens in the infected zone, a few field cases of ALV-J infection were reported in China in recent years. This study was conducted to characterize the genome and analyze the lesions and histopathology of the ALV-J strain named HB2020, which was isolated from layer chickens in Hubei Province, China. The full-length proviral genome sequence analysis of ALV-J HB2020 revealed that it was a recombinant strain of ev-1 and HPRS-103 in the gag gene in comparison to ALV-J prototype HPRS-103. In the 3′-untranslated region (3'UTR) of the nucleotide sequence, there were found 205-base pairs (bp) deletion, of which 175 were detected in the redundant transmembrane (rTM) region. Besides, the surface glycoprotein gene gp85 had five mutations in a conservative site, whereas the transmembrane protein gene gp37 was relatively conserved. The animal experiments conducted later on this strain have shown that HB2020 can cause various neoplastic lesions in chickens, including enlarged livers with hemangiomas and spleens with white nodules. Additionally, as the exposure time increased, the number of tumor cells that resembled myelocytes in the blood smears of infected chickens gradually increased. These results indicated that HB2020 on recombination with ALV subgroup E (ALV-E) and ALV-J could induce severe hemangiomas and myelocytomas. This inference might provide a molecular basis for further research about the pathogenicity of ALV and emphasize the need for control and prevention of avian leukosis.
Collapse
|
11
|
Wu X, Chu F, Zhang L, Chen S, Gao L, Zhang H, Huang H, Wang J, Chen M, Xie Z, Chen F, Zhang X, Xie Q. New rapid detection by using a constant temperature method for avian leukosis viruses. Front Microbiol 2022; 13:968559. [PMID: 36060773 PMCID: PMC9433894 DOI: 10.3389/fmicb.2022.968559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The avian leukemia virus causes avian leukemia (AL), a severe immunosuppressive disease in chickens (ALV). Since the 1990s, the diversity of ALV subpopulations caused by ALV genome variation and recombination, and the complexity of the infection and transmission, with currently no effective commercial vaccine and therapeutic for ALV, has resulted in severe economic losses to the chicken business in various parts of the world. Therefore, as a key means of prevention and control, an effective, rapid, and accurate detection method is imperative. A new real-time reverse transcription recombinase-aided amplification (RT-RAA) assay for ALV with rapid, highly specific, low-cost, and simple operational characteristics have been developed in this study. Based on the amplification of 114 base pairs from the ALV P12 gene, real-time RT-RAA primers and a probe were designed for this study. The lowest detection line was 10 copies of ALV RNA molecules per response, which could be carried out at 39°C in as fastest as 5 min and completed in 30 min, with no cross-reactivity with Marek's disease virus, avian reticuloendothelial virus, Newcastle disease virus, infectious bronchitis virus, infectious bursal disease virus, infectious laryngotracheitis virus, and avian influenza virus. Furthermore, the kappa value of 0.91 (>0.81) was compared with reverse transcription–polymerase chain reaction (RT-PCR) for 44 clinical samples, and the coefficients of variation were within 5.18% of the repeated assays with three low-level concentration gradients. These results indicate that using a real-time RT-RAA assay to detect ALV could be a valuable method.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Fengsheng Chu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Luxuan Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Sheng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hao Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Haohua Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Jin Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Mengjun Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- *Correspondence: Xinheng Zhang
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Qingmei Xie
| |
Collapse
|
12
|
Wang Q, Su Q, Liu B, Li Y, Sun W, Liu Y, Xue R, Chang S, Wang Y, Zhao P. Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus. Front Microbiol 2022; 12:808982. [PMID: 35250911 PMCID: PMC8889011 DOI: 10.3389/fmicb.2021.808982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes tumor diseases in poultry and is circulating all over the world, leading to significant economic losses. In addition, mixed infection of ALV with other viruses is very common and is often reported to contaminate live vaccines. At present, there is no effective method to suppress the replication of ALV in vitro, so it is very difficult to remove it in mixed infection. As a retrovirus, the replication of ALV can be limited by reverse transcriptase (RT) inhibitors like zidovudine (AZT), but it also causes nontargeted cytotoxicity. To find the optimal solution in cytotoxicity and inhibition efficiency in vitro culture system, we firstly designed a combination therapy of AZT and short hairpin RNA (shRNA) targeting ALV and then verified its efficiency by multiple biological methods. Results showed that shRNA can effectively inhibit the expression of RT and then limit the replication of ALV. The combination of AZT and shRNA can significantly improve the antiviral efficiency in viral replication, shedding, and provirus assembly under the condition of low cytotoxicity. Overall, in this study, the combination therapy of AZT and shRNA targeting ALV showed excellent antiviral performance against ALV in vitro culture system. This method can be applied to multiple scenarios, such as the removal of ALV in mixed infection or the purification of contaminated vaccine strains.
Collapse
Affiliation(s)
- Qun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Qi Su
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bowen Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Wanli Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yanxue Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Ruyu Xue
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
13
|
Xu M, Hang F, Qian K, Shao H, Ye J, Qin A. Chicken hepatomegaly and splenomegaly associated with novel subgroup J avian leukosis virus infection. BMC Vet Res 2022; 18:32. [PMID: 35027055 PMCID: PMC8756617 DOI: 10.1186/s12917-022-03139-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Subgroup J avian leukosis virus (ALV-J) is an oncovirus which can induce multiple types of tumors in chicken. In this report, we found novel ALV-J infection is closely associated with serious hepatomegaly and splenomegaly in chicken. Case presentation The layer chickens from six flocks in Jiangsu province, China, showed serious hemoperitoneum, hepatomegaly and splenomegaly. Histopathological results indicated focal lymphocytic infiltration, cell edema and congestion in the liver, atrophy and depletion of lymphocyte in the spleen. Tumor cells were not detected in all the organs. avian hepatitis E virus (aHEV), which is thought to be the cause of a very similar disease, big liver and spleen disease (BLS), was not detected. Other viruses causing tumors or liver damage including Marek’s disease virus (MDV), reticuloendotheliosis virus (REV), fowl adenovirus (FAdV) and chicken infectious anemia virus (CIAV) were also proved negative by either PCR or RT-PCR. However, we did detect ALV-J in those chickens using PCR. Only novel ALV-J strains were efficiently isolated from these chicken livers. Conclusions This is the first report that chicken hepatomegaly and splenomegaly disease was closely associated with novel ALV-J, highlighting the importance of ALV-J eradication program in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03139-1.
Collapse
|
14
|
Li T, Xie J, Yao X, Zhang J, Li C, Ren D, Li L, Xie Q, Shao H, Qin A, Ye J. The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Virulence 2021; 12:1721-1731. [PMID: 34167452 PMCID: PMC8237968 DOI: 10.1080/21505594.2021.1939952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) generally induces hemangioma, myeloid leukosis, and immunosuppression in chickens, causing significant poultry industry economic losses worldwide. The unusual env gene of ALV-J, with low homology to other subgroups of ALVs, is associated with its unique pathogenesis. However, the exact molecular basis for the pathogenesis and oncogenesis of ALV-J is still not fully understood. In this study, ALV-J infection and the overexpression of Env could efficiently downregulate the phosphorylation of SHP-2 (pSHP-2) in vitro and in vivo. The membrane-spanning domain (MSD) in Env Gp37 was the functional domain responsible for pSHP-2 downregulation. Moreover, the overexpression of SHP-2 could effectively promote the replication of ALV-J, whereas knockout or allosteric inhibition of SHP-2 could inhibit ALV-J replication. In addition, the knockout of endogenous chicken SHP-2 could significantly increase the proliferation ability of DF-1 cells. All these data demonstrate that SHP-2 dephosphorylated by ALV-J Env could efficiently promote ALV-J replication, highlighting the important role of SHP-2 in the pathogenesis of ALV-J and providing a new target for developing antiviral drugs against ALV-J.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohui Yao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunping Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyuan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Deng Q, Li M, He C, Lu Q, Gao Y, Li Q, Shi M, Wang P, Wei P. Genetic diversity of avian leukosis virus subgroup J (ALV-J): toward a unified phylogenetic classification and nomenclature system. Virus Evol 2021; 7:veab037. [PMID: 34026272 PMCID: PMC8129623 DOI: 10.1093/ve/veab037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) has infected a variety of birds, causing major economic losses in China. Understanding the comprehensive criteria of classification and nomenclature of ALV-J would be useful for the investigation of the viral evolution and also for the prevention and control of this infection. An in-depth analysis of the genetic diversity of ALV-J was performed in the present study. Four hundred and seventy-five sequences of the gp85 gene, including thirteen of avian endogenous retrovirus designated ev/J and 462 of ALV-J, were used in the phylogenetic and the evolutionary distance analysis for this classification. The study identified that the current ALV-J strains were divided into two first-order clades (Clades 1 and 2) and three second-order clades (Clades 1.1, 1.2 and 1.3). The current Chinese ALV-J strains are predominantly in Clade 1.3, and the Chinese and Egyptian chicken flocks have been facing the emerging Clade 2 viruses. This system pioneers the classification efforts for ALV-J, which uses Pilot tree for rapid classification of the new isolates and also the addition of possible new clades. The proposed unified classification system will facilitate future studies of ALV-J epidemiology and genetic evolution and of the comparison of sequences obtained across the world.
Collapse
Affiliation(s)
- Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Chengwei He
- Pingxiang Customs P. R. China, 341 Nanda Road, Pingxiang, Guangxi 532600, China
| | - Qiaoe Lu
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiuhong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
16
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
17
|
Xu M, Mu X, Qian K, Shao H, Yao Y, Nair V, Wang J, Ye J, Qin A. Novel mutation of avian leukosis virus subgroup J from Tibetan chickens. Poult Sci 2021; 100:100931. [PMID: 33518331 PMCID: PMC7936214 DOI: 10.1016/j.psj.2020.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Tibetan chickens are descendants of the ancestral red jungle fowl Gallus gallus. Very little is known about pathogens in Tibetan chickens living in the high-altitude environment. Here, we report for the first time the detection and isolation of avian leukosis virus from Tibetan chickens, with all the avian leukosis virus-positive samples belonging to subgroup J. Phylogenetic analysis of the sequence revealed these viruses were in a new branch compared with previous reports. The 3'-end of the pol gene in the new strains showed 8-amino acid deletion, with 2 strains displaying a large-scale deletion in the hr2 region of gp85 protein. Among all the strains, several mutations in the primer binding site leader sequence and untranslated region, which came from Rous-associated virus, were identified. It is interesting that some of these mutations may have contributed to the competitive advantages to these isolates as observed from their increased replication in vitro. These results indicated that the virus isolates from Tibetan chickens can have competitive advantage over the other strains circulating in the poultry population in future.
Collapse
Affiliation(s)
- Moru Xu
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaohui Mu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P. R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Kun Qian
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Hongxia Shao
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Surrey GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Surrey GU24 0NF, United Kingdom
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P. R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jianqiang Ye
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Aijian Qin
- Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
| |
Collapse
|
18
|
Li H, Tan M, Zhang F, Ji H, Zeng Y, Yang Q, Tan J, Huang J, Su Q, Huang Y, Kang Z. Diversity of Avian leukosis virus subgroup J in local chickens, Jiangxi, China. Sci Rep 2021; 11:4797. [PMID: 33637946 PMCID: PMC7910287 DOI: 10.1038/s41598-021-84189-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
Avian leukosis caused by avian leukosis virus (ALV) is one of the most severe diseases endangering the poultry industry. When the eradication measures performed in commercial broilers and layers have achieved excellent results, ALV in some local chickens has gradually attracted attention. Since late 2018, following the re-outbreak of ALV-J in white feather broilers in China, AL-like symptoms also suddenly broke out in some local flocks, leading to great economic losses. In this study, a systematic epidemiological survey was carried out in eight local chicken flocks in Jiangxi Province, China, and 71 strains were finally isolated from 560 samples, with the env sequences of them being successfully sequenced. All of those new isolates belong to subgroup J but they have different molecular features and were very different from the strains that emerged in white feature broilers recently, with some strains being highly consistent with those previously isolated from commercial broilers, layers and other flocks or even isolated from USA and Russian, suggesting these local chickens have been acted as reservoirs to accumulate various ALV-J strains for a long time. More seriously, phylogenetic analysis shows that there were also many novel strains emerging and in a separate evolutionary branch, indicating several new mutated ALVs are being bred in local chickens. Besides, ALV-J strains isolated in this study can be further divided into ten groups, while there were more or fewer groups in different chickens, revealing that ALV may cross propagate in those flocks. The above analyses explain the complex background and future evolution trend of ALV-J in Chinese local chickens, providing theoretical support for the establishment of corresponding prevention and control measures.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China.
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
19
|
Oliveira JBS, de Oliveira AR, Dos Santos DO, de Carvalho TP, Moreira LGA, Tinoco HP, Coelho CM, Coelho HLG, de Paiva Zucherato MC, Marín-Gómez SY, Costa CS, Martins NRS, Santos RL. Polyostotic osteosarcoma associated with avian leukosis virus infection in a captive bare-faced curassow (Crax fasciolata). BMC Vet Res 2021; 17:84. [PMID: 33602243 PMCID: PMC7890989 DOI: 10.1186/s12917-021-02794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Osteosarcoma is a malignant mesenchymal bone tumor. Although it is a common tumor in the appendicular skeleton of dogs and cats, it is rarely reported in birds. Retroviruses are usually associated with solid tumor development in different avian species. Case presentation: This report aims to describe a case of osteosarcoma associated with the avian leukosis virus in a captive bare-faced curassow (Crax fasciolata). A captive adult female bare-faced curassow presented with lameness, hyporexia, and a non-ulcerative and firm tumor in the right femur. The bird was euthanized due to the poor prognosis. Histopathology revealed an infiltrative mesenchymal neoplasm consisting of spindle cells with moderate cell pleomorphism, organized in bundles and interspersed by marked deposition of the osteoid matrix, which was compatible with osteosarcoma affecting both femur and tibiotarsus, with renal metastasis. Immunohistochemistry of the primary and metastatic tumor demonstrated vimentin expression by neoplastic cells. Samples of the neoplasm, bone marrow, and spleen were processed for PCR, which enabled the demonstration of proviral avian leukosis virus (ALV) DNA. Conclusions To the best of our knowledge, this is the first report of an osteosarcoma in a bare-faced curassow with an unusual polyostotic manifestation and associated with ALV infection.
Collapse
Affiliation(s)
- Jefferson Bruno Soares Oliveira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Ayisa Rodrigues de Oliveira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Daniel Oliveira Dos Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Thaynara Parente de Carvalho
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Larissa Giannini Alves Moreira
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Herlandes Penha Tinoco
- Hospital Veterinário - Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, 31365-450, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Hospital Veterinário - Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, 31365-450, Belo Horizonte, Minas Gerais, Brazil
| | - Hannah Luiza Gonsalves Coelho
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Maria Clara de Paiva Zucherato
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Sandra Yuliet Marín-Gómez
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Camila Siqueira Costa
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Nelson R S Martins
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627 - CEP 30161-970, Minas Gerais, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
Fabian NJ, Esmail MY, Richey L, Muthupalani S, Haupt JL, Joy J, Carrasco SE. Cutaneous leiomyosarcoma with visceral metastases in a White Carneau pigeon and literature review. J Vet Diagn Invest 2021; 33:1040638721992061. [PMID: 33543674 PMCID: PMC8120085 DOI: 10.1177/1040638721992061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leiomyosarcomas are malignant mesenchymal tumors of smooth muscle origin and are reported occasionally in avian species. A 14-y-old male laboratory White Carneau pigeon (Columba livia) was presented for surgical excision of a cervical soft tissue mass. Ultrasonography with color flow Doppler imaging revealed multiple cavitations of mixed echogenicity within the mass and vascularization. Histologically, the dermis and subcutis were expanded by a densely cellular multinodular mass comprised of fusiform cells forming haphazardly arranged broad streams and short interwoven bundles, often surrounding blood vessels and variably sized cavitations. Neoplastic cells were strongly immunopositive for desmin and α-smooth muscle actin, and negative for pancytokeratin, S100, and von Willebrand factor. Based on histopathology and IHC findings, the cutaneous mass was diagnosed as leiomyosarcoma (LMS). The pigeon died 312 d post-operatively. Postmortem examination revealed masses infiltrating the left and right pulmonary airways and one hepatic nodule, but no regrowth at the surgical site. Histologic and IHC evaluation of the pulmonary and hepatic masses were consistent with LMS, representing metastatic foci from the primary cutaneous LMS. Our case highlights the malignant behavior and histomorphologic features of cutaneous LMS in an avian species.
Collapse
Affiliation(s)
- Niora J. Fabian
- Division of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, MA
| | | | - Lauren Richey
- Tufts Comparative Medicine Services, Tufts University,
Boston, MA
| | | | - Jennifer L. Haupt
- Division of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, MA
| | - Joanna Joy
- Division of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, MA
| | - Sebastian E. Carrasco
- Division of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, MA
| |
Collapse
|
21
|
Hassan MSH, Abdul-Careem MF. Avian Viruses that Impact Table Egg Production. Animals (Basel) 2020; 10:E1747. [PMID: 32993040 PMCID: PMC7601732 DOI: 10.3390/ani10101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird's health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus-host interactions relevant to the hen's reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects.
Collapse
Affiliation(s)
- Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
22
|
Ma M, Yu M, Chang F, Xing L, Bao Y, Wang S, Farooque M, Li X, Liu P, Chen Y, Qi X, Pan Q, Gao L, Li K, Liu C, Zhang Y, Cui H, Wang X, Sun Y, Gao Y. Molecular characterization of avian leukosis virus subgroup J in Chinese local chickens between 2013 and 2018. Poult Sci 2020; 99:5286-5296. [PMID: 33142444 PMCID: PMC7647831 DOI: 10.1016/j.psj.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) was first isolated from broiler chickens in China in 1999; subsequently, it was rapidly introduced into layer chickens and Chinese local chickens. Recently, the incidence of ALV-J in broiler and layer chickens has significantly decreased. However, it has caused substantial damage to Chinese local chickens, resulting in immense challenges to their production performance and breeding safety. To systematically analyze the molecular characteristics and the epidemic trend of ALV-J in Chinese local chickens, 260 clinical samples were collected for the period of 2013–2018; 18 ALV-J local chicken isolates were identified by antigen-capture enzyme-linked immunosorbent assay and subgroup A-, B-, and J-specific multiplex PCR. The whole genomic sequences of 18 isolates were amplified with PCR and submitted to GenBank. Approximately, 55.5% (10/18) of the 18 isolates demonstrated a relatively high homology (92.3–95.4%) with 20 ALV-J early-isolated local strains (genome sequences obtained from GenBank) in gp85 genes clustering in a separated branch. The 3ʹ untranslated region (3ʹ UTR) of the 18 isolates showed a 195–210 and 16–28 base pair deletion in the redundant transmembrane region and in direct repeat 1, respectively; 55.5% (10/18) of the 18 isolates retained the 147 residue E element. The U3 gene of 61.1% (11/18) of the 18 isolates shared high identity (94.6–97.3%) with ALV-J early-isolated local strains. These results implied that the gp85 and U3 of ALV-J local chicken isolates have rapidly evolved and formed a unique local chicken branch. In addition, it was determined that the gene deletion in the 3′UTR region currently serves as a unique molecular characteristic of ALV-J in China. Hence, the obtained results built on the existing ALV-J molecular epidemiological data and further elucidated the genetic evolution trend of ALV-J in Chinese local chickens.
Collapse
Affiliation(s)
- Meige Ma
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Chang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lixiao Xing
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yuanling Bao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Muhammad Farooque
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinyi Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanming Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
23
|
Isolation and molecular characterization of the first subgroup J avian leukosis virus from chicken in Pakistan. INFECTION GENETICS AND EVOLUTION 2020; 85:104425. [PMID: 32561296 DOI: 10.1016/j.meegid.2020.104425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022]
Abstract
Since subgroup J avian leukosis virus (ALV-J) was first isolated in the United Kingdom in 1988, it has seriously hindered the development of the poultry industry worldwide. Although cases of ALV-J infection have been reported as early as 2001 in Pakistan, there was no further research on the isolation and molecular characteristics of ALVs. In the present study, we first isolated two ALVs from suspicious clinical samples that were collected from a desi chicken farm in Pakistan. The results of multiplex PCR and indirect immunofluorescent antibody assays confirmed that the two isolates (PK19FA01 and PK19SA01) belonged to ALV-J. The complete genomes of the two isolates were amplified, sequenced, and systematically analyzed. We found that gp85 of PK19FA01 was more similar to that of the prototype strain HPRS103, whereas gp85 of PK19SA01 was more similar to that of American strains. The two isolates contained an intact E element of 147 residues and had a unique 135 bp deletion in the redundant transmembrane of the 3' untranslated region. The U3 region of the two isolates was highly homologous to that of American ALV-J strains. To our knowledge, this is the first report of the isolation, complete genome sequencing, and systematic molecular epidemiological investigation of ALV-J in Pakistan. Our findings could enrich epidemiological data and might contributed to more effective measures to prevent and control avian leukosis in Pakistan.
Collapse
|
24
|
Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci 2020; 99:1838-1846. [PMID: 32241464 PMCID: PMC7587795 DOI: 10.1016/j.psj.2019.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
In poultry, viral infections (e.g., Marek's disease virus, avian leukosis virus, influenza A virus, and so on) can cause devastating mortality and economic losses. Because viruses are solely dependent on host cells to propagate, they alter the host intracellular microenvironment. Thus, understanding the virus-host interaction is important for antiviral immunity and drug development in the poultry industry. MicroRNAs are crucial posttranscriptional regulators of gene expression in a wide spectrum of biological processes, including viral infection. Recently, microRNAs have been identified as key players in virus-host interactions. In this review, we will discuss the intricacies involved in the virus-host cross-talk mediated by host and viral microRNAs in poultry (i.e., chicken and ducks), as well as recent trends and challenges in this field. These findings may provide some insights into the rapidly developing area of research regarding viral pathogenesis and antiviral immunity in poultry production.
Collapse
Affiliation(s)
- Xiujun Duan
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Lihua Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Wenying Yan
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
26
|
Cheng J, Xu Y, Zhou D, Liu K, Geng N, Lu J, Liu Y, Liu J. Novel carbon quantum dots can serve as an excellent adjuvant for the gp85 protein vaccine against avian leukosis virus subgroup J in chickens. Poult Sci 2020; 98:5315-5320. [PMID: 31198967 DOI: 10.3382/ps/pez313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/18/2019] [Indexed: 12/22/2022] Open
Abstract
To evaluate whether carbon quantum dots (CQDs) can serve as an excellent adjuvant for the gp85 protein vaccine, this study produced recombinant gp85 protein against the avian leukosis virus subgroup J (ALV-J) in chickens. Functionalized CQDs were prepared and then linked to the recombinant gp85 protein. A total of 36 chickens were divided into 3 groups, namely, 2 experimental groups and 1 control group. Chickens from the experimental groups were inoculated twice intramuscularly with purified recombinant gp85 protein with CQDs as adjuvant or Freund's adjuvant emulsion at 14 and 21 D, whereas those from the control group were inoculated with an equivalent volume of PBS. At 35 D, the chickens were challenged with a 102.4 50% tissue culture infective dose of ALV-J. Blood samples were collected from each chicken at weekly intervals for serum antibody and viremia analyses. Results indicated that immunization with gp85-CQDs or gp85-Freund's adjuvant induced the inoculated chickens to produce positive serum antibodies (sample-to-positive ratio >0.6) at the 3rd week and persisted over 9 wk. Antibody levels in the gp85-CQDs group were higher than those in the gp85-Freund's adjuvant group. Differences were significant at 21 D (P < 0.05) and extremely significant from 28 D to 70 D (P < 0.01). Additionally, results of viremia showed higher protection in the gp85-CQDs group than in the Freund's adjuvant group. These findings highlighted the potential of CQDs as excellent candidate nanovehicles for vaccine delivery.
Collapse
Affiliation(s)
- Jia Cheng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an 271018, PR China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Kangping Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai`an 271018, PR China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an 271018, PR China
| | - Jianwei Lu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai`an 271018, PR China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai`an 271018, PR China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an 271018, PR China
| |
Collapse
|
27
|
Wang S, Geng N, Zhou D, Qu Y, Shi M, Xu Y, Liu K, Liu Y, Liu J. Oral Immunization of Chickens With Recombinant Lactobacillus plantarum Vaccine Against Early ALV-J Infection. Front Immunol 2019; 10:2299. [PMID: 31632395 PMCID: PMC6783503 DOI: 10.3389/fimmu.2019.02299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, a novel oral vaccine of recombinant Lactobacillus plantarum (L. plantarum) containing the gp85 protein was explored, and the effects of this vaccine on the prevention of subgroup J Avian Leukosis Virus (ALV-J) infection were assessed. In the current study, the gp85 protein of ALV-J was expressed on the surface of L. plantarum with the surface-display motif, pgsA, by constructing a shuttle vector pMG36e:pgsA:gp85. Surface localization of the fusion protein was verified by western blotting and flow cytometry. Subsequently, Specific Pathogen Free Hy-Line Brown layer chickens were orally vaccinated with the recombinant L. plantarum and presented with high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA) titers in bile and duodenal-mucosal fluid. After challenged with ALV-J of a 3 × 103 50% tissue culture infective dose (TCID50), serum samples of the chickens were collected and viremia was analyzed. Results showed that, compared to the L. plantarum and PBS control group, the recombinant L. plantarum group showed a significant rise in antibody levels after inoculation, and provide improved protection against ALV-J according to viremia detection. These results indicate that oral immunization with the recombinant L. plantarum provided an effective means for eliciting protective immune response against early ALV-J infection.
Collapse
Affiliation(s)
- Shenghua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Na Geng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yi Qu
- Nanjing Entry-Exit Inspection and Quarantine Bureau, Nanjing, China
| | - Mengke Shi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
28
|
Identification and characterization of a novel natural recombinant avian leucosis virus from Chinese indigenous chicken flock. Virus Genes 2019; 55:726-733. [PMID: 31396785 DOI: 10.1007/s11262-019-01695-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Avian leukosis virus (ALV) caused tremendous economic losses to poultry industry all over the world, especially in China. One natural recombinant ALV strain, designated as HB2015032, was isolated from indigenous chickens with neoplastic diseases in Hubei, China. The complete proviral genome of HB2015032 is 7703 bp in length. Sequence analysis showed that the Env of HB2015032 exhibited 99.3% similarity with that of a ALV subgroup K (ALV-K) isolate JS11C1 at amino acid level. Phylogenetic analysis revealed that both gp85 and gp37 of HB2015032 were clustered in the same branch with JS11C1 and other ALV-K strains isolated from Chinese indigenous chickens in recent years. However, the pol gene, the 3' untranslated region (3' UTR), and the 3' long terminal repeat (3' LTR) of HB2015032 were more closely related to ALV-J prototype HPRS-103, and clustered in the same branch with ALV-J strains. Furthermore, the pol gene of HB2015032 contained a premature stop codon that resulted in a truncated Pol protein with 22 amino acid residues missing, which was a unique feature of the pol gene of ALV-J. 3'UTR of HB2015032 containing entire DR1, E element and U3. E element of HB2015032 contained one base deletion, which resulted in a c-Ets-1 binding site. In addition, U3 region of HB2015032 contains most of the transcription regulatory elements of ALV-J, including two CAAT boxes, Y boxes, CArG boxes, PRE boxes, NFAP-1 boxes, and one TATA box. These results suggest that isolate HB2015032 was a novel recombinant ALV-K containing the ALV-K env gene and the ALV-J backbone and exhibiting high pathogenicity.
Collapse
|
29
|
Cui S, Li Y, Wang Y, Cui Z, Chang S, Zhao P. Joint treatment with azidothymidine and antiserum for eradication of avian leukosis virus subgroup a contamination in vaccine virus seeds. Poult Sci 2019; 98:629-633. [DOI: 10.3382/ps/pey257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
|
30
|
Zhang X, Yan Y, Lin W, Li A, Zhang H, Lei X, Dai Z, Li X, Li H, Chen W, Chen F, Ma J, Xie Q. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol 2019; 16:118-132. [PMID: 30608205 DOI: 10.1080/15476286.2018.1564462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.
Collapse
Affiliation(s)
- Xinheng Zhang
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Yiming Yan
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Wencheng Lin
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Aijun Li
- e College of science and engineering , Jinan University , Guangzhou , P. R. China
| | - Huanmin Zhang
- f USDA, Agriculture Research Service , Avian Disease and Oncology Laboratory , East Lansing , MI , USA
| | - Xiaoya Lei
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Zhenkai Dai
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Xinjian Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China
| | - Hongxin Li
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Weiguo Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Feng Chen
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Jingyun Ma
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| | - Qingmei Xie
- a College of Animal Science , South China Agricultural University , Guangzhou , P. R. China.,b Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction , Ministry of Agriculture , Guangzhou , P. R. China.,c Key Laboratory of Animal Health Aquaculture and Environmental Control , Department of Science and Technology of Guangdong Province , Guangzhou , Guangdong , P. R. China.,d South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Department of Science and Technology of Guangdong Province , Guangzhou , P. R. China
| |
Collapse
|
31
|
Zhang Y, Guan X, Chen Z, Cao D, Kang Z, Shen Q, Lei Q, Li F, Li H, Leghari MF, Wang Y, Qi X, Wang X, Gao Y. The high conserved cellular receptors of avian leukosis virus subgroup J in Chinese local chickens contributes to its wide host range. Poult Sci 2019; 97:4187-4192. [PMID: 30107614 DOI: 10.3382/ps/pey331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/06/2018] [Indexed: 02/05/2023] Open
Abstract
Avian leukosis virus (ALV) is a tumor-inducing virus that spreads among most chicken species, causing serious financial losses for the poultry industry. Subgroup J avian leukosis virus (ALV-J) is a recombinant exogenous ALV, which shows more extensive host range in comparison with other subgroups, especially in Chinese local chickens. To identify the relationship between ALV-J host range and the polymorphism of its cellular receptors, we performed a wide range epidemiological investigation of current ALV-J infection in Chinese local chickens, and discovered that all the 18 local chicken breeds being investigated from main local chicken breeding provinces were ALV-J positive. Furthermore, we cloned ALV-J cellular receptor genes of chNHE1 and chANXA2 of these 18 chicken breeds. Sequence alignment demonstrated that despite several regular mutations at the nucleotide level, there were no corresponding amino acid mutations for either chNHE1 gene or chANXA2 gene. Additionally, virus entry assay indicated that the level of viral enter into cells is stable among different chicken breeds. Results of this study indicated that the wide host range of ALV-J in Chinese local chickens was partially due to the high conservatism of its cellular receptors, and also provide target sites for drug design of resistance to ALV-J infection.
Collapse
Affiliation(s)
- Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Zhiwu Chen
- Guangxi Jinling Husbandry Group CO., LTD, Lu Ping Country, Nanning 530000, Guangxi Zhuang Autonomous Region, PR China
| | - Dingguo Cao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Qiancheng Shen
- Guangxi Jinling Husbandry Group CO., LTD, Lu Ping Country, Nanning 530000, Guangxi Zhuang Autonomous Region, PR China
| | - Qiuxia Lei
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Muhammad Farooque Leghari
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| |
Collapse
|
32
|
Li J, Meng F, Li W, Wang Y, Chang S, Zhao P, Cui Z. Characterization of avian leukosis virus subgroup J isolated between 1999 and 2013 in China. Poult Sci 2018; 97:3532-3539. [PMID: 29924363 DOI: 10.3382/ps/pey241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) has successively infected white feather chickens, layer hens, cultivated yellow chickens, and indigenous chickens; infection rates and tumorigenicity have attracted increasingly extensive attention in China. To clarify the correlation of the epidemiological phenomenon of ALV-J with the evolution of envelope protein gp85, 140 strains of ALV-J isolated from chickens with different genetic backgrounds from 1999 to 2013 were compared. The homology of the gp85 protein and genetic genealogical relationships between 140 strains of ALV-J and the prototype strain HPRS-103, as well as between the same ALV-J strains and 8 American isolates, were analyzed and compared. The results showed that there was no significant difference in the variation range of homology of the gp85 protein between the prototype HPRS-103 and ALV-J isolates from different genetic backgrounds and different years. However, genetic pedigree analysis showed that virus strains that isolated from the same type of chickens remained close to each other on the phylogenetic tree, which means that there was a correlation between the genetic background of infected chickens and virus strains. Further analysis of amino acid sequences also found similar results and revealed that unique amino acid sites were formed in chickens with different genetic backgrounds, which proved that ALV-J could adapt to the new host through amino acid variation. Genetic sequence phylogenetic tree analysis was more representative than sequence homology comparisons for assessing ALV-J correlations. These conclusions contributed to the control and prevention of ALV infection. ALV-J is still prevalent in Chinese indigenous chickens, more attentions should be given to fulfill the purification.
Collapse
Affiliation(s)
- Jianliang Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Weihua Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China, 266033
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| |
Collapse
|
33
|
Expression of dysregulated miRNA in vivo in DF-1 cells during the course of subgroup J avian leukosis virus infection. Microb Pathog 2018; 126:40-44. [PMID: 30366127 DOI: 10.1016/j.micpath.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) is known to be involved in cancer progression caused by subgroup J avian leukosis virus (ALV-J) in liver tissues. To advance our understanding of the related pathological mechanisms and virus-host interactions, seven previously reported miRNAs were selected for a comparative analysis of miRNA expression between infected and uninfected DF-1 cells, including six miRNAs related to tumorigenesis (let-7b/7i, miR-221/222, miR-125b, miR-375 and miR-2127. The results showed that six of the seven miRNAs except gga-miR-375 were upregulated in cells infected with NX0101 (caused myeloma (ML)) and GD1109 (caused hemangioma (HE)) at 1 h post infection. On day 2 post-infection, all seven miRNAs were upregulated in infected DF-1 cells. On day 6 post-infection, gga-let-7b, gga-miR-125b, and gga-miR-375 were downregulated whereas gga-miR-221 and gga-miR-222 were upregulated in DF-1 cells infected with the two ALV-J strains of different phenotypes. However, expression of gga-let-7i was reduced in DF-1 cells infected with NX0101 and was increased in those infected with GD1109; gga-miR-2127 expression showed no significant difference between infected and uninfected cells. This study is the first to report the changes in the miRNA expression levels in DF-1 cells during the course of ALV-J infection, and suggests a relationship between its pathological mechanisms and miRNAs.
Collapse
|
34
|
Qiu L, Chang G, Bi Y, Liu X, Chen G. Circular RNA and mRNA profiling reveal competing endogenous RNA networks during avian leukosis virus, subgroup J-induced tumorigenesis in chickens. PLoS One 2018; 13:e0204931. [PMID: 30286182 PMCID: PMC6171863 DOI: 10.1371/journal.pone.0204931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/17/2018] [Indexed: 01/30/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can induce myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. Here, we generated ribominus RNA sequencing data from three normal chicken spleen tissues and three ALV-J-infected chicken spleen tissues. Structure analysis of transcripts showed that, compared to mRNAs and lncRNAs, chicken circRNAs shared relatively shorter transcripts and similar GC content. Differentially expression analysis showed 152 differentially expressed circRNAs with 106 circRNAs up regulated and 46 circRNAs down regulated. Through comparing differentially expressed circRNA host genes and mRNAs and performed ceRNA network analysis, we found several tumor or immune-related genes, in which, there were four genes existed in both differentially expressed mRNAs and circRNA host genes (Dock4, Fmr1, Zfhx3, Ralb) and two genes (Mll, Aoc3) involved in ceRNA network. We further characterized one exon-intron circRNA derived from HRH4 gene in the ceRNA network, termed circHRH4, which is an abundant and stable circRNA expressed in various tissues and cells in chicken and localizes in cytoplasm. Our results provide new insight into the pathology of ALV-J infection and circRNAs may also mediate tumorigenesis in chicken.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, PR, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR, China
| |
Collapse
|
35
|
Qiu L, Chang G, Li Z, Bi Y, Liu X, Chen G. Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens. Front Physiol 2018; 9:996. [PMID: 30093865 PMCID: PMC6070742 DOI: 10.3389/fphys.2018.00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that induces myeloid tumors and hemangiomas in chickens and causes severe economic losses with commercial layer chickens and meat-type chickens. High-throughput sequencing followed by quantitative real-time polymerase chain reaction and bioinformatics analyses were performed to advance the understanding of regulatory networks associated with differentially expressed non-coding RNAs and mRNAs that facilitate ALV-J infection. We examined the expression of mRNAs, long non-coding RNAs (lncRNAs), and miRNAs in the spleens of 20-week-old chickens infected with ALV-J and uninfected chickens. We found that 1723 mRNAs, 7,883 lncRNAs and 13 miRNAs in the spleen were differentially expressed between the uninfected and infected groups (P < 0.05). Transcriptome analysis showed that, compared to mRNA, chicken lncRNAs shared relatively fewer exon numbers and shorter transcripts. Through competing endogenous RNA and co-expression network analyses, we identified several tumor-associated or immune-related genes and lncRNAs. Along transcripts whose expression levels significantly decreased in both ALV-J infected spleen and tumor tissues, BCL11B showed the greatest change. These results suggest that BCL11B may be mechanistically involved in tumorigenesis in chicken and neoplastic diseases, may be related to immune response, and potentially be novel biomarker for ALV-J infection. Our results provide new insight into the pathology of ALV-J infection and high-quality transcriptome resource for in-depth study of epigenetic influences on disease resistance and immune system.
Collapse
Affiliation(s)
- Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zhiteng Li
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Ren C, Yu M, Zhang Y, Fan M, Chang F, Xing L, Liu Y, Wang Y, Qi X, Liu C, Zhang Y, Cui H, Li K, Gao L, Pan Q, Wang X, Gao Y. Avian leukosis virus subgroup J promotes cell proliferation and cell cycle progression through miR-221 by targeting CDKN1B. Virology 2018; 519:121-130. [PMID: 29698854 DOI: 10.1016/j.virol.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J), a highly oncogenic retrovirus, causes leukemia-like proliferative diseases in chickens. microRNAs post-transcriptionally suppress targets and are involved in the development of various tumors. We previously showed that miR-221 is upregulated in ALV-J-induced tumors. In this study, we analyzed the possible function of miR-221 in ALV-J tumorigenesis. The target validation system showed that CDKN1B is a target of miR-221 and is downregulated in ALV-J infection. As CDKN1B arrests the cell cycle and regulates its progression, we analyzed the proliferation of ALV-J-infected DF-1 cells. ALV-J-infection-induced DF1 cell derepression of G1/S transition and overproliferation required high miR-221 expression followed by CDKN1B downregulation. Cell cycle pathway analysis showed that ALV-J infection induced DF-1 cell overproliferation via the CDKN1B-CDK2/CDK6 pathway. Thus, miR-221 may play an important role in ALV-J-induced aggressive growth of DF-1 cells; these findings have expanded our insights into the mechanism underlying ALV-J infection and tumorigenesis.
Collapse
Affiliation(s)
- Chaoqi Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Mengmeng Yu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Minghui Fan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Chang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lixiao Xing
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
37
|
Phylogenetic Analysis and Pathogenicity Assessment of the Emerging Recombinant Subgroup K of Avian Leukosis Virus in South China. Viruses 2018; 10:v10040194. [PMID: 29652854 PMCID: PMC5923488 DOI: 10.3390/v10040194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
In recent years, cases of avian leukosis virus (ALV) infection have become more frequent in China. We isolated 6 ALV strains from yellow feather broiler breeders in south China from 2014 to 2016. Their full genomes were sequenced, compared, and analyzed with other reference strains of ALV. The complete genomic nucleotide sequences of GD150509, GD160403, GD160607, GDFX0601, and GDFX0602 were 7482 bp in length, whereas GDFX0603 was 7480 bp. They shared 99.7% to 99.8% identity with each other. Homology analysis showed that the gag, pol, long terminal repeats (LTRs), and the transmembrane region (gp37) of the env genes of the 6 viruses were well conserved to endogenous counterpart sequences (>97.8%). However, the gp85 genes displayed high variability with any known chicken ALV strains. Growth kinetics of DF-1 cells infected with the isolated ALV showed viral titers that were lower than those infected with the GD13 (ALV-A), CD08 (ALV-B), and CHN06 (ALV-J) on day 7 post-infection. The infected Specific-pathogen-free (SPF) chickens could produce continuous viremia, atrophy of immune organs, growth retardation and no tumors were observed. These subgroup ALVs are unique and may be common in south China. The results suggested that updating the control and eradication program of exogenous ALV for yellow feather broiler breeders in south China needs to be considered because of the emergence of the new subgroup viruses.
Collapse
|
38
|
Zhang X, Yan Y, Lei X, Li A, Zhang H, Dai Z, Li X, Chen W, Lin W, Chen F, Ma J, Xie Q. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens. Oncotarget 2018; 8:34961-34970. [PMID: 28415618 PMCID: PMC5471026 DOI: 10.18632/oncotarget.16442] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Abstract
Avian leukosis virus subgroup (ALV-J) is an oncogenic neoplasm-inducing retrovirus that causes significant economic losses in the poultry industry. Recent studies have demonstrated circular RNAs (circRNAs) are implicated in pathogenic processes; however, no research has indicated circRNAs are involved in resistance to disease. In this study, over 1800 circRNAs were detected by circRNA sequencing of liver tissues from ALV-J-resistant (n = 3) and ALV-J-susceptible chickens (n = 3). 32 differentially expressed circRNAs were selected for analyzing including 12 upregulated in ALV-J-resistant chickens and 20 upregulated in ALV-J-susceptible chickens, besides, the top five microRNAs (miRNAs) for 12 upregulated circRNAs in ALV-J-resistant chickens were analyzed. Gene ontology and KEGG pathway analyses were performed for miRNA target genes, the predicted genes were mainly involved in immune pathways. This study provides the first evidence that circRNA alterations are involved in resistance to ALV-J-induced tumor formation. We propose circRNAs may help to mediate tumor induction and development in chickens.
Collapse
Affiliation(s)
- Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China
| | - Xiaoya Lei
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou, 510632, P.R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China
| | - Xinjian Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, 510642, P.R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, P.R. China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, P.R. China
| |
Collapse
|
39
|
Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production. Oncotarget 2018; 7:80275-80287. [PMID: 27852059 PMCID: PMC5348319 DOI: 10.18632/oncotarget.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.
Collapse
|
40
|
Smith LP, Petheridge L, Nair V, Wood A, Welchman D. Avian leukosis virus subgroup J-associated myelocytoma in a hobby chicken. Vet Rec 2018; 182:23. [DOI: 10.1136/vr.104626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Lorraine P Smith
- Avian Oncogenic Viruses Group; Pirbright Institute; Pirbright UK
| | | | - Venugopal Nair
- Avian Oncogenic Viruses Group; Pirbright Institute; Pirbright UK
| | - Alisdair Wood
- International Research Centre, Animal and Plant Health Agency (APHA); Penicuik UK
| | - David Welchman
- Surveillance Intelligence Unit; Animal and Plant Health Agency (APHA); Winchester UK
| |
Collapse
|
41
|
Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na +/H + Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus. J Virol 2017; 92:JVI.01627-17. [PMID: 29070685 DOI: 10.1128/jvi.01627-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Chicken Na+/H+ exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.
Collapse
|
42
|
Lee HJ, Lee KY, Jung KM, Park KJ, Lee KO, Suh JY, Yao Y, Nair V, Han JY. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:340-349. [PMID: 28899753 DOI: 10.1016/j.dci.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na+/H+ exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Je Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Ko On Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| | - Yongxiu Yao
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
43
|
Chen W, Liu Y, Li A, Li X, Li H, Dai Z, Yan Y, Zhang X, Shu D, Zhang H, Lin W, Ma J, Xie Q. A premature stop codon within the tvb receptor gene results in decreased susceptibility to infection by avian leukosis virus subgroups B, D, and E. Oncotarget 2017; 8:105942-105956. [PMID: 29285305 PMCID: PMC5739692 DOI: 10.18632/oncotarget.22512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
Avian leukosis virus (ALV) is an oncogenic virus causing a variety of neoplasms in chickens. The group of avian leukosis virus in chickens contains six closely related subgroups, A to E and J. The prevalence of ALVs in hosts may have imposed strong selective pressure toward resistance to ALVs infection. The tvb gene encodes Tvb receptor and determines susceptibility or resistance to the subgroups B, D, and E ALV. In this study, we characterized a novel resistant allele of the tvb receptor gene, tvbr3, which carries a single-nucleotide substitution (c.298C>T) that constitutes a premature termination codon within the fourth exon and leads to the production of a truncated TvbR3 receptor protein. As a result, we observed decreased susceptibility to infection by ALV-B, ALV-D and ALV-E both in vitro and in vivo, and decreased the binding affinity of the TvbR3 receptor for the subgroups B, D, and E ALV envelope glycoproteins. Additionally, we found that the tvbr3 allele was prevalent in Chinese broiler lines. This study demonstrated that premature termination codon in the tvb receptor gene can confer genetic resistance to subgroups B, D, and E ALV in the host, and indicates that tvbr3 could potentially serve as a resistant target against ALV-B, ALV-D and ALV-E infection.
Collapse
Affiliation(s)
- WeiGuo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Yang Liu
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Xinjian Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Hongxing Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| |
Collapse
|
44
|
Qiu L, Li Z, Chang G, Bi Y, Liu X, Xu L, Zhang Y, Zhao W, Xu Q, Chen G. Discovery of novel long non-coding RNAs induced by subgroup J avian leukosis virus infection in chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:292-302. [PMID: 28673822 DOI: 10.1016/j.dci.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has led to severe economic losses in the poultry industry in China in recent decades. Here, using high throughput transcriptome sequencing of HD11 and CEF cells infected with ALV-J, a set of 4804 novel long non-coding transcripts and numerous differentially expressed long non-coding RNAs (lncRNAs) were identified. We also found that they share relatively shorter transcripts and fewer exon numbers compared to mRNA. Correlation analysis suggested that many lncRNAs may activate gene expression in an enhancer-like manner other than through transcriptional regulation. Expression level analyses in vivo showed that three lncRNAs (NONGGAT001975.2, NONGGAT005832.2 and NONGGAT009792.2) may be associated with immune response regulation and could function as novel biomarkers for ALV-J infection. Our findings provides new insight into the pathological process of ALV-J infection and should serve as a high-quality resource for further research on epigenetic influences on disease-resistance breeding as well as immune system and genomic studies.
Collapse
Affiliation(s)
- Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Zhiteng Li
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225003, PR China.
| | - Lu Xu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding, Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
45
|
Full-length genome sequence analysis of four subgroup J avian leukosis virus strains isolated from chickens with clinical hemangioma. Virus Genes 2017; 53:868-875. [DOI: 10.1007/s11262-017-1490-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023]
|
46
|
Meng F, Li X, Fang J, Gao Y, Zhu L, Xing G, Tian F, Gao Y, Dong X, Chang S, Zhao P, Cui Z, Liu Z. Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken. J Vet Sci 2017; 17:497-503. [PMID: 27456778 PMCID: PMC5204027 DOI: 10.4142/jvs.2016.17.4.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/24/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
The genomic diversity of Avian leukosis virus subgroup J (ALV-J) was investigated in an experimentally infected chicken. ALV-J variants in tissues from four different organs of the same bird were re-isolated in DF-1 cells, and their gp85 gene was amplified and cloned. Ten clones from each organ were sequenced and compared with the original inoculum strain, NX0101. The minimum homology of each organ ranged from 96.7 to 97.6%, and the lowest homology between organs was only 94.9%, which was much lower than the 99.1% homology of inoculum NX0101, indicating high diversity of ALV-J, even within the same bird. The gp85 mutations from the left kidney, which contained tumors, and the right kidney, which was tumor-free, had higher non-synonymous to synonymous mutation ratios than those in the tumor-bearing liver and lungs. Additionally, the mutational sites of gp85 gene in the kidney were similar, and they differed from those in the liver and lung, implying that organ- or tissue-specific selective pressure had a greater influence on the evolution of ALV-J diversity. These results suggest that more ALV-J clones from different organs and tissues should be sequenced and compared to better understand viral evolution and molecular epidemiology in the field.
Collapse
Affiliation(s)
- Fanfeng Meng
- Shandong Agricultural University, Taian 271018, China
| | - Xue Li
- Shandong Agricultural University, Taian 271018, China.,Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Jian Fang
- Shandong Agricultural University, Taian 271018, China.,Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Yalong Gao
- Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Lilong Zhu
- Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Guiju Xing
- Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Fu Tian
- Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Yali Gao
- Beijing Dafaun Poultry Breeding Company Ltd., Beijing 10010, China
| | - Xuan Dong
- Shandong Agricultural University, Taian 271018, China
| | - Shuang Chang
- Shandong Agricultural University, Taian 271018, China
| | - Peng Zhao
- Shandong Agricultural University, Taian 271018, China
| | - Zhizhong Cui
- Shandong Agricultural University, Taian 271018, China
| | - Zhihao Liu
- Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
47
|
Dai Z, Huang J, Lei X, Yan Y, Lu P, Zhang H, Lin W, Chen W, Ma J, Xie Q. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J. Vaccine 2017; 35:808-813. [DOI: 10.1016/j.vaccine.2016.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/03/2023]
|
48
|
Meng F, Dong X, Hu T, Chang S, Fan J, Zhao P, Cui Z. A deep sequencing reveals significant diversity among dominant variants and evolutionary dynamics of avian leukosis viruses in two infectious ecosystems. BMC Vet Res 2016; 12:287. [PMID: 27993149 PMCID: PMC5168851 DOI: 10.1186/s12917-016-0902-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
Background As a typical retrovirus, the evolution of Avian leukosis virus subgroup J (ALV-J) in different infectious ecosystems is not characterized, what we know is there are a cloud of diverse variants, namely quasispecies with considerable genetic diversity. This study is to explore the selection of infectious ecosystems on dominant variants and their evolutionary dynamics of ALV-J between DF1 cells and specific-pathogen-free (SPF) chickens. High-throughput sequencing platforms provide an approach for detecting quasispecies diversity more fully. Results An average of about 20,000 valid reads were obtained from two variable regions of gp85 gene and LTR-U3 region from each sample in different infectious ecosystems. The top 10 dominant variants among ALV-J from chicken plasmas, DF1 cells and liver tumor were completely different from each other. Also there was a difference of shannon entropy and global selection pressure values (ω) in different infectious ecosystems. In the plasmas of two chickens, a large portion of quasispecies contained a 3-peptides “LSD” repeat insertion that was only less than 0.01% in DF1 cell culture supernatants. In parallel studies, the LTR-U3 region of ALV-J from the chicken plasmas demonstrated more variants with mutations in their transcription regulatory elements than those from DF1 cells. Conclusions Our data taken together suggest that the molecular epidemiology based on isolated ALV-J in cell culture may not represent the true evolution of virus in chicken flocks in the field. The biological significance of the “LSD” insert and mutations in LTR-U3 needs to be further studied. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0902-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xuan Dong
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Tao Hu
- Institute of Pathogen Biology, Taishan Medical College, Taian, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Jianhua Fan
- Poultry lnstitute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
49
|
Liu Y, Li K, Gao Y, Gao L, Zhong L, Zhang Y, Liu C, Zhang Y, Wang X. Recombinant Marek's Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken. Viruses 2016; 8:v8110301. [PMID: 27827933 PMCID: PMC5127015 DOI: 10.3390/v8110301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus that causes considerable economic losses to the chicken industry in China. However, there is currently no effective vaccine to prevent ALV-J infection. In order to reduce the losses caused by ALV-J, we constructed two effective ALV-J vaccines by inserting the ALV-J (strain JL093-1) env or gag+env genes into the US2 gene of the Marek’s disease herpesviruses (MDV) by transfection of overlapping fosmid DNAs, creating two recombinant MDVs, rMDV/ALV-gag+env and rMDV/ALV-env. Analysis of cultured chicken embryo fibroblasts infected with the rMDVs revealed that Env and Gag were successfully expressed and that there was no difference in growth kinetics in cells infected with rMDVs compared with that of cells infected with the parent MDV. Chickens vaccinated with either rMDV revealed that positive serum antibodies were induced. Both rMDVs also effectively reduced the rate of positive viremia in chicken flocks challenged with ALV-J. The protective effect provided by rMDV/ALV-env inoculation was slightly stronger than that provided by rMDV/ALV-gag+env. This represents the first study where a potential rMDV vaccine, expressing ALV-J antigenic genes, has been shown to be effective in the prevention of ALV-J. Our study also opens new avenues for the control of MDV and ALV-J co-infection.
Collapse
Affiliation(s)
- Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Zhong
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
50
|
Yao DW, Zhan L, Hong YF, Liu JX, Xu JR, Yang DJ. Altered expression of the mismatch repair genes in DF-1 cells infected with the avian leukosis virus subgroup A. SPRINGERPLUS 2016; 5:1756. [PMID: 27795899 PMCID: PMC5055512 DOI: 10.1186/s40064-016-3433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
The absence or deficiency of DNA mismatch repair (MMR) activity results in microsatellite instability (MSI) in cancer. The avian leukosis virus (ALV) causes neoplastic disease in chickens. In this study, the status of MMR, MSI, the cell cycle and apoptosis were detected in DF-1 cells after avian leukosis virus subgroup A infection. Flow cytometry analysis results indicated that there was no significant difference in cell apoptosis between the control and infected groups. The percentage of cells in S and G2 phases were increased in the infected group. MSI and mutation of MSH2 and MLH1 gene exons were absent in DF-1 cells after infection. Levels of MSH2 and MLH1 mRNA were dramatically increased in DF-1 cells after infection. These results demonstrated that ALV RAV-1 infection may promote the expression of MSH2 and MLH1 genes rather than resulting in gene mutations. Mismatch repair functions were normal and may be have relationships with the arrest of S phase and G2 phase.
Collapse
Affiliation(s)
- Da-Wei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Li Zhan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Yu-Fang Hong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jian-Xin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jia-Rong Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - De-Ji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|