1
|
Surface Effect of Nano-Roughened Yttria-Doped Zirconia on Salivary Protein Adhesion. MATERIALS 2021; 14:ma14216412. [PMID: 34771939 PMCID: PMC8585120 DOI: 10.3390/ma14216412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Biocompatibility of yttria (3 mol%) stabilized zirconia ceramics, 3Y-TZP, was affected to a large degree as a result of protein adsorption from human saliva that in turn depends on materials surface properties. Variable nano-roughness levels in 3Y-TZP discs were characterized and tested for specificity and selectivity with respect to size and uptake for human salivary protein.
Collapse
|
2
|
De Lima PO, Nani BD, Rolim GS, Groppo FC, Franz-Montan M, Alves De Moraes AB, Cogo-Müller K, Marcondes FK. Effects of academic stress on the levels of oral volatile sulfur compounds, halitosis-related bacteria and stress biomarkers of healthy female undergraduate students. J Breath Res 2020; 14:036005. [DOI: 10.1088/1752-7163/ab944d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Pajic P, Pavlidis P, Dean K, Neznanova L, Romano RA, Garneau D, Daugherity E, Globig A, Ruhl S, Gokcumen O. Independent amylase gene copy number bursts correlate with dietary preferences in mammals. eLife 2019; 8:e44628. [PMID: 31084707 PMCID: PMC6516957 DOI: 10.7554/elife.44628] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/07/2019] [Indexed: 12/28/2022] Open
Abstract
The amylase gene (AMY), which codes for a starch-digesting enzyme in animals, underwent several gene copy number gains in humans (Perry et al., 2007), dogs (Axelsson et al., 2013), and mice (Schibler et al., 1982), possibly along with increased starch consumption during the evolution of these species. Here, we present comprehensive evidence for AMY copy number expansions that independently occurred in several mammalian species which consume diets rich in starch. We also provide correlative evidence that AMY gene duplications may be an essential first step for amylase to be expressed in saliva. Our findings underscore the overall importance of gene copy number amplification as a flexible and fast evolutionary mechanism that can independently occur in different branches of the phylogeny.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological SciencesUniversity at Buffalo, The State University of New YorkNew YorkUnited States
- Department of Oral Biology, School of Dental MedicineUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS)Foundation for Research and Technology – HellasHeraklionGreece
| | - Kirsten Dean
- Department of Biological SciencesUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| | - Lubov Neznanova
- Department of Oral Biology, School of Dental MedicineUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental MedicineUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| | - Danielle Garneau
- Center for Earth and Environmental SciencePlattsburgh State UniversityNew YorkUnited States
| | - Erin Daugherity
- Cornell Center for Animal Resources and EducationCornell UniversityNew YorkUnited States
| | - Anja Globig
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswaldGermany
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental MedicineUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| | - Omer Gokcumen
- Department of Biological SciencesUniversity at Buffalo, The State University of New YorkNew YorkUnited States
| |
Collapse
|
4
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
5
|
de Lima PO, Nani BD, Almeida B, Marcondes FK, Groppo FC, de Moraes ABA, Franz-Montan M, Cogo-Müller K. Stress-related salivary proteins affect the production of volatile sulfur compounds by oral bacteria. Oral Dis 2018; 24:1358-1366. [PMID: 29761905 DOI: 10.1111/odi.12890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine whether stress-related substances and sex hormones influence the growth and in vitro production of volatile sulfur compounds (VSCs) by Solobacterium moorei and Fusobacterium nucleatum. MATERIALS AND METHODS Bacteria growth and VSCs production were evaluated in the presence of alpha-amylase, beta-defensin-2, mucin, estradiol, and progesterone. Growth was evaluated by colony counting, and the production of the VSCs hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) was measured using the Oral Chroma™ instrument. RESULTS Mucin induced the production of H2 S by both bacteria, but had a slight inhibitory effect on CH3 SH production by F. nucleatum. It also increased the viability of F. nucleatum. Alpha-amylase increased H2 S production by S. moorei and CH3 SH production by F. nucleatum, but had no effect on H2 S production by F. nucleatum. No substance altered the viability of S. moorei. No effects of beta-defensin-2, estradiol, or progesterone were observed. CONCLUSION The salivary stress-related proteins mucin and alpha-amylase altered VSCs production by F. nucleatum and S. moorei, favoring H2 S production. These findings are a step toward understanding the relation between stress and increased amounts of H2 S.
Collapse
Affiliation(s)
- Patricia Oliveira de Lima
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Bruno Dias Nani
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Barbara Almeida
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Antonio Bento Alves de Moraes
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Michelle Franz-Montan
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Karina Cogo-Müller
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
6
|
Couvigny B, Kulakauskas S, Pons N, Quinquis B, Abraham AL, Meylheuc T, Delorme C, Renault P, Briandet R, Lapaque N, Guédon E. Identification of New Factors Modulating Adhesion Abilities of the Pioneer Commensal Bacterium Streptococcus salivarius. Front Microbiol 2018. [PMID: 29515553 PMCID: PMC5826255 DOI: 10.3389/fmicb.2018.00273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i) extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK), (ii) proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2) and the SrtA sortase, and (iii) the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence trait or an advantageous feature, respectively.
Collapse
Affiliation(s)
- Benoit Couvigny
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Pons
- MetaGenoPoliS, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Benoit Quinquis
- MetaGenoPoliS, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Thierry Meylheuc
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,INRA, Plateforme MIMA2, Jouy-en-Josas, France
| | - Christine Delorme
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Renault
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Lapaque
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Guédon
- STLO, UMR 1253, INRA, Agrocampus Ouest, Rennes, France
| |
Collapse
|
7
|
Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium,Streptococcus salivarius. Environ Microbiol 2017; 19:3579-3594. [DOI: 10.1111/1462-2920.13853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Benoit Couvigny
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Nicolas Lapaque
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Lionel Rigottier-Gois
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alain Guillot
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Sophie Chat
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Thierry Meylheuc
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Saulius Kulakauskas
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Manfred Rohde
- HZI, Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Michel-Yves Mistou
- Laboratory for Food Safety; Université Paris-Est, ANSES; Maisons-Alfort France
| | - Pierre Renault
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Joel Doré
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Romain Briandet
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Pascale Serror
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Eric Guédon
- STLO, UMR1253, INRA, Agrocampus Ouest; Rennes France
| |
Collapse
|
8
|
Haase EM, Kou Y, Sabharwal A, Liao YC, Lan T, Lindqvist C, Scannapieco FA. Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol 2017; 17:94. [PMID: 28427348 PMCID: PMC5399409 DOI: 10.1186/s12866-017-1005-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 01/19/2023] Open
Abstract
Background Successful commensal bacteria have evolved to maintain colonization in challenging environments. The oral viridans streptococci are pioneer colonizers of dental plaque biofilm. Some of these bacteria have adapted to life in the oral cavity by binding salivary α-amylase, which hydrolyzes dietary starch, thus providing a source of nutrition. Oral streptococcal species bind α-amylase by expressing a variety of amylase-binding proteins (ABPs). Here we determine the genotypic basis of amylase binding where proteins of diverse size and function share a common phenotype. Results ABPs were detected in culture supernatants of 27 of 59 strains representing 13 oral Streptococcus species screened using the amylase-ligand binding assay. N-terminal sequences from ABPs of diverse size were obtained from 18 strains representing six oral streptococcal species. Genome sequencing and BLAST searches using N-terminal sequences, protein size, and key words identified the gene associated with each ABP. Among the sequenced ABPs, 14 matched amylase-binding protein A (AbpA), 6 matched amylase-binding protein B (AbpB), and 11 unique ABPs were identified as peptidoglycan-binding, glutamine ABC-type transporter, hypothetical, or choline-binding proteins. Alignment and phylogenetic analyses performed to ascertain evolutionary relationships revealed that ABPs cluster into at least six distinct, unrelated families (AbpA, AbpB, and four novel ABPs) with no phylogenetic evidence that one group evolved from another, and no single ancestral gene found within each group. AbpA-like sequences can be divided into five subgroups based on the N-terminal sequences. Comparative genomics focusing on the abpA gene locus provides evidence of horizontal gene transfer. Conclusion The acquisition of an ABP by oral streptococci provides an interesting example of adaptive evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1005-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Yurong Kou
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Oral Biology, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Amarpreet Sabharwal
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yu-Chieh Liao
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Ruhl S, Sandberg AL, Cisar JO. Salivary Receptors for the Proline-rich Protein-binding and Lectin-like Adhesins of Oral Actinomyces and Streptococci. J Dent Res 2016; 83:505-10. [PMID: 15153461 DOI: 10.1177/154405910408300614] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colonization of the tooth surface by actinomyces and viridans group streptococci involves the attachment of these bacteria to adsorbed salivary components of the acquired enamel pellicle. The hypothesis that this attachment depends on specific adhesins has now been assessed from the binding of bacteria with well-defined adhesive properties to blots of SDS-PAGE-separated parotid and submandibular-sublingual (SM-SL) saliva. Streptococcus sanguis and type 2 fimbriated Actinomyces naeslundii, which bound terminal sialic acid and Galβ1-3GalNAc, respectively, recognized only a few SM-SL salivary components, primarily MG2. In contrast, type 1 fimbriated A. naeslundii and S. gordonii, which bound purified proline-rich proteins (PRPs), recognized several other components from both SM-SL and parotid saliva. Significantly, bacteria that lacked PRP-binding and the lectin-like activities detected by binding to MG2 failed to bind any immobilized salivary component. These findings suggest the involvement of specific adhesins in bacterial recognition of many adsorbed salivary proteins and glycoproteins.
Collapse
Affiliation(s)
- S Ruhl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, Building 30, Room 532, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
10
|
Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch. Appl Environ Microbiol 2015; 81:5363-74. [PMID: 26025889 DOI: 10.1128/aem.01221-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 01/14/2023] Open
Abstract
Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA(-) mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance.
Collapse
|
11
|
Sethi A, Mohanty B, Ramasubbu N, Gooley PR. Structure of amylase-binding protein A of Streptococcus gordonii: a potential receptor for human salivary α-amylase enzyme. Protein Sci 2015; 24:1013-8. [PMID: 25739638 DOI: 10.1002/pro.2671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 11/10/2022]
Abstract
Amylase-binding protein A (AbpA) of a number of oral streptococci is essential for the colonization of the dental pellicle. We have determined the solution structure of residues 24-195 of AbpA of Streptococcus gordonii and show a well-defined core of five helices in the region of 45-115 and 135-145. (13) Cα/β chemical shift and heteronuclear (15) N-{(1) H} NOE data are consistent with this fold and that the remainder of the protein is unstructured. The structure will inform future molecular experiments in defining the mechanism of human salivary α-amylase binding and biofilm formation by streptococci.
Collapse
Affiliation(s)
- Ashish Sethi
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Biswaranjan Mohanty
- Faculty of Pharmacy and Pharmaceutical Sciences, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Narayanan Ramasubbu
- Department of Oral Biology, 185 South Orange Ave, Rutgers School of Dental Medicine, Newark, New Jersey, 07103
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Maddi A, Haase E, Scannapieco F. Mass Spectrometric Analysis of Whole Secretome and Amylase-precipitated Secretome Proteins from Streptococcus gordonii.. ACTA ACUST UNITED AC 2014; 7:287-295. [PMID: 25605983 PMCID: PMC4297671 DOI: 10.4172/jpb.1000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oral biofilm (dental plaque) is formed by the initial adhesion of “pioneer species” to salivary proteins that form the dental pellicle on the tooth surface. One such pioneer species, Streptococcus gordonii, is known to bind salivary amylase through specific amylase-binding proteins such as amylase-binding protein A (AbpA). Recent studies have demonstrated that once bound, salivary amylase appears to modulate gene expression in S. gordonii. However, it is not known if this amylase-induced gene expression leads to secretion of proteins that play a role in plaque biofilm formation. In this study we examined the differences in secreted proteomes between S. gordonii KS1 (wild type) and AbpA-deficient (ΔAbpA) strains. We also examined the differentially precipitated secretome proteins following incubation with salivary amylase. The culture supernatants from KS1 and ΔAbpA were analyzed by nano-LC/MS/MS to characterize the whole secreted proteomes of the KS1 and ΔAbpA. A total of 107 proteins were identified in the KS1 and ΔAbpA secretomes of which 72 proteins were predicted to have an N-terminal signal peptide for secretion. Five proteins were differentially expressed between the KS1 and ΔAbpA secretomes; AbpA and sortase B were expressed exclusively by KS1, whereas Gdh, AdcA and GroEL were expressed only by ΔAbpA. Incubation of culture supernatants from KS1 and ΔAbpA with amylase (50 μg/ml) at room temperature for 2 h resulted in the differential precipitation of secretome proteins. Hypothetical protein (SGO_0483), cation-transporting ATPase YfgQ (Aha1), isocitrate dehydrogenase (Icd), sortase A (SrtA), beta-N-acetylhexosaminidase (SGO_0405), peptide chain release factor 1(PrfA) and cardiolipin synthase (SGO_2037) were precipitated by amylase from the KS1 culture supernatant. Among the identified secreted proteins and amylase-precipitated proteins, transcriptional regulator LytR (SGO_0535) and cation-transporting ATPase YfgQ (Aha1) are potential signaling proteins.
Collapse
Affiliation(s)
- A Maddi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA ; Periodontics and Endodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Em Haase
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Fa Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
13
|
Heo SM, Ruhl S, Scannapieco FA. Implications of salivary protein binding to commensal and pathogenic bacteria. J Oral Biosci 2013; 55:169-174. [PMID: 24707190 PMCID: PMC3974197 DOI: 10.1016/j.job.2013.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An important function of salivary proteins is to interact with microorganisms that enter the oral cavity. For some microbes, these interactions promote microbial colonization. For others, these interactions are deleterious and result in the elimination of the microbe from the mouth, This paper reviews recent studies of the interaction of salivary proteins with two model bacteria; the commensal species Streptococcus gordonii, and the facultative pathogen Staphylococcus aureus. These organisms selectively interact with a variety of salivary proteins to influence important functions such as bacterial adhesion to surfaces, evasion of host defense, bacterial nutrition and metabolism and gene expression.
Collapse
Affiliation(s)
- Seok-Mo Heo
- Department of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | | | - Frank A. Scannapieco
- Corresponding author: Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, Buffalo, New York 14214,
| |
Collapse
|
14
|
Zulfiqar M, Yamaguchi T, Sato S, Oho T. OralFusobacterium nucleatumsubsp.polymorphumbinds to human salivary α-amylase. Mol Oral Microbiol 2013; 28:425-34. [DOI: 10.1111/omi.12036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- M. Zulfiqar
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - T. Yamaguchi
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - S. Sato
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - T. Oho
- Department of Preventive Dentistry; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| |
Collapse
|
15
|
Schlafer S, Meyer RL, Sutherland DS, Städler B. Effect of osteopontin on the initial adhesion of dental bacteria. JOURNAL OF NATURAL PRODUCTS 2012; 75:2108-2112. [PMID: 23167781 DOI: 10.1021/np300514z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | | | | | | |
Collapse
|
16
|
Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl Environ Microbiol 2012; 79:416-23. [PMID: 23144140 DOI: 10.1128/aem.02581-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation.
Collapse
|
17
|
Kindblom C, Davies J, Herzberg M, Svensäter G, Wickström C. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. Mol Oral Microbiol 2012; 27:362-72. [DOI: 10.1111/j.2041-1014.2012.00650.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Response of fatty acid synthesis genes to the binding of human salivary amylase by Streptococcus gordonii. Appl Environ Microbiol 2012; 78:1865-75. [PMID: 22247133 DOI: 10.1128/aem.07071-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment.
Collapse
|
19
|
Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva. Arch Microbiol 2011; 193:905-10. [DOI: 10.1007/s00203-011-0746-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
|
20
|
Vorrasi J, Chaudhuri B, Haase EM, Scannapieco FA. Identification and characterization of amylase-binding protein C from Streptococcus mitis NS51. Mol Oral Microbiol 2010; 25:150-6. [PMID: 20331802 DOI: 10.1111/j.2041-1014.2009.00554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A substantial proportion of the streptococcal species found in dental plaque biofilms are able to interact with the abundant salivary enzyme alpha-amylase. These streptococci produce proteins that specifically bind amylase. An important plaque species, Streptococcus mitis, secretes a 36-kDa amylase-binding protein into the extracellular milieu. Proteins precipitated from S. mitis NS51 cell culture supernatant by the addition of purified salivary amylase were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to a membrane, and a prominent 36-kDa band was cut from the membrane and sequenced to yield the N-terminal amino acid sequence DSQAQYSNGV. Searching the S. mitis genome sequence database revealed a single open reading frame containing this sequence, and the gene was amplified by the S. mitis genomic DNA polymerase chain reaction. The coding region of this open reading frame, designated amylase-binding protein C (AbpC), was cloned into an Escherichia coli expression vector and the recombinant AbpC (rAbpC) was purified from the soluble fraction of the E. coli cell lysate. Purified AbpC was found to interact with immobilized amylase, confirming AbpC as a new streptococcal amylase-binding protein.
Collapse
Affiliation(s)
- J Vorrasi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
21
|
Skilton CJ, Tagg JR. Production byStreptococcus sanguisof Bacteriocin-like Inhibitory Substances (BLIS) with Activity AgainstStreptococcus rattus. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609209141589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- C. J. Skilton
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - J. R. Tagg
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
22
|
Hsu SD, Cisar JO, Sandberg AL, Kilian M. Adhesive Properties of Viridans Streptoccocal Species. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609409141342] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S. D. Hsu
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - J. O. Cisar
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - A. L. Sandberg
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - M. Kilian
- Institute of Medical Microbiology, University of Aarhus, DK-8000, Aarhus C, Denmark
| |
Collapse
|
23
|
Amylase-binding protein B of Streptococcus gordonii is an extracellular dipeptidyl-peptidase. Infect Immun 2008; 76:4530-7. [PMID: 18678669 DOI: 10.1128/iai.00186-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral commensal bacterium Streptococcus gordonii interacts with salivary amylase via two amylase-binding proteins, AbpA and AbpB. Based on sequence analysis, the 20-kDa AbpA protein is unique to S. gordonii, whereas the 82-kDa AbpB protein appears to share sequence homology with other bacterial dipeptidases. The aim of this study was to verify the peptidase activity of AbpB and further explore its potential functions. The abpB gene was cloned, and histidine-tagged AbpB (His-AbpB) was expressed in Escherichia coli and purified. Its amylase-binding activity was verified in an amylase ligand binding assay, and its cross-reactivity was verified with an anti-AbpB antibody. Both recombinant His-AbpB and partially purified native AbpB displayed dipeptidase activity and degraded human type VI collagen and fibrinogen, but not salivary amylase. Salivary amylase precipitates not only AbpA and AbpB but also glucosyltransferase G (Gtf-G) from S. gordonii supernatants. Since Streptococcus mutans also releases Gtf enzymes that could also be involved in multispecies plaque interactions, the effect of S. gordonii AbpB on S. mutans Gtf-B activity was also tested. Salivary amylase and/or His-AbpB caused a 1.4- to 2-fold increase of S. mutans Gtf-B sucrase activity and a 3- to 6-fold increase in transferase activity. An enzyme-linked immunosorbent assay verified the interaction of His-AbpB and amylase with Gtf-B. In summary, AbpB demonstrates proteolytic activity and interacts with and modulates Gtf activity. These activities may help explain the crucial role AbpB appears to play in S. gordonii oral colonization.
Collapse
|
24
|
Thurnheer T, Giertsen E, Gmür R, Guggenheim B. Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison. J Appl Microbiol 2008; 105:829-36. [PMID: 18452534 DOI: 10.1111/j.1365-2672.2008.03810.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model. METHODS AND RESULTS Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64.5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose. CONCLUSIONS The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose. SIGNIFICANCE AND IMPACT OF THE STUDY By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.
Collapse
Affiliation(s)
- T Thurnheer
- Institute for Oral Biology, Section for Oral Microbiology and General Immunology, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
25
|
Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S. gordonii and Streptococcus mutans. BMC Microbiol 2007; 7:60. [PMID: 17593303 PMCID: PMC3225810 DOI: 10.1186/1471-2180-7-60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 06/25/2007] [Indexed: 11/16/2022] Open
Abstract
Background Glucosyltransferases (Gtfs), enzymes that produce extracellular glucans from dietary sucrose, contribute to dental plaque formation by Streptococcus gordonii and Streptococcus mutans. The alpha-amylase-binding protein A (AbpA) of S. gordonii, an early colonizing bacterium in dental plaque, interacts with salivary amylase and may influence dental plaque formation by this organism. We examined the interaction of amylase and recombinant AbpA (rAbpA), together with Gtfs of S. gordonii and S. mutans. Results The addition of salivary alpha-amylase to culture supernatants of S. gordonii precipitated a protein complex containing amylase, AbpA, amylase-binding protein B (AbpB), and the glucosyltransferase produced by S. gordonii (Gtf-G). rAbpA was expressed from an inducible plasmid, purified from Escherichia coli and characterized. Purified rAbpA, along with purified amylase, interacted with and precipitated Gtfs from culture supernatants of both S. gordonii and S. mutans. The presence of amylase and/or rAbpA increased both the sucrase and transferase component activities of S. mutans Gtf-B. Enzyme-linked immunosorbent assay (ELISA) using anti-Gtf-B antibody verified the interaction of rAbpA and amylase with Gtf-B. A S. gordonii abpA-deficient mutant showed greater biofilm growth under static conditions than wild-type in the presence of sucrose. Interestingly, biofilm formation by every strain was inhibited in the presence of saliva. Conclusion The results suggest that an extracellular protein network of AbpA-amylase-Gtf may influence the ecology of oral biofilms, likely during initial phases of colonization.
Collapse
|
26
|
Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 2007; 189:3106-14. [PMID: 17277052 PMCID: PMC1855861 DOI: 10.1128/jb.01535-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.
Collapse
Affiliation(s)
- Angela H Nobbs
- Department of Diagnostic and Biological Sciences, University of Minnesota, 17-164 Moos Tower, 515 Delaware Street, S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
27
|
Kirchherr JL, Bowden GH, Cole MF, Kawamura Y, Richmond DA, Sheridan MJ, Wirth KA. Physiological and serological variation in Streptococcus mitis biovar 1 from the human oral cavity during the first year of life. Arch Oral Biol 2006; 52:90-9. [PMID: 17045561 PMCID: PMC1861816 DOI: 10.1016/j.archoralbio.2006.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of the study was to explore the physiological and antigenic diversity of a large number of Streptococcus mitis biovar 1 isolates in order to begin to determine whether these properties contribute to species persistence. DESIGN S. mitis biovar 1 was collected from four infants from birth to the first year of age. At each of eight to nine visits, 60 isolates each were obtained from the cheeks, tongue and incisors (once erupted) yielding 4440 in total. These were tested for production of neuraminidase, beta1-N-acetylglucosaminidase, beta1-N-acetylgalactosaminidase, IgA1 protease and amylase-binding. Antigenic diversity was examined by ELISA and Western immunoblotting using antisera raised against S. mitis biovar 1 NCTC 12261(T) and SK145. RESULTS Three thousand three hundred and thirty (75%) of the isolates were identified as S. mitis biovar 1 and 3144 (94.4%) could be divided into four large phenotypic groups based on glycosidase production. Fifty-four percent of the isolates produced IgA1 protease, but production was disproportionate among the phenotypes. Between one-third and one-half of the strains of each phenotype bound salivary alpha-amylase. Antisera against strains NCTC 12261(T) and SK145 displayed different patterns of reactivity with randomly selected representatives of the four phenotypes. CONCLUSIONS S. mitis biovar 1 is physiologically and antigenically diverse, properties which could aid strains in avoiding host immunity and promote re-colonization of a habitat or transfer to a new habitat.
Collapse
Affiliation(s)
- Jennifer L. Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| | - George H. Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | - Michael F. Cole
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| | | | - Dorothy A. Richmond
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C., U.S.A
| | | | - Katherine A. Wirth
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| |
Collapse
|
28
|
Hannig C, Wasser M, Becker K, Hannig M, Huber K, Attin T. Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle
in situ. J Biomed Mater Res A 2006; 78:755-61. [PMID: 16739107 DOI: 10.1002/jbm.a.30758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysozyme and amylase are the most abundant enzymatic components in the salivary pellicle. The purpose of the present study was to determine the influence of different substrata on amylase and lysozyme activity in salivary pellicles formed in situ. Slabs (5 mm diameter) of bovine dentine and enamel, of titanium, gold alloy, resin composite, PMMA, amalgam, and feldspar ceramic were fixed on the buccal sites of individual splints worn by six subjects for 30 min to allow pellicle formation. Thereafter, slabs were removed from the trays and rinsed with running water. Lysozyme activity was determined via lysis of Micrococcus lysodeicticus. Amylase activity was measured with a photometric method using 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosylmaltotriosid (GalG2CNP) as substrate. Both pellicle enzymes were evaluated in the immobilized as well as in the desorbed state. Salivary enzyme activities were also measured. All investigated pellicles exhibited lysozyme and amylase activity. Great intraindividual and interindividual differences were observed. Over all samples, immobilized amylase activity amounted to 0.65 +/- 0.64 mU/cm2. Immobilized lysozyme activity was 5.04 +/- 1.55 U/cm2. There were no major effects of the substratum on pellicle-bound amylase and lysozyme activity. Immobilized and desorbed enzyme activities revealed a strong correlation (lysozyme: r = 0.700; amylase: r = 0.990). Salivary enzyme activities had only little impact on pellicle-bound enzyme activities. Amylase and lysozyme are incorporated in the acquired in situ pellicle on different solid surfaces in an active conformation. Dental material and enzyme activity in the saliva have only little impact on enzymatic activity in the pellicle in situ.
Collapse
Affiliation(s)
- Christian Hannig
- Department of Operative Dentistry and Periodontology, University of Freiburg, Hugstetter Str. 55, D-79102 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Kirchherr JL, Bowden GH, Richmond DA, Sheridan MJ, Wirth KA, Cole MF. Clonal diversity and turnover of Streptococcus mitis bv. 1 on shedding and nonshedding oral surfaces of human infants during the first year of life. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1184-90. [PMID: 16210481 PMCID: PMC1247832 DOI: 10.1128/cdli.12.10.1184-1190.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus mitis bv. 1 is a pioneer colonizer of the human oral cavity. Studies of its population dynamics within parents and their infants and within neonates have shown extensive diversity within and between subjects. We examined the genetic diversity and clonal turnover of S. mitis bv. 1 isolated from the cheeks, tongue, and primary incisors of four infants from birth to 1 year of age. In addition, we compared the clonotypes of S. mitis bv. 1 isolated from their mothers' saliva collected in parallel to determine whether the mother was the origin of the clones colonizing her infant. Of 859 isolates obtained from the infants, 568 were unique clones. Each of the surfaces examined, whether shedding or nonshedding, displayed the same degree of diversity. Among the four infants it was rare to detect the same clone colonizing more than one surface at a given visit. There was little evidence for persistence of clones, but when clones were isolated on multiple visits they were not always found on the same surface. A similar degree of clonal diversity of S. mitis bv. 1 was observed in the mothers' saliva as in their infants' mouths. Clones common to both infant and mothers' saliva were found infrequently suggesting that this is not the origin of the infants' clones. It is unclear whether mucosal immunity exerts the environmental pressure driving the genetic diversity and clonal turnover of S. mitis bv. 1, which may be mechanisms employed by this bacterium to evade immune elimination.
Collapse
Affiliation(s)
- Jennifer L Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The acquired pellicle is a biofilm, free of bacteria, covering oral hard and soft tissues. It is composed of mucins, glycoproteins and proteins, among which are several enzymes. This review summarizes the present state of research on enzymes and their functions in the dental pellicle. Theoretically, all enzymes present in the oral cavity could be incorporated into the pellicle, but apparently enzymes are adsorbed selectively onto dental surfaces. There is clear evidence that enzymes are structural elements of the pellicle. Thereby they exhibit antibacterial properties but also facilitate bacterial colonization of dental hard tissues. Moreover, the immobilized enzymes are involved in modification and in homeostasis of the salivary pellicle. It has been demonstrated that amylase, lysozyme, carbonic anhydrases, glucosyltransferases and fructosyltransferase are immobilized in an active conformation in the pellicle layer formed in vivo. Other enzymes, such as peroxidase or transglutaminase, have been investigated in experimental pellicles. Despite the depicted impact of enzymes on the formation and function of pellicle, broader knowledge on their properties in the in vivo-formed pellicle is required. This might be beneficial in the development of new preventive and diagnostic strategies.
Collapse
Affiliation(s)
- Christian Hannig
- Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
31
|
Kirchherr JL, Bowden GH, Richmond DA, Sheridan MJ, Wirth KA, Cole MF. Distribution of Streptococcus mitisbiovar 1 phenotypes on shedding and non-shedding oral surfaces of human infants during the first year of life. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2005. [DOI: 10.1080/08910600500433015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jennifer L. Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - George H. Bowden
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | - Dorothy A. Richmond
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC
| | | | - Katherine A. Wirth
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Michael F. Cole
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
32
|
Costalonga M, Hodges JS, Herzberg MC. Streptococcus sanguis modulates type II collagen-induced arthritis in DBA/1J mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2189-95. [PMID: 12165549 DOI: 10.4049/jimmunol.169.4.2189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Native type II collagen is tolerogenic when given orally or i.p. to DBA/1J mice and induces autoimmune arthritis when given s.c. in CFA. The tolerogenic epitope is contained in cyanogen bromide fragment 11 (CB11) and is structurally mimicked by PGEQGPK within the platelet aggregation-associated protein (PAAP) on Streptococcus sanguis. To learn whether S. sanguis modulates transmucosally the Ag-specific development of autoimmune arthritis, DBA/1J pups were given live S. sanguis, CB11, or type II collagen intragastrically. Feeding S. sanguis at 6 days postpartum delayed the onset of arthritis, and reduced the rate, final severity, and percentage of affected limbs. Next, PAAP(+) S. sanguis and type II collagen were tested for T cell cross-reactivity. T cells primed with the tolerogenic epitope of type II collagen proliferated more when incubated with PAAP(+) S. sanguis than with PAAP(-) Streptococcus gordonii or type II collagen, suggesting an Ag-specific transmucosal tolerogenic effect. In neonatal mice, therefore, bacterial surface Ags that mimic self can transmucosally stimulate Ag-specific inhibitory T cells. In adult mice immunized with type II collagen, these Ag-specific inhibitory T cells manifest later as attenuated arthritis. The PAAP(+) S. sanguis appear to activate adult memory, rather than naive, type II collagen-specific T cells, suggesting that systemic challenge with commensal self-mimicking microorganisms may perpetuate existing autoimmunity, but not initiate autorecognition.
Collapse
Affiliation(s)
- Massimo Costalonga
- Department of Preventive Sciences and Minnesota Oral Health Clinical Research Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
33
|
Abstract
The purpose of this study was to examine the genetic structure of the typical commensal Streptococcus mitis biovar 1 in its natural habitat in the human oral cavity and pharynx and to investigate the role that selected microbial properties and host, spatial, and temporal factors play in determining the structure of the bacterial population. Consecutive samples were collected from buccal and pharyngeal mucosal surfaces of two infants, their four parents, and two elderly individuals over a period of approximately 1 year. A total of 751 isolates identified as S. mitis biovar 1 were typed by restriction endonuclease analysis (REA) and representative clones were typed by multilocus enzyme electrophoresis (MLEE). The genetic diversity of the S. mitis biovar 1 isolates collected from single infant hosts over a period of 9 to 10 months was found to be between 0.69 and 0.76, which is considerably higher than that previously observed for intestinal populations of Escherichia coli. The study provides evidence of the existence of both transient and persistent clones in adult individuals. In the two infants, however, none of 42 demonstrated clones were detected on more than a single occasion. Statistical calculations showed that the ability to persist was not distributed at random in the S. mitis biovar 1 population. However, neither immunoglobulin A1 protease activity nor the ability to bind alpha-amylase from saliva was a preferential characteristic of persistent genotypes. In contrast to current concepts of climax ecosystems, the species niche in the habitat appears to be maintained predominantly by a succession of clones rather than by stable strains. Several lines of evidence suggest that the major origin of "new" clones is the many other habitats in the respiratory tract that are occupied by this species.
Collapse
Affiliation(s)
- J Hohwy
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
34
|
Tanzer JM, Baranowski LK, Rogers JD, Haase EM, Scannapieco FA. Oral colonization and cariogenicity of Streptococcus gordonii in specific pathogen-free TAN:SPFOM(OM)BR rats consuming starch or sucrose diets. Arch Oral Biol 2001; 46:323-33. [PMID: 11269866 DOI: 10.1016/s0003-9969(00)00126-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The significance of Streptococcus gordonii in dental caries is undefined, as is that of other alpha-amylase-binding bacteria (ABB) commonly found in the mouth. To clarify the ecological and cariological roles of S. gordonii our specific pathogen-free Osborne-Mendel rats, TAN:SPFOM(OM)BR, were fed either diet 2000 (containing 56% confectioner's sugar, most of which is sucrose) or diet 2000CS (containing 56% cornstarch, in lieu of confectioner's sugar) and inoculated with S. gordonii strains. Uninoculated rats were free of both indigenous mutans streptococci (MS) and ABB, including S. gordonii, as shown by culture on mitis salivarius and blood agars of swabs and sonicates of dentitions after weanlings had consumed these diets for 26 days. ABB were detected by radiochemical assay using [125I]-amylase reactive to alpha-amylase-binding protein characteristic of the surface of S. gordonii and other ABB. No ABB were detected (detection limit < 1 colony-forming units in 10(6) colony-forming units). Thus the TAN:SPFOM(OM)BR colony presents a 'clean animal model' for subsequent study. Consequently, S. gordonii strains Challis or G9B were used to inoculate weanling rat groups consuming either the high-sucrose diet 2000 or the cornstarch diet 2000CS. Two additional groups fed each of these diets remained unioculated. Recoveries of inoculants were tested 12 and 26 days later by oral swabs and sonication of the molars of one hemimandible of each animal, respectively. Uninoculated animals were reconfirmed to be free of ABB and mutans streptococci, but inoculated ones eating diet 2000CS had S. gordonii recoveries of 1-10% or, if eating diet 2000, 10-30% of total colony-farming units in sonicates. There were no statistically significant differences among the inoculated and uninoculated animal groups' caries scores when they ate the cornstarch diet. Lesion scores for sucrose-eating rats were, however, from 2.4-5.1-fold higher than for cornstarch-eating rats, P < 0.001, and were still higher if animals had been inoculated with either Challis (1.41-fold) or G9B (1.64-fold), than if uninoculated, both P < 0.001, so long as the rats ate the sucrose diet. Therefore, TAN:SPFOM(OM)BR rats do not harbour ABB or S. gordonii but can be colonized by S. gordonii. Colonization levels of S. gordonii on the teeth are higher in the presence of high sucrose than with high starch-containing diets. Caries scores are augmented by sucrose compared with starch, and are further augmented by S gordonii colonization. S. gordonii is thus cariologically significant in the presence of sucrose, at least in this rat.
Collapse
Affiliation(s)
- J M Tanzer
- Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030-1605, USA.
| | | | | | | | | |
Collapse
|
35
|
Brown AE, Rogers JD, Haase EM, Zelasko PM, Scannapieco FA. Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. J Clin Microbiol 1999; 37:4081-5. [PMID: 10565935 PMCID: PMC85885 DOI: 10.1128/jcm.37.12.4081-4085.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salivary amylase binds specifically to a number of oral streptococcal species. This interaction may play an important role in dental plaque formation. Recently, a 585-bp gene was cloned and sequenced from Streptococcus gordonii Challis encoding a 20.5-kDa amylase-binding protein (AbpA). The goal of this study was to determine if related genes are present in other species of oral streptococci. Biotinylated abpA was used in Southern blot analysis to screen genomic DNA from several strains representing eight species of oral streptococci. This probe hybridized with a 4.0-kb HindIII restriction fragment from all 13 strains of S. gordonii tested. The probe did not appear to bind to any restriction fragments from other species of amylase-binding oral streptococci including Streptococcus mitis (with the exception of 1 of 14 strains), Streptococcus crista (3 strains), Streptococcus anginosus (1 strain), and Streptococcus parasanguinis (1 strain), or to non-amylase-binding oral streptococci including Streptococcus sanguinis (3 strains), Streptococcus oralis (4 strains), and Streptococcus mutans (1 strain). Primers homologous to sequences within the 3' and 5' ends of abpA yielded products of 400 bp following PCR of genomic DNA from the Southern blot-positive strains. Several of these PCR products were cloned and sequenced. The levels of similarity of these cloned products to the abpA of S. gordonii Challis ranged from 91 to 96%. These studies reveal that the abpA gene appears to be specific to S. gordonii and differs from genes encoding amylase-binding proteins from other species of amylase-binding streptococci.
Collapse
Affiliation(s)
- A E Brown
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
A Streptococcus sanguis 133-79 adhesin identified by the monoclonal antibody 1.1 (MAb 1.1) binds both saliva-coated hydroxylapatite (sHA) and platelets. The complementary binding site(s) for the adhesin was identified by the anti-idiotypical MAb 2.1. To learn if this adhesion system, marked by the antiadhesin MAb 1.1 and anti-binding site MAb 2.1, is commonly used by strains within the sanguis group and other viridans group streptococci, 42 strains from seven species were tested. Strains that bind to both sHA and platelets use the same adhesin and binding site epitopes. Strains that do not adhere to platelets rely on other adhesin specificities to bind to sHA.
Collapse
Affiliation(s)
- K Gong
- Department of Preventive Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
37
|
Rogers JD, Haase EM, Brown AE, Douglas CWI, Gwynn JP, Scannapieco FA. Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1223-1233. [PMID: 9611797 DOI: 10.1099/00221287-144-5-1223] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oral streptococci such as Streptococcus gordonii bind the abundant salivary enzyme alpha-amylase. This interaction may be important in dental plaque formation and metabolism, thus contributing to the initiation and progression of dental caries and periodontal disease, the two most common plaque-mediated diseases. The conjugative transposon Tn916 was used to insertionally inactivate gene(s) essential to the expression of amylase-binding components of S. gordonii Challis, and a mutant deficient in amylase-binding (Challis Tn1) was identified. While wild-type strains of S. gordonii released both 20 kDa and 82 kDa amylase-binding proteins into culture supernatants, Challis Tn1 expressed the 82 kDa but not the 20 kDa protein. The 20 kDa amylase-binding protein was isolated from culture supernatants of S. gordonii Challis by hydroxyapatite chromatography. A partially purified, functionally active 20 kDa protein was sequenced from blots, and the N-terminal sequence obtained was found to be DEP(A)TDAAT(R)NND. A novel strategy, based on the single-specific-primer polymerase chain reaction technique, enabled the gene inactivated by Tn916 to be cloned. Analysis of the resultant nucleotide sequence revealed an open reading frame of 585 bp, designated amylase-binding protein A (abpA), encoding a protein of 20 kDa (AbpA), immediately downstream from the insertion site of Tn916. This protein possessed a potential signal peptide followed by a region having identity with the N-terminal sequence of the 20 kDa amylase-binding protein. These results demonstrate the role of the 20 kDa protein in the binding of amylase to S. gordonii. Knowledge of the nature of amylase-binding proteins may provide a better understanding of the role of these proteins in the colonization of S. gordonii in the oral cavity.
Collapse
Affiliation(s)
- Jeffrey D Rogers
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Alan E Brown
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Charles W I Douglas
- Department of Oral Pathology, University of Sheffield, Sheffield S10 2TA, UK
| | - Justin P Gwynn
- Department of Oral Pathology, University of Sheffield, Sheffield S10 2TA, UK
| | - Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
38
|
Cisar JO, Takahashi Y, Ruhl S, Donkersloot JA, Sandberg AL. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. Adv Dent Res 1997; 11:168-75. [PMID: 9524453 DOI: 10.1177/08959374970110010801] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oral surfaces are bathed in secretory antibodies and other salivary macromolecules that are potential inhibitors of specific microbial adhesion. Indigenous Gram-positive bacteria that colonize teeth, including viridans streptococci and actinomyces, may avoid inhibition of adhesion by host secretory molecules through various strategies that involve the structural design and binding properties of bacterial adhesins and receptors. Further studies to define the interactions of these molecules within the host environment may suggest novel approaches for the control of oral biofilm formation.
Collapse
Affiliation(s)
- J O Cisar
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Iontcheva I, Oppenheim FG, Troxler RF. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res 1997; 76:734-43. [PMID: 9109822 DOI: 10.1177/00220345970760030501] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heterotypic complexes between the high-molecular-weight mucin MG1 and other salivary proteins in human submandibular/sublingual secretion (HSMSL) could have a significant impact on the biological properties of these proteins in oral fluids in both health and disease. We describe a mild procedure for isolation and purification of native MG1 by gel filtration chromatography on Sepharose CL-2B which does not involve dialysis, lyophilization, use of denaturing agents, or covalent modification. Western blots of native MG1 probed with antibodies against 8 different salivary proteins showed that complexing occurs between MG1 and salivary amylase, proline-rich proteins (PRPs), statherins, and histatins but not MG1, sIgA, secretory component, or cystatins. When native MG1 was placed in 4 M guanidine hydrochloride and chromatographed on Sepharose CL-4B, ELISA measurement of column fractions showed that amylase, PRPs, statherins, and histatins were released. Interestingly, gel filtration resolved the material which eluted into 4 or 5 distinct peaks, suggesting that the released entities were heterotypic complexes. From these studies, the occurrence of at least three different types of complexes between MG1 and other salivary proteins has been identified. Type 1 complexes are dissociated by SDS-PAGE and in 4 M guanidine hydrochloride. Type II complexes are not dissociated under these conditions. Type III complexes are dissociated during SDS-PAGE and by 4 M guanidine hydrochloride, but the released proteins appear to be complexes containing amylase, PRPs, statherins, and histatins. The possible functional role of heterotypic complexes between MG1 and other salivary proteins as a physiologic delivery system, a mechanism for protection against proteolysis, a repository for precursors of the acquired enamel pellicle, and a vehicle for modulation of the viscoelastic and rheological properties of saliva is discussed.
Collapse
Affiliation(s)
- I Iontcheva
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
40
|
Rudney JD, Ji Z, Larson CJ. Saliva protein binding to streptococcal layers placed at different oral sites in 48 persons. J Dent Res 1996; 75:1789-97. [PMID: 8955674 DOI: 10.1177/00220345960750101201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Preliminary studies of 10 subjects suggested that saliva protein binding to oral bacteria might vary among oral sites. This study investigated saliva protein binding to layers of oral streptococci in an expanded sample of 48 subjects. Those persons were at opposite extremes for unstimulated whole saliva amylase, sIgA, lactoferrin, and lysozyme in an initial screening of 128 individuals. Layers of Streptococcus gordonii Blackburn or Streptococcus oralis 10557 on enamel chips were placed on buccal left and right upper premolars and molars (UL, UR), labial upper central incisors (UC), and lingual lower central incisors (LL). After a 10-minute exposure to saliva, bacterial extracts were assayed for bound amylase, sIgA, lactoferrin, and lysozyme. Those proteins also were quantified in unstimulated whole saliva collected after chip exposure. Both strains bound significantly more amylase at UL and UR, and significantly less at UC. Blackburn bound more amylase than 10557 at all sites. Significantly less sIgA was bound at UC; strain differences for sIgA were inconsistent across sites. Significantly more lactoferrin and lysozyme were bound at LL. There were no strain differences for lactoferrin; 10557 bound significantly more lysozyme at UL and UR. Subjects at opposite extremes for saliva protein concentrations differed for bound amylase and lactoferrin; those differences were smaller than site and strain differences. Bound protein levels were correlated across sites and strains. Correlations between whole saliva and bound proteins were moderate and were most consistent at LL. These findings suggest that saliva protein effects on oral ecology may vary among oral sites.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
41
|
Fitzsimmons S, Evans M, Pearce C, Sheridan MJ, Wientzen R, Bowden G, Cole MF. Clonal diversity of Streptococcus mitis biovar 1 isolates from the oral cavity of human neonates. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1996; 3:517-22. [PMID: 8877128 PMCID: PMC170399 DOI: 10.1128/cdli.3.5.517-522.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The clonal diversity of 101 isolates of the pioneer bacterium Streptococcus mitis biovar 1 obtained from the oral cavities of 40 human neonates 1 to 3 days, 2 weeks, and 1 month postpartum was examined by using rRNA gene restriction patterns. There was a high degree of genetic diversity, with the 101 isolates comprising 93 unique PvuII ribotypes. There were eight identical pairs of ribotype patterns, and seven of the eight pairs were obtained from individual neonates. Only one identical pair comprised isolates obtained from different neonates. In all but two cases, isolates with matching ribotypes were obtained at one visit. Two pairs of isolates with matching ribotype patterns were obtained from neonates on successive visits. The ribotype patterns of the isolates were examined by cluster analysis. The isolates forming each cluster were very similar, yet each cluster was well separated from its neighbors. When several isolates were obtained from individual neonates at a particular visit, in some instances they were contained in a single cluster, whereas in other cases each isolate was contained in a separate cluster. Isolates obtained from individual neonates on successive visits tended to be contained in different clusters. This high degree of diversity, which has been observed in other mucosal commensal bacteria, may serve as a mechanism for avoiding immune elimination of these bacteria.
Collapse
Affiliation(s)
- S Fitzsimmons
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
A biochemical identification scheme has been produced that allows for the differentiation of nine distinct species within the Streptococcus sanguis group. The species are S. sanguis, S. gordonii, S. crista, S. oralis, S. parasanguis, S. defectivus, S. adjacens and S. mitis, which have been previously described, and a new species, S. australis; in addition two distinct subspecies, S. oralis subsp. corona and S. oralis subsp. mitior, have been identified. DNA-DNA hybridization confirmed the separation of strains into the species. A new type of peptidoglycan peptide linkage, lys-ala-gly was also found within the species S. parasanguis and S. australis that has not been observed within the streptococci previously. DNA fingerprinting was shown to be a useful method for discriminating between strains within species, but did not allow discrimination between species.
Collapse
Affiliation(s)
- M D Willcox
- Cornea and Contact Lens Research Unit, University of New South Wales
| |
Collapse
|
43
|
Vacca-Smith AM, Venkitaraman AR, Quivey RG, Bowen WH. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite. Arch Oral Biol 1996; 41:291-8. [PMID: 8735015 DOI: 10.1016/0003-9969(95)00129-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary alpha-amylase in solution and on the surface of saliva-coated hydroxyapatite (SHA) beads. The Gtf enzymes -B, -C and -D, when immobilized on to SHA beads, reduced the activity of adsorbed amylase; GtfD showed the highest inhibition of salivary amylase activity. The presence of glucan produced by immobilized GtfD did not further reduce amylase activity. The amount of amylase adsorbed on to hydroxyapatite beads was reduced when salivary amylase was added simultaneously with any of the Gtf enzymes, suggesting that amylase and Gtfs may compete with each other for binding sites on hydroxyapatite. Starch hydrolysates produced by SHA-surface-bound salivary amylase were tested for their effect on glucan production from sucrose by Gtf enzymes in solution and on SHA beads; glucan production by SHA-immobilized GtfB was stimulated in the presence of starch hydrolysates. Glucan synthesized by SHA-immobilized GtfB in the presence of starch hydrolysates was less susceptible to hydrolysis by the fungal enzyme mutanase than was glucan made by SHA-immobilized GtfB in the absence of starch hydrolysates. Glucan production by GtfB associated with streptococci immobilized on to SHA was also enhanced in the presence of starch hydrolysates. The adhesion of oral micro-organisms to SHA coated with glucan made in the presence and absence of starch hydrolysates was investigated, and some bacteria displayed higher adhesion activities for the glucan made in the presence of the hydrolysates. Therefore, the interaction of amylase and Gtf enzymes on a SHA surface may modulate the formation of glucan and the adherence of oral micro-organisms.
Collapse
Affiliation(s)
- A M Vacca-Smith
- Department of Dental Research, Rochester Caries Research Center, University of Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
44
|
Rudney JD. Does variability in salivary protein concentrations influence oral microbial ecology and oral health? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:343-67. [PMID: 8664423 DOI: 10.1177/10454411950060040501] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salivary protein interactions with oral microbes in vitro include aggregation, adherence, cell-killing, inhibition of metabolism, and nutrition. Such interactions might be expected to influence oral ecology. However, inconsistent results have been obtained from in vivo tests of the hypothesis that quantitative variation in salivary protein concentrations will affect oral disease prevalence. Results may have been influenced by choices made during study design, including saliva source, stimulation status, control for flow rate, and assay methods. Salivary protein concentrations also may be subject to circadian variation. Values for saliva collected at the same time of day tend to remain consistent within subjects, but events such as stress, inflammation, infection, menstruation, or pregnancy may induce short-term changes. Long-term factors such as aging, systemic disease, or medication likewise may influence salivary protein concentrations. Such sources of variation may increase the sample size needed to find statistically significant differences. Clinical studies also must consider factors such as human population variation, strain and species differences in protein-microbe interactions, protein polymorphism, and synergistic or antagonistic interaction between proteins. Salivary proteins may form heterotypic complexes with unique effects, and different proteins may exert redundant effects. Patterns of protein-microbe interaction also may differ between oral sites. Future clinical studies must take those factors into account. Promising approaches might involve meta-analysis or multi-center studies, retrospective and prospective longitudinal designs, short-term measurement of salivary protein effects, and consideration of individual variation in multiple protein effects such as aggregation, adherence, and cell-killing.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
45
|
Bergmann JE, Gülzow HJ. Detection of binding of denatured salivary alpha-amylase to Streptococcus sanguis. Arch Oral Biol 1995; 40:973-4. [PMID: 8526808 DOI: 10.1016/0003-9969(95)00070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native alpha-amylase, either solubilized, or immobilized and tested with an overlay immunotechnique, was bound in a species-specific manner to Streptococcus mitis and to one of the Streptococcus gordonii strains. However, only insignificant amounts of alpha-amylase were bound to Streptococcus sanguis and all other strains tested. When alpha-amylase was denatured before immobilization, Streptococcus sanguis bound strongly to the protein while binding of other strains was insignificant.
Collapse
Affiliation(s)
- J E Bergmann
- Dept. of Conservative and Preventive Dentistry, University of Hamburg, Dental School, Germany
| | | |
Collapse
|
46
|
Scannapieco FA, Torres GI, Levine MJ. Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite. J Dent Res 1995; 74:1360-6. [PMID: 7560386 DOI: 10.1177/00220345950740070701] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies have demonstrated that several species of oral streptococci, such as Streptococcus gordonii, bind soluble salivary alpha-amylase. The goal of the present study was to determine if amylase immobilized onto a surface such as hydroxyapatite can serve as an adhesion receptor for S. gordonii. Initially, human parotid saliva was fractionated on Bio-Gel P60, and fractions were screened for their ability to promote adhesion of S. gordonii to hydroxyapatite. Fractions containing alpha-amylase and proline-rich proteins promoted the adhesion of [3H]-labeled S. gordonii to hydroxyapatite. Similar findings were obtained with purified amylase and acidic proline-rich protein 1 (PRP1). Incubation of S. gordonii G9B in the presence of starch and maltotriose increased the binding of this strain to amylase-coated hydroxyapatite, while the adhesion of S. sanguis 10556 to amylase-coated hydroxyapatite was not affected by these saccharides. These results suggest that amylase may serve as a hydroxyapatite pellicle receptor for amylase-binding streptococci. Furthermore, starch and starch metabolites may enhance the adhesion of amylase-binding streptococci to amylase in dental pellicles to augment the formation of dental plaque.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214, USA
| | | | | |
Collapse
|
47
|
Rudney JD, Ji Z, Larson CJ, Liljemark WF, Hickey KL. Saliva protein binding to layers of oral streptococci in vitro and in vivo. J Dent Res 1995; 74:1280-8. [PMID: 7543122 DOI: 10.1177/00220345950740060701] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This paper reports a system for measuring saliva protein binding to oral streptococci. Enamel chips with layers of Streptococcus gordonii Blackburn or Streptococcus oralis 10557 were incubated in vitro with whole saliva from eight persons. Blackburn bound significantly more amylase than 10557; no strain differences were seen for lysozyme or lactoferrin. There were significant correlations between saliva and bound amylase and lactoferrin. Blackburn and 10557 chips were then placed in ten subjects. Sites included the buccal left and right upper premolars and molars (UL, UR), labial upper central incisors (UC), and lingual lower central incisors (LL). That study was repeated three months later; chips with Streptococcus sanguis 13379 were also placed then. Blackburn bound significantly more amylase than the other strains. Blackburn and 10557 both bound the most amylase at UL and UR, and the least amylase at UC. However, strain 13379 bound less amylase at UL. That strain also bound significantly less sIgA at UL. All three strains bound the least sIgA at UC. Lysozyme and lactoferrin binding showed few differences among sites or strains. Bound protein concentrations were significantly correlated across sites and strains within subjects, but not correlated with whole saliva. Strain differences may reflect species differences in amylase binding, or differences in species-specific sIgA titers. Site differences may indicate local variation in protein availability. Differences between chip correlations with whole saliva in vitro and in vivo suggest that the salivary film may be modified as it flows over tooth surfaces.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
48
|
Hohwy J, Kilian M. Clonal diversity of the Streptococcus mitis biovar 1 population in the human oral cavity and pharynx. ORAL MICROBIOLOGY AND IMMUNOLOGY 1995; 10:19-25. [PMID: 7644269 DOI: 10.1111/j.1399-302x.1995.tb00113.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A total of 250 isolates of oral streptococci were recovered from swabs of oropharyngeal surfaces of 3 members of one family. All isolates were examined by biochemical and serological means, and 106 isolates were identified as Streptococcus mitis biovar 1. These were typed by restriction endonuclease analysis using the enzymes EcoRI and HaeIII and further characterized by their whole-cell polypeptide profile patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, rabbit antisera raised against 8 reference strains of oral streptococci were used to characterize representative isolates both by their carbohydrate and protein antigens by Ouchterlony and Western blot analyses. Very limited biochemical diversity was observed among the 106 S. mitis biovar 1 isolates. In contrast, 24 different genotypes defined by restriction endonuclease analysis were detected, and each individual carried 6-13 types. Limited sharing of genotypes was observed between the 3 members of the same family and between the pharyngeal and buccal mucosa of single individuals. The antigenic analyses showed remarkable antigenic diversity between the 24 genotypes. The results provide a basis for studying the population dynamics of an oral commensal species and its interaction with the salivary immune system.
Collapse
Affiliation(s)
- J Hohwy
- Department of Oral Biology, Institute of Medical Microbiology, Faculty of Health Sciences, University of Aarhus, Denmark
| | | |
Collapse
|
49
|
Johnson FB, Oertel YC, Ammann K. Sialadenitis with crystalloid formation: a report of six cases diagnosed by fine-needle aspiration. Diagn Cytopathol 1995; 12:76-80. [PMID: 7789253 DOI: 10.1002/dc.2840120118] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Six cases of sialadenitis diagnosed by fine-needle aspiration contained large numbers of crystalloids. Light microscopy, ultrastructure, and chemical analysis suggest that the crystalloids represent crystallized salivary alpha-amylase. The inflammatory swelling may mimic benign and/or malignant neoplasms of the salivary glands. Drainage and/or antibiotic therapy may allow surgery to be avoided in these patients.
Collapse
Affiliation(s)
- F B Johnson
- Armed Forces Institute of Pathology, Washington, D.C., USA
| | | | | |
Collapse
|
50
|
Abstract
Certain species of oral streptococci bind salivary amylase to their cell surface. The patterns of amylase-binding proteins produced by a range of streptococci have been compared by ligand blotting and several characteristics of the binding proteins investigated. Streptococcus gordonii was the most homogeneous species and almost all strains produced proteins migrating with molecular mass 82 kDa and 20 kDa. Other species were more heterogeneous, releasing proteins that resolved at 87 or 82 kDa and/or between 20 and 36 kDa. Binding of amylase to the 82/87-kDa proteins on ligand blots was prevented by amylase inhibitors, amylase substrates and periodate treatment but these had limited or no effect on amylase binding to 20-36 kDa proteins. Also, the 20 kDa protein of S. gordonii Challis was released into culture medium before the 82-kDa protein. These data suggest that there is significant variation in amylase-binding proteins among streptococci and that the high and low molecular mass proteins differ in the way they interact with salivary amylase.
Collapse
Affiliation(s)
- J P Gwynn
- Department of Oral Pathology, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, UK
| | | |
Collapse
|