1
|
Preventive, Diagnostic and Therapeutic Applications of Baculovirus Expression Vector System. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2018. [PMCID: PMC7115001 DOI: 10.1007/978-3-319-61343-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different strategies are being worked out for engineering the original baculovirus expression vector (BEV) system to produce cost-effective clinical biologics at commercial scale. To date, thousands of highly variable molecules in the form of heterologous proteins, virus-like particles, surface display proteins/antigen carriers, heterologous viral vectors and gene delivery vehicles have been produced using this system. These products are being used in vaccine production, tissue engineering, stem cell transduction, viral vector production, gene therapy, cancer treatment and development of biosensors. Recombinant proteins that are expressed and post-translationally modified using this system are also suitable for functional, crystallographic studies, microarray and drug discovery-based applications. Till now, four BEV-based commercial products (Cervarix®, Provenge®, Glybera® and Flublok®) have been approved for humans, and myriad of others are in different stages of preclinical or clinical trials. Five products (Porcilis® Pesti, BAYOVAC CSF E2®, Circumvent® PCV, Ingelvac CircoFLEX® and Porcilis® PCV) got approval for veterinary use, and many more are in the pipeline. In the present chapter, we have emphasized on both approved and other baculovirus-based products produced in insect cells or larvae that are important from clinical perspective and are being developed as preventive, diagnostic or therapeutic agents. Further, the potential of recombinant adeno-associated virus (rAAV) as gene delivery vector has been described. This system, due to its relatively extended gene expression, lack of pathogenicity and the ability to transduce a wide variety of cells, gained extensive popularity just after the approval of first AAV-based gene therapy drug alipogene tiparvovec (Glybera®). Numerous products based on AAV which are presently in different clinical trials have also been highlighted.
Collapse
|
2
|
Kiselyova EP, Tsyganova OV, Vashkevich II, Sviridov OV. Immunoaffinity chromatography of human thyroid peroxidase: The stability of the three-dimensional structure and immunoreactivity of antigen and antibodies under various elution conditions. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Scholz C, Thirault L, Schaarschmidt P, Zarnt T, Faatz E, Engel AM, Upmeier B, Bollhagen R, Eckert B, Schmid FX. Chaperone-Aided in Vitro Renaturation of an Engineered E1 Envelope Protein for Detection of Anti-Rubella Virus IgG Antibodies. Biochemistry 2008; 47:4276-87. [DOI: 10.1021/bi702435v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Scholz
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Laurence Thirault
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Peter Schaarschmidt
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Toralf Zarnt
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Elke Faatz
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Alfred Michael Engel
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Barbara Upmeier
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Ralf Bollhagen
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Barbara Eckert
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Franz Xaver Schmid
- Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany, and Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
4
|
Giessauf A, Flaim M, Walder G, Dierich MP, Würzner R. Preparation of immunoblot test stripes from a Rubella virus-like particles dye crystal complex as antigen. Arch Virol 2005; 150:2077-90. [PMID: 15868096 DOI: 10.1007/s00705-005-0538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 02/24/2005] [Indexed: 12/12/2022]
Abstract
Stably transfected Chinese hamster ovary (CHO24S) cells were the source for Rubella virus-like particles (RVLP) containing all structural proteins (E1, E2, C and their dimers). RVLP are secreted from the CHO24S cells into the medium and the time-point for collecting the medium with the highest yield of >100 kDa proteins (with 17 mg protein from 10 ml cell culture supernatant) was after 2 days of incubation. Different methods for RVLP isolation from the cell culture supernatants were assessed by SDS-PAGE and Western blotting (using sera positive or negative for Rubella virus (RV)-specific antibodies or an anti-E1 monoclonal antibody). A combination of membrane filtration with a rapid, novel gradient ultracentrifugation step (using Coomassie brilliant blue G crystals as adsorbens for RVLP that facilitated virus isolation) was the most suitable technique. 132 RV-positive human sera (RV IgG > 20 IU/ml by commercial ELISA) were tested by our "self made" immunoblot test stripes (using RVLP adsorbed to dye crystals as antigen) for the presence or absence of antibodies specific for RV structural proteins. 57.6% of these sera had antibodies against E1, E2 and C, 31% against E1 and C, and 1.5% against E1 only, whereas 3.8% had no RV specific antibodies and only 6.0% were equivocal which demonstrated that these "self made" test stripes can reliably differentiate RV antibody specificities.
Collapse
Affiliation(s)
- A Giessauf
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
5
|
Orellana A, Mottershead D, van der Linden I, Keinänen K, Oker-Blom C. Mimicking rubella virus particles by using recombinant envelope glycoproteins and liposomes. J Biotechnol 1999; 75:209-19. [PMID: 10553659 DOI: 10.1016/s0168-1656(99)00162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope glycoproteins E1 and E2 of rubella virus (RV) were engineered to display the FLAG epitope tag and a polyhistidine tag, at their amino and carboxy termini, respectively. These modified envelope proteins were produced in Sf9 insect cells utilizing baculovirus expression vectors, the E1 and E2 vectors giving rise to protein products of about 58 and 42 kDa, respectively. The recombinant proteins were purified by immobilized metal-ion affinity chromatography and reconstituted into liposomes via their hydrophobic transmembrane anchors. The liposomes were prepared by detergent dialysis in the presence of europium-DTPA chelate, enabling the subsequent measurement of the binding of the resultant proteoliposomes to the antibodies by time resolved fluorescence. RV mimicking proteoliposomes were recognized by antibodies specific for the E1 and E2 proteins, as well as the FLAG epitope tag. This type of virosome may prove useful for studies on the basic biological events of an RV infection or as diagnostic reagents.
Collapse
Affiliation(s)
- A Orellana
- VTT Biotechnology and Food Research, Finland
| | | | | | | | | |
Collapse
|
6
|
Johansson T, Enestam A, Kronqvist R, Schmidt M, Tuominen N, Weiss SA, Oker-Blom C. Synthesis of soluble rubella virus spike proteins in two lepidopteran insect cell lines: large scale production of the E1 protein. J Biotechnol 1996; 50:171-80. [PMID: 8987625 DOI: 10.1016/0168-1656(96)01562-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The two envelope glycoproteins of rubella virus (RV), E1 of 58 kDa and E2 of 42-47 kDa, were individually expressed in lepidopteran Spodoptera frugiperda as well as in Trichoplusia ni insect cells using baculovirus vectors. The authentic signal sequences of E1 and E2 were replaced with the honeybee melittin signal sequence, allowing efficient entrance into the secretory pathway of the insect cell. In addition, the hydrophobic transmembrane anchors at the carboxyl termini of E1 and E2 proteins were removed to enable secretion rather than maintenance in the cellular membranes. Synthesis of the recombinant proteins in the absence and presence of tunicamycin revealed that both E1 and E2 were glycosylated with apparent molecular weights of 52 kDa and 37 kDa, respectively. Recombinant E2 appeared to be partially secreted, whereas E1 was essentially found inside the infected insect cell. The E1 protein was produced in large scale using a 10-1 bioreactor and serum-free medium (SFM). Purification of the recombinant protein product was performed from cytoplasmic extracts by ammonium sulphate precipitation followed by Concanavalin A affinity chromatography. This type of purified recombinant viral glycoproteins may be useful not only in diagnostic medicine or for immunization, but should enable studies designed to solve the structure of the virus particle.
Collapse
Affiliation(s)
- T Johansson
- Abo Akademi University, Department of Biochemistry and Pharmacy, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
7
|
Schmidt M, Lindqvist C, Salmi A, Oker-Blom C. Detection of rubella virus-specific immunoglobulin M antibodies with a baculovirus-expressed E1 protein. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1996; 3:216-8. [PMID: 8991639 PMCID: PMC170281 DOI: 10.1128/cdli.3.2.216-218.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structural proteins of rubella virus (RV) were expressed in insect cells by using the baculovirus expression vector system. The recombinant E1 envelope glycoprotein was purified by immunoaffinity chromatography and used to detect RV-specific immunoglobulin M antibodies in a time-resolved fluoroimmunoassay. Correlation analysis between the reactivities of antibodies against this recombinant E1 and the reactivities against authentic RV antigen shows that purified E1 can detect RV antibodies of the immunoglobulin M type.
Collapse
Affiliation(s)
- M Schmidt
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
8
|
Oker-Blom C, Blomster M, Osterblad M, Schmidt M, Akerman K, Lindqvist C. Synthesis and processing of the rubella virus p110 polyprotein precursor in baculovirus-infected Spodoptera frugiperda cells. Virus Res 1995; 35:71-9. [PMID: 7754676 DOI: 10.1016/0168-1702(94)00079-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to study the processing of rubella virus (RV) structural proteins (capsid protein, of 33 kDa; E2 of 42-47 kDa; and E1 of 58 kDa) in Spodoptera frugiperda (fall armyworm) cells, a 24S cDNA encoding the polyprotein precursor, p110, was inserted under the transcriptional regulation of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus (AcNPV) and expressed during viral infection. By immunoblot analysis using antibodies directed against whole RV and the individual structural proteins, evidence is presented that polypeptides similar to those synthesized in RV-infected B-Vero cells are expressed in this lepidopteran insect cell line infected with the recombinant baculovirus, VL1392-RV24S. The identity of the recombinant proteins was further confirmed using human convalescent sera. By expressing the recombinant proteins in the presence and absence of tunicamycin, we have further demonstrated that the 24S transcription-translation unit of RV, is expressed and proteolytically cleaved similarly, if not identically, in Sf9 cells as compared to B-Vero cells.
Collapse
Affiliation(s)
- C Oker-Blom
- Abo Akademi University, Department of Biochemistry and Pharmacy, Turku, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Seto NO, Gillam S. Expression and characterization of a soluble rubella virus E1 envelope protein. J Med Virol 1994; 44:192-9. [PMID: 7852960 DOI: 10.1002/jmv.1890440214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Individual specific antigenic rubella virus (RV) structural proteins are required for accurate serological diagnosis of acute and congenital rubella infections as well as rubella immune status. The RV envelope glycoprotein E1 is the major target antigen and plays an important role in viral-specific immune responses. The native virion is difficult to produce in large quantities and the protein subunits are also difficult to isolate without loss of antigenicity. The production of a soluble RV E1 (designated E1 delta Tm) using the baculovirus-insect cell expression system is described. In contrast to wild-type RV E1, the genetically engineered E1 delta Tm protein lacks a transmembrane anchor. It behaved as a secretory protein and was secreted abundantly from insect cells. Pulse-chase studies were used to examine the synthesis, glycosylation, and secretion of E1 delta Tm by the insect cells. The secreted E1 delta Tm protein was purified from serum-free medium by one-step immunochromatography. The purified E1 delta Tm protein retained full antigenicity and may be a convenient source of E1 protein for use in diagnostic assay and rubella vaccine development.
Collapse
Affiliation(s)
- N O Seto
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
10
|
Lindqvist C, Schmidt M, Heinola J, Jaatinen R, Osterblad M, Salmi A, Keränen S, Akerman K, Oker-Blom C. Immunoaffinity purification of baculovirus-expressed rubella virus E1 for diagnostic purposes. J Clin Microbiol 1994; 32:2192-6. [PMID: 7814545 PMCID: PMC263965 DOI: 10.1128/jcm.32.9.2192-2196.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three monoclonal antibodies, termed 4E10, 1E11:10, and 2D9:1, were generated against rubella virus. Immunoblot analysis with purified authentic rubella virus or recombinant baculovirus-expressed rubella virus structural proteins E1, E2, and C demonstrated that they were directed against the E1 envelope glycoprotein of the rubella virus particle. By using the yeast Ty virus-like particle system, it was possible to map the binding site of 1E11:10 within amino acids 236 to 286 of the E1 protein and the binding sites of 2D9:1 and 4E10 outside this region. Immunoaffinity purification with these monoclonal antibodies made it evident that they are useful for obtaining large quantities of pure baculovirus-expressed rubella virus envelope protein E1. The diagnostic potential of this immunoaffinity-purified recombinant rubella virus E1 protein compared with that of authentic rubella virus is demonstrated.
Collapse
Affiliation(s)
- C Lindqvist
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Qiu Z, Ou D, Hobman TC, Gillam S. Expression and characterization of virus-like particles containing rubella virus structural proteins. J Virol 1994; 68:4086-91. [PMID: 8189549 PMCID: PMC236923 DOI: 10.1128/jvi.68.6.4086-4091.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rubella virus (RV) virions contain two envelope glycoproteins (E1 and E2) and a capsid protein (C). Noninfectious RV-like particles (VLPs) containing three structural proteins were expressed in a BHK cell line (BHK-24S) by using an inducible promoter. These VLPs were found to resemble RV virons in terms of their size, their morphology, and some biological activities. In immunoblotting studies, VLPs were found to bind similarly to native RV virions with 10 of a panel of 12 RV-specific murine monoclonal antibodies. Immunization of mice with VLPs induced specific antibody responses against RV structural proteins as well as virus-neutralizing and hemagglutination-inhibiting antibodies. After immunization of mice with VLPs, in vitro challenge of isolated lymphocytes with inactivated RV and individual RV structural proteins stimulated proliferation. Our data suggest the possibility of using VLPs as immunogens for serodiagnostic assays and RV vaccines.
Collapse
Affiliation(s)
- Z Qiu
- Department of Pathology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
12
|
Newcombe J, Starkey W, Al-Mumin S, Knight AI, Best JM, Sanders PG. Recombinant rubella E1 fusion proteins for antibody screening and diagnosis. ACTA ACUST UNITED AC 1994; 2:149-63. [PMID: 15566762 DOI: 10.1016/0928-0197(94)90019-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1993] [Revised: 11/10/1993] [Accepted: 11/19/1993] [Indexed: 11/23/2022]
Abstract
BACKGROUND Until rubella is eradicated there will be a continuing need for rubella antibody surveillance. Antigen production using recombinant DNA technology may be a viable alternative to traditional techniques of producing antigens for enzyme immunoassays (EIAs). OBJECTIVES To investigate the potential of bacterial fusion proteins containing rubella E1 protein sequences for use in EIAs to detect rubella antibodies. STUDY DESIGN Purified bacterial fusion proteins containing rubella E1 sequences to be used as antigens in EIAs and compared to 'traditional' assays using virus derived antigens for rubella antibody screening. RESULTS cDNA clones coding for the complete rubella E1 protein sequence and subfragments of E1 were modified for expression as carboxy terminal fusions with either beta-galactosidase or glutathione-S-transferase. beta-galactosidase fusions with the complete E1 coding sequence or amino acids 201 to 307, which contain known epitopes, resulted in the production of predominantly insoluble fusion proteins unsuitable for use in EIA. Nine glutathione-S-transferase-E1 fusion proteins were produced with individual fusion proteins exhibiting varying properties with regard to the levels of protein produced, apparent stability, solubility and the potential for affinity purification using glutathione agarose. Reduction of the E1 component to only 44 amino acids containing three B-cell epitopes (Terry et al., 1988) produced an abundant soluble GST-E1 fusion protein (3.5 mug/ml), which could be affinity purified using glutathione agarose. This fusion protein has been successfully used in EIA to detect rubella antibodies. CONCLUSIONS We have shown that GST-E1 fusions have potential as antigens in tests for rubella antibodies.
Collapse
Affiliation(s)
- J Newcombe
- Molecular Microbiology Group, University of Surrey, Guildford, GU2 5XH, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The basic procedure of immunoaffinity chromatography (IAC) is described. The insoluble support matrices available for IAC and their activation chemistries, including some of the most recently introduced, are reviewed. Means of selecting the most appropriate monoclonal antibody (MAb) are described, although an empirical approach is still required for the final choice of antibody. Precise methods of running IAC columns are surveyed including the binding, washing, and elution stages, although no precise recommendations can be made particularly for the elution step since this is unique to a particular MAb and antigen. All IAC sorbents lose activity with time through a combination of MAb inactivation and ligand leakage. The relative importance of the two phenomena is discussed, and suggestions are made to minimize the problem along with an indication of the relative stabilities of a range of coupling chemistries. A sample of the proteins purified by IAC is given together with pointers to the future of the technique.
Collapse
Affiliation(s)
- G W Jack
- Division of Biotechnology, Centre for Applied Microbiology and Research, Salisbury, UK
| |
Collapse
|