1
|
Prevalence of the JP2 genotype of Aggregatibacter actinomycetemcomitans in the world population: a systematic review. Clin Oral Investig 2022; 26:2317-2334. [DOI: 10.1007/s00784-021-04343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
2
|
Chang EH, Brown AC. Epigallocatechin gallate alters leukotoxin secretion and Aggregatibacter actinomycetemcomitans virulence. J Pharm Pharmacol 2021; 73:505-514. [PMID: 33793838 DOI: 10.1093/jpp/rgaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We and others have previously shown that epigallocatechin gallate (EGCg) inhibits the activity of an important virulence factor, leukotoxin (LtxA), produced by the oral bacterium Aggregatibacter actinomycetemcomitans, suggesting the potential use of this molecule as an anti-virulence strategy to treat periodontal infections. Here, we sought to better understand the effects of EGCg on toxin secretion and A. actinomycetemcomitans pathogenicity in a co-culture model. METHODS We used a quantitative immunoblot assay to determine the concentrations of LtxA in the bacterial supernatant and on the bacterial cell surface. Using a co-culture model, consisting of A. actinomycetemcomitans and THP-1 cells, we studied the impact of EGCg-mediated changes in LtxA secretion on the toxicity of A. actinomycetemcomitans. KEY FINDINGS EGCg increased production of LtxA and changed the localization of secreted LtxA from the supernatant to the surface of the bacterial cells. In the co-culture model, a single low dose of EGCg did not protect host THP-1 cells from A. actinomycetemcomitans-mediated cytotoxicity, but a multiple dosing strategy had improved effects. CONCLUSIONS Together, these results demonstrate that EGCg has important, but complicated, effects on toxin secretion and activity; new dosing strategies and comprehensive model systems may be required to properly develop these anti-virulence activities.
Collapse
Affiliation(s)
- En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
3
|
Teshima R, Hanada K, Akada J, Kawano K, Yamaoka Y. Aggregatibacter actinomycetemcomitans infection causes DNA double-strand breaks in host cells. Genes Cells 2018; 23:264-273. [PMID: 29441648 DOI: 10.1111/gtc.12570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/13/2018] [Indexed: 12/14/2022]
Abstract
Periodontal disease, an inflammatory disease, is caused by infection with periodontal pathogens. Long-term periodontal disease increases the risk of oral carcinogenesis. Similar to other peptic cancers, oral carcinogenesis also requires multiple genome instabilities; however, the risk factors related to the accumulation of genome instabilities are poorly understood. Here, we suggested that specific periodontal pathogens may increase the risk of genome instability. Accordingly, we screened several periodontal pathogens based on the ability to induce DNA double-strand breaks (DSBs) in host cells. We found that Aggregatibacter actinomycetemcomitans Y4 infection induced DSB formation in host cells. To assess whether DSB formation induced by infection with A. actinomycetemcomitans occurred through apoptotic chromosome fragmentation, cells were treated with a caspase inhibitor, Z-VAD-FMK. DSB accumulation induced by infection with A. actinomycetemcomitans was observed, even in the presence of Z-VAD-FMK, suggesting that this breakage occurred independently of apoptosis. These results suggested that some periodontal pathogens can increase the risk of genome instabilities in host cells and subsequently increase the risk of carcinogenesis.
Collapse
Affiliation(s)
- Rie Teshima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan.,Department of Oral and Maxillo-Facial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenji Kawano
- Department of Oral and Maxillo-Facial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
4
|
Johansson A, Claesson R, Höglund Åberg C, Haubek D, Oscarsson J. ThecagEgene sequence as a diagnostic marker to identify JP2 and non-JP2 highly leukotoxicAggregatibacter actinomycetemcomitansserotype b strains. J Periodontal Res 2017; 52:903-912. [DOI: 10.1111/jre.12462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- A. Johansson
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - R. Claesson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| | - C. Höglund Åberg
- Division of Molecular Periodontology; Department of Odontology; Umeå University; Umeå Sweden
| | - D. Haubek
- Section for Pediatric Dentistry; Department of Dentistry and Oral Health; Aarhus University; Aarhus Denmark
| | - J. Oscarsson
- Division of Oral Microbiology; Department of Odontology; Umeå University; Umeå Sweden
| |
Collapse
|
5
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
6
|
Doğan B, Chen J, Çiftlikli SY, Huang J, Kadir T, Alnıak AK, Chen C. Occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis in Turkey. Arch Oral Biol 2015; 61:125-9. [PMID: 26556547 DOI: 10.1016/j.archoralbio.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis. DESIGN Systemically healthy dental students without periodontitis (n=94), who had not used antibiotics within the last 3 months or received any form of periodontal therapy within the last 6 months, were included in the study. Pooled subgingival microbiological samples were collected from 4 first molars and 4 central incisors in each subject using sterile paper points. All samples were tested for the presence and the serotype of A. actinomycetemcomitans through PCR analysis of the 16S rRNA genes and the serotype-specific gene clusters in the DNA extracted from the samples. RESULTS Of the 94 samples that were tested, 43 (46%) were positive for A. actinomycetemcomitans. No statistically significant differences in clinical parameters were found between subgingival sites with or without detectable A. actinomycetemcomitans (t-test, P>0.01). Among the 43 A. actinomycetemcomitans-positive samples, the serotype was identified in 21 samples. Fifteen were positive for A. actinomycetemcomitans serotype a, 1 for serotype b, 1 for serotype c, and 4 for serotype f, while serotypes d and e were not detected. CONCLUSION A. actinomycetemcomitans serotype a is the most commonly found serotype among Turkish dental students without periodontitis.
Collapse
Affiliation(s)
- Başak Doğan
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jason Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Sinem Yıldız Çiftlikli
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jonathan Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Tanju Kadir
- Department of Microbiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Anıl Kınacı Alnıak
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA.
| |
Collapse
|
7
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
8
|
Cheng YA, Jee J, Hsu G, Huang Y, Chen C, Lin CP. A markerless protocol for genetic analysis of Aggregatibacter actinomycetemcomitans. J Formos Med Assoc 2014; 113:114-23. [PMID: 24530245 DOI: 10.1016/j.jfma.2012.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE The genomes of different Aggregatibacter actinomycetemcomitans (A actinomycetemcomitans) strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A actinomycetemcomitans. In this study, we tested a novel genetic approach of gene deletion and restoration in a naturally competent A actinomycetemcomitans strain D7S-1. METHODS Specific genes' deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. RESULTS Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A actinomycetemcomitans. CONCLUSION The protocol described in this study is efficient and specific for genetic manipulation of A actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A actinomycetemcomitans.
Collapse
Affiliation(s)
- Ya-An Cheng
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jason Jee
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Genie Hsu
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Yanyan Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Kasaj A, Willershausen B, Junker R, Callaway A, Krahn U, Kraft B, Pietsch M. Influence of different biomaterials on the viability of Aggregatibacter actinomycetemcomitans. Arch Oral Biol 2011; 56:917-23. [PMID: 21420071 DOI: 10.1016/j.archoralbio.2011.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of the present in vitro study was to evaluate the effects of different biomaterials used for regenerative periodontal surgery on the growth of the periodontopathogen Aggregatibacter actinomycetemcomitans. METHODS Three commercially available biomaterials of synthetic origin (hydroxyapatite/beta-tricalcium phosphate, nanostructured hydroxyapatite paste, oily calcium hydroxide suspension), a bovine-derived xenograft as well as an enamel matrix derivative (EMD) were added in different concentrations to calibrated suspensions of A. actinomycetemcomitans ATCC 43718/33384 (serotype b/c). Equal aliquots (0.1 ml) for the viability assay were taken after 5 min, 1h, 3h, 8h and 24h, plated on blood agar and incubated in an anaerobic environment for 48 h at 37°C. Viable cell counts were expressed as colony forming units (cfu)/0.1 ml. RESULTS The results demonstrated that none of the investigated biomaterials could inhibit the growth of A. actinomycetemcomitans serotype b. A marked growth reduction of A. actinomycetemcomitans serotype c was observed in the presence of oily calcium hydroxide suspension and nanostructured hydroxyapatite. In contrast, no significant growth inhibition could be observed in the presence of hydroxyapatite/beta-tricalcium phosphate, enamel matrix derivative and bovine-derived xenograft. CONCLUSIONS The results of the present study suggest that none of the investigated biomaterials possesses antimicrobial properties against A. actinomycetemcomitans serotype b. Therefore, the use of these biomaterials for regenerative procedures should be weighted critically in the presence of A. actinomycetemcomitans serotype b.
Collapse
Affiliation(s)
- Adrian Kasaj
- Department of Operative Dentistry and Periodontology, University Medical Center, Johannes Gutenberg-University, Augustusplatz 2, 55131 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Kittichotirat W, Bumgarner R, Chen C. Markedly different genome arrangements between serotype a strains and serotypes b or c strains of Aggregatibacter actinomycetemcomitans. BMC Genomics 2010; 11:489. [PMID: 20825670 PMCID: PMC2996985 DOI: 10.1186/1471-2164-11-489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial phenotype may be profoundly affected by the physical arrangement of their genes in the genome. The Gram-negative species Aggregatibacter actinomycetemcomitans is a major etiologic agent of human periodontitis. Individual clonal types of A. actinomycetemcomitans may exhibit variable virulence and different patterns of disease association. This study examined the genome arrangement of A. actinomycetemcomitans using the genome sequences of serotypes a-c strains. The genome alignment and rearrangement were analyzed by the MAUVE and the GRIMM algorithms. The distribution patterns of genes along the leading/lagging strands were investigated. The occurrence and the location of repeat sequences relative to the genome rearrangement breakpoints were also determined. RESULTS The genome arrangement of the serotype a strain D7S-1 is markedly different from the serotype b strain HK1651 or the serotype c strain D11S-1. Specific genome arrangements appear to be conserved among strains of the same serotypes. The reversal distance between D7S-1 and HK1651 by GRIMM analysis is also higher than the within-species comparisons of 7 randomly selected bacterial species. The locations of the orthologous genes are largely preserved between HK1651 and D11S-1 but not between D7S-1 and HK1651 (or D11S-1), irrespective of whether the genes are categorized as essential/nonessential or highly/nonhighly expressed. However, genome rearrangement did not disrupt the operons of the A. actinomycetemcomitans strains. A higher proportion of the genome in strain D7S-1 is occupied by repeat sequences than in strains HK1651 or D11S-1. CONCLUSION The results suggest a significant evolutionary divergence between serotype a strains and serotypes b/c strains of A. actinomycetemcomitans. The distinct patterns of genome arrangement may suggest phenotypic differences between serotype a and serotypes b/c strains.
Collapse
Affiliation(s)
- Weerayuth Kittichotirat
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
12
|
Kawamoto D, Ando ES, Longo PL, Nunes ACR, Wikström M, Mayer MPA. Genetic diversity and toxic activity ofAggregatibacter actinomycetemcomitansisolates. ACTA ACUST UNITED AC 2009; 24:493-501. [DOI: 10.1111/j.1399-302x.2009.00547.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Doungudomdacha S, Volgina A, DiRienzo JM. Evidence that the cytolethal distending toxin locus was once part of a genomic island in the periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans strain Y4. J Med Microbiol 2008; 56:1519-1527. [PMID: 17965355 DOI: 10.1099/jmm.0.47273-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The authors have previously shown that the periodontal pathogen Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans Y4 contains an operon for a genotoxin known as the cytolethal distending toxin (Cdt). The cdt locus in strain Y4 is flanked by remnants of heterologous plasmid and integrase sequences. In this study, the DNA sequence immediately downstream from the cdt locus on the Y4 chromosome was examined. The extended sequence contained a region that had all the characteristics of a typical bacterial pathogenicity or genomic island. The genomic island (GIY4-1) was approximately 22 kb long, was flanked by a bacteriophage attachment (att) sequence and contained a full-length integrase/resolvase gene (xerD). A total of 22 complete and partial ORFs represented putative DNA replication/DNA binding/conjugation proteins as well as hypothetical proteins. GIY4-1 was most closely related to putative genomic islands in Haemophilus ducreyi 35000HP and Haemophilus influenzae 86-028NP and to a chromosomal region in Haemophilus somnus 129PT. GIY4-1 was not present in HK1651, which was used as the prototype strain for genomic sequencing of A. actinomycetemcomitans. Several sequences in GIY4-1 were homologous to ORFs found on the A. actinomycetemcomitans plasmid pVT745. None of the identified ORFs in GIY4-1 appeared to encode potential virulence genes. However, several unique observations supported the possibility that the cdt locus of A. actinomycetemcomitans Y4 was originally contained within the genomic island.
Collapse
Affiliation(s)
- Sombhun Doungudomdacha
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alla Volgina
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Haubek D, Poulsen K, Kilian M. Microevolution and patterns of dissemination of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect Immun 2007; 75:3080-8. [PMID: 17353281 PMCID: PMC1932881 DOI: 10.1128/iai.01734-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The natural history, microevolution, and patterns of interindividual transmission and global dissemination of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans were studied by population genetic analysis. The JP2 clone is strongly associated with aggressive periodontitis in adolescents of African descent and differs from other clones of the species by several genetic peculiarities, including a 530-bp deletion in the promoter region of the leukotoxin gene operon, which results in increased leukotoxic activity. Multilocus sequence analysis of 82 A. actinomycetemcomitans strains, 66 of which were JP2 clone strains collected over a period of more than 20 years, confirmed that there is a clonal population structure with evolutionary lineages corresponding to serotypes. Although genetically highly conserved, as shown by alignment of sequences of eight housekeeping genes, strains belonging to the JP2 clone had a number of point mutations, particularly in the pseudogenes hbpA and tbpA. Characteristic mutations allowed isolates from individuals from the Mediterranean area and from West Africa, including the Cape Verde Islands, to be distinguished. The patterns of mutations indicate that the JP2 clone initially emerged as a distinct genotype in the Mediterranean part of Africa approximately 2,400 years ago and subsequently spread to West Africa, from which it was transferred to the American continents during the transatlantic slave trade. The sustained exclusive colonization of individuals of African descent despite geographical separation for centuries suggests that the JP2 clone has a distinct host tropism. The colonization of family members by JP2 clone strains with unique point mutations provides strong evidence that there is intrafamilial transmission and suggests that dissemination of the JP2 clone is restricted to close contacts.
Collapse
Affiliation(s)
- Dorte Haubek
- Department of Community Oral Health and Pediatric Dentistry, School of Dentistry, Faculty of Health Science, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
15
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
16
|
Wu H, Lippmann JE, Oza JP, Zeng M, Fives-Taylor P, Reich NO. Inactivation of DNA adenine methyltransferase alters virulence factors in Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2006; 21:238-44. [PMID: 16842508 DOI: 10.1111/j.1399-302x.2006.00284.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA adenine methyltransferase (DAM) plays critical roles in diverse biological pathways in gram-negative bacteria, and specifically in regulating the expression of virulence genes in several organisms. Actinobacillus actinomycetemcomitans plays an important role in the pathogenesis of juvenile and adult periodontal disease, yet little is known about its mechanisms of gene regulation. DAM is shown here to directly or indirectly affect well-known A. actinomycetemcomitans virulence factors. A mutant A. actinomycetemcomitans strain lacking the dam gene was created by homologous recombination and shows normal growth phenotypes when grown exponentially. This mutant strain has four sixfold increased levels of extracellular leukotoxin, altered cellular levels of leukotoxin, and significant changes in bacterial invasion of KB oral epithelial cells. These results provide a basis for further characterization of regulatory mechanisms that control A. actinomycetemcomitans virulence.
Collapse
Affiliation(s)
- H Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Harvey A Schenkein
- Department of Peridontics, Virginia Commonwealth University-VCU/MCV, Richmond, Virginia, USA
| |
Collapse
|
18
|
Jordan WJ, Eskdale J, Lennon GP, Pestoff R, Wu L, Fine DH, Gallagher G. A non-conservative, coding single-nucleotide polymorphism in the N-terminal region of lactoferrin is associated with aggressive periodontitis in an African-American, but not a Caucasian population. Genes Immun 2005; 6:632-5. [PMID: 16208406 DOI: 10.1038/sj.gene.6364239] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lactoferrin is an antimicrobial protein which plays an important role in regulating bacteria that are associated with aggressive periodontitis. Lactoferrin kills directly (via its strongly cationic N-terminal region) and indirectly, through sequestering the iron that bacteria require for growth. As aggressive periodontitis has a strong heritable component, we hypothesized that genetic variation within the lactoferrin gene may play a role in susceptibility to this condition. We have identified and examined a novel, functional, single-point A/G nucleotide mutation causing a threonine/alanine substitution at position 11 (T11A) of the secreted lactoferrin protein. In a pilot case-controlled study of aggressive periodontitis, analysis of 46 African-American patients and 78 controls showed that patients were twice as likely to express the G nucleotide (alanine) allele over controls (60.3 vs 30.4%; P=0.0007, odds ratio=2.564, 95% CI=1.475-4.459). A Caucasian population of 77 patients and 131 controls showed no such association (P=0.5201, odds ratio=0.862, 95% CI=0.548-1.356). The data presented provide a new insight into the genetic susceptibility to aggressive periodontitis.
Collapse
Affiliation(s)
- W J Jordan
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Horizontal gene transfer (HGT) is a process by which bacteria acquire genes from organisms of distant taxa. HGT is now recognized as a major driving force in the evolution of bacterial pathogens. Through this process, bacteria may accumulate blocks of DNA such as genomic islands (GEIs) that encode fitness or virulence factors. The periodontal pathogen A. actinomycetemcomitans has been known to exhibit variable virulence potential. It is postulated that GEIs may play a role in modifying the virulence potential of A. actinomycetemcomitans. This study was initiated to identify and determine the distribution of GEIs in A. actinomycetemcomitans. METHODS Forty-seven A. actinomycetemcomitans strains of serotypes a through f were examined. Strain-specific variant DNA in the genomes of A. actinomycetemcomitans was identified by polymerase chain reaction (PCR) genomic mapping and sequenced to identify GEIs. The distribution of the GEIs among test strains of A. actinomycetemcomitans was determined by PCR analysis and Southern hybridization assays. RESULTS An approximately 22 kb GEI of A. actinomycetemcomitans, designated AAI-1, was identified in five serotype b strains. The AAI-1 exhibits low %G+C and encodes proteins of phage, restriction modification systems, mobile elements, and other hypothetical proteins of unknown functions. The insertion of AAI-1 was found to cause truncation of A. actinomycetemcomitans genes at the insertion site. CONCLUSIONS Some A. actinomycetemcomitans strains may harbor GEIs, which were acquired via HGT by the bacteria. The GEIs may increase the gene repertoire of A. actinomycetemcomitans. However, the insertion of the GEIs in A. actinomycetemcomitans may also cause truncation and inactivation of resident genes at the insertion sites. The virulence significance of such gain and loss of genes in A. actinomycetemcomitans remains to be determined.
Collapse
Affiliation(s)
- Weizhen Chen
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
20
|
Abstract
BACKGROUND Bacteria play an essential role in the aetiology of periodontitis. Most bacterial species isolated from subgingival plaque are indigenous to the oral cavity. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis are detected infrequently in periodontal health, which makes these species prime candidates to study person-to-person transmission. The aim of the present study was to review the literature on transmission of these periodontal bacterial species. METHOD We review the literature on bacterial typing techniques and summarize the information on clonal distribution of A. actinomycetemcomitans and P. gingivalis in family units based on different typing techniques in order to establish the likelihood for person-to-person transmission of these periodontal pathogens. RESULTS Vertical transmission of A. actinomycetemcomitans is estimated to be between 30% and 60%, whereas vertical transmission of P. gingivalis has rarely been observed. Horizontal transmission between spouses ranges between 14% and 60% for A. actinomycetemcomitans and between 30% and 75% for P. gingivalis. There is some evidence to show that cohabitation with a periodontitis patient influences the periodontal status of the spouse; however, substantially more information is needed to prove this hypothesis. CONCLUSIONS Transmission of putative periodontal pathogens between family members has been shown. The clinical consequences of these events have been poorly documented. Based on the current knowledge, screening for and prevention of transmission of specific virulent clones of A. actinomycetemcomitans may be feasible and effective in preventing some forms of periodontal disease. P. gingivalis is usually recovered from diseased adult subjects, and transmission of this pathogens seems largely restricted to adult individuals. Horizontal transmission of P. gingivalis may therefore be controlled by periodontal treatment involving elimination or significant suppression of the pathogen in diseased individuals and by a high standard of oral hygiene.
Collapse
Affiliation(s)
- A J Van Winkelhoff
- Academic Centre for Dentistry Amsterdam, Department of Oral Microbiology, Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Affiliation(s)
- Tatsuji Nishihara
- Department of Oral Microbiology, Kyushu Dental College, Fukuoka, Japan
| | | |
Collapse
|
22
|
Affiliation(s)
- Paul J Ezzo
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center Dallas, Texas, USA
| | | |
Collapse
|
23
|
DiRienzo JM, Song M, Wan LSY, Ellen RP. Kinetics of KB and HEp-2 cell responses to an invasive, cytolethal distending toxin-producing strain of Actinobacillus actinomycetemcomitans. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:245-51. [PMID: 12121475 PMCID: PMC1434795 DOI: 10.1034/j.1399-302x.2002.170407.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The periodontal pathogen Actinobacillus actinomycetemcomitans produces cytolethal distending toxin (CDT), a complex multicomponent toxin that arrests the growth of many types of eukaryotic cell. The kinetics of the effects of CDT-containing extracts, from an invasive strain of this bacterium, were examined on epithelial-like cells routinely used in invasion studies. Both KB and HEp-2 cells were exquisitely sensitive to the effects of the CDT with TD50 of 30 and 300 pg of total bacterial protein, respectively. Initial cell morphology changes were relatively rapid, occurring within the first 13 h of exposure. CDT-treated KB cells increased in size to 4-5 times the size of untreated controls. Cytotoxicity was irreversible when attached cells were incubated, for a minimum of 120 min, with nanogram quantities of CDT-containing extract. As cultures aged, the cells became more resistant to the effects of the CDT-containing extracts. These findings have important implications for understanding the ability of A. actinomycetemcomitans to invade and multiply in epithelial cells.
Collapse
Affiliation(s)
- J M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 4010 Locust Street, Philadelphia, PA 19104-6002, USA
| | | | | | | |
Collapse
|
24
|
Fabris AS, DiRienzo JM, Wïkstrom M, Mayer MPA. Detection of cytolethal distending toxin activity and cdt genes in Actinobacillus actinomycetemcomitans isolates from geographically diverse populations. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:231-8. [PMID: 12121473 PMCID: PMC2548306 DOI: 10.1034/j.1399-302x.2002.170405.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cytolethal distending toxin (CDT) found in Actinobacillus actinomycetemcomitans inhibits the eukaryotic cell cycle, which may contribute to the pathogenic potential of the bacterium. The presence of the cdtABC genes and CDT activity were examined in 40 clinical isolates of A. actinomycetemcomitans from Brazil, Kenya, Japan and Sweden. Thirty-nine of 40 cell lysates caused distension of Chinese hamster ovary cells. At least one of the cdt genes was detected in all strains examined. The three cdt genes were detected, by PCR, in 34 DNA samples. DNA from one strain from Kenya did not yield amplicons of the cdtA and cdtB genes and did not express toxic activity. Restriction analysis was performed on every amplicon obtained. PCR-RFLP patterns revealed that the three cdt genes were conserved. These data provided evidence that the cdt genes are found and expressed in the majority of the A. actinomycetemcomitans isolates. Although a quantitative difference in cytotoxicity was observed, indicating variation in expression of CDT among strains, no clear relationship between CDT activity and periodontal status was found.
Collapse
Affiliation(s)
- A S Fabris
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
25
|
Saddi-Ortega L, Carvalho MAR, Cisalpino PS, Moreira ESA. Actinobacillus actinomycetemcomitans genetic heterogeneity: amplification of JP2-like ltx promoter pattern correlated with specific arbitrarily primed polymerase chain reaction (AP-PCR) genotypes from human but not marmoset Brazilian isolates. Can J Microbiol 2002; 48:602-10. [PMID: 12224559 DOI: 10.1139/w02-055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific clonal types of Actinobacillus actinomycetemcomitans, a major human periodontal pathogen, may be responsible for clinical manifestations and the production of leukotoxin virulence factors. Leukotoxicity is associated with genetic polymorphism at the promoter region of the leukotoxin (lItx) gene. Here, we describe the use of arbitrarily primed polymerase chain reaction (AP-PCR) and ltx promoter PCR to molecularly characterise 35 A. actinomycetemcomitans Brazilian isolates: 21 of human origin and 14 from captive marmosets (Callitrix spp., primates commonly used as animal models for periodontal research). The discriminative capacity of each of 12 arbitrary primers was found to be variable, yielding between 3 and 24 PCR amplitypes. Combination of the results for all primers led to characterisation of 14 genotypes that grouped into four major clusters based on genetic similarity. Clusters 2, 3, and 4 were discriminative to host origin. A correlation with periodontal disease was suggested for strains belonging to clusters 3 and 4. The JP2-like PCR amplification pattern, associated with highly leukotoxic strains, was exclusive to human isolates and present in 29% of human isolates where it occurred in close relationship with AP genotypes L and J (cluster 3).
Collapse
Affiliation(s)
- L Saddi-Ortega
- Departamento de Microbiología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
26
|
Podmore M, Ebersole JL, Kinane DF. Immunodominant antigens in periodontal disease: a real or illusive concept? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:179-85. [PMID: 11345527 DOI: 10.1177/10454411010120020701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The humoral arm of the immune system provides protection from many medically significant pathogens. The antigenic epitopes of the pathogens which induce these responses, and the subsequent characteristics of the host response, have been extensively documented in the medical literature, and in many cases have resulted in the development and implementation of effective vaccines or diagnostic tests. There is a substantial body of literature on the humoral immune response in periodontal disease, which is targeted at micro-organisms present within periodontal pockets. However, the significance and specificity of the immune response in periodontal disease have proved difficult to elucidate, due to the large number of potential pathogens in the plaque biofilm and the apparent commensal nature of many of these opportunistic pathogens. This review addresses our current knowledge of the approaches and strategies which have been used to elucidate and examine the concept of immunodominant antigens in medical infections and, more recently, periodontal disease. An identification/understanding of the immunodominant antigens would be informative with respect to: (i) the relative importance of the implicated pathogens, (ii) new approaches to immunological diagnosis, (iii) specific bacterial virulence determinants, (iv) natural protective responses, and (v) the selection of potential vaccine candidate antigens. We conclude that immunodominance of antigens in periodontal disease may be relevant to our understanding of periodontal disease pathogenesis, but due to the complexity and diversity of the 'pathogenic microbial ecology', it is currently an enigmatic topic requiring a multidisciplinary approach linking clinical, microbiological, and immunological investigations. We also conclude, after assessing the literature available on the topic of immunodominance, that it is a term that, if used, must be clearly defined and understood, since it is often used loosely, leading to a general misinterpretation by readers of oral and medical literature.
Collapse
Affiliation(s)
- M Podmore
- University of Glasgow Dental Hospital and School, Scotland, UK
| | | | | |
Collapse
|
27
|
Haraszthy VI, Hariharan G, Tinoco EM, Cortelli JR, Lally ET, Davis E, Zambon JJ. Evidence for the role of highly leukotoxic Actinobacillus actinomycetemcomitans in the pathogenesis of localized juvenile and other forms of early-onset periodontitis. J Periodontol 2000; 71:912-22. [PMID: 10914794 DOI: 10.1902/jop.2000.71.6.912] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Actinobacillus actinomycetemcomitans leukotoxin is thought to be an important virulence factor in the pathogenesis of localized juvenile and other forms of early-onset periodontitis. Some highly leukotoxic A. actinomycetemcomitans strains produce 10 to 20 times more leukotoxin than other minimally leukotoxic strains. The distribution, clonality, and intrafamilial transmission of highly leukotoxic A. actinomycetemcomitans were examined in order to determine the importance of leukotoxin in the pathogenesis of periodontitis. METHODS The polymerase chain reaction (PCR) was used to differentiate highly leukotoxic from minimally leukotoxic strains in examining 1,023 fresh A. actinomycetemcomitans isolates and strains from our culture collection. These were obtained from 146 subjects including 71 with localized juvenile periodontitis (LJP), 4 with early-onset periodontitis, 11 with post-localized juvenile periodontitis, 41 with adult periodontitis, and 19 periodontally normal subjects. The arbitrarily primed polymerase chain reaction (AP-PCR) analysis of 30 oral isolates from each of 25 subjects was used to determine the intraoral distribution of A. actinomycetemcomitans clones. AP-PCR was also used to examine the transmission of A. actinomycetemcomitans in 30 members of 6 families. The clonality of 41 highly leukotoxic A. actinomycetemcomitans strains was evaluated by both AP-PCR and ribotyping. RESULTS Highly leukotoxic A. actinomycetemcomitans was found only in subjects with localized juvenile and early-onset periodontitis. Fifty-five percent of the LJP subjects harbored highly leukotoxic A. actinomycetemcomitans isolates. Seventy-three percent of the A. actinomycetemcomitans isolates in these subjects were highly leukotoxic. Highly leukotoxic A. actinomycetemcomitans infected younger subjects (mean age 13.95 years, range 5 to 28 years) than minimally leukotoxic (mean age 35.47 years, range 6 to 65 years). Most subjects were infected with only one A. actinomycetemcomitans genotype. However, PCR of whole dental plaques and subsequent analysis of up to 130 individual oral isolates suggested a possible shift in A. actinomycetemcomitans over time in that a few subjects harbored both highly leukotoxic and minimally leukotoxic strains. AP-PCR analysis was consistent with intrafamilial A. actinomycetemcomitans transmission. Ribotyping and AP-PCR analysis confirmed a previous report that highly leukotoxic A. actinomycetemcomitans consists of a single clonal type. CONCLUSIONS This study suggests that localized juvenile and other forms of Actinobacillus-associated periodontitis are primarily associated with the highly leukotoxic clone of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- V I Haraszthy
- Department of Restorative Dentistry, State University of New York at Buffalo, School of Dental Medicine, 14214-3092, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
He T, Nishihara T, Demuth DR, Ishikawa I. A novel insertion sequence increases the expression of leukotoxicity in Actinobacillus actinomycetemcomitans clinical isolates. J Periodontol 1999; 70:1261-8. [PMID: 10588488 DOI: 10.1902/jop.1999.70.11.1261] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The expression of leukotoxin varies among Actinobacillus actinomycetemcomitans strains and is dependent in part on the structure of the ltx promoter region. Highly leukotoxic strains, characterized by a 530 base pair (bp) deletion within the ltx promoter, have been associated with juvenile periodontitis in the United States and Europe. In the present study, we analyzed the ltx promoter structure to elucidate whether A. actinomycetemcomitans from Japanese periodontitis patients exhibits the highly toxic phenotype. METHODS Forty-five A. actinomycetemcomitans strains, including 43 clinical isolates, the highly leukotoxic strain JP2, and a minimally leukotoxic strain 652 were used in the study. The ltx promoter structure was analyzed by polymerase chain reaction (PCR), with oligonucleotide primers focusing the ltx promoter region, and nucleotide sequencing. Leukotoxic activity was determined by trypan blue exclusion. Western blotting assay was performed to detect the level of leukotoxin polypeptide. RESULTS A 495 bp PCR product was amplified from JP2, a 1025 bp product from 652 and 41 of the clinical isolates, and a 1926 bp product from the remaining two clinical isolates (AaIS1, AaIS2). Sequencing of the 1926 bp PCR fragment showed that it was similar to that of strain 652 but contained an 886 bp region that was identified as an insertion sequence (IS). Both AaIs strains expressed high levels of leukotoxicity, similar to strain JP2. In addition, a mutant (AaIS-) that had lost the IS element expressed a significantly lower level of leukotoxicity compared with AaIS strains. Furthermore, the levels of leukotoxin polypeptide expressed by these strains were consistent with their whole cell leukotoxicity. CONCLUSIONS A. actinomycetemcomitans clinical strains which were isolated from Japanese periodontitis patients do not possess the 530 bp ltx promoter deletion. The results of this study suggest that a high level of leukotoxin expression correlates with the insertion of the transposable DNA element.
Collapse
Affiliation(s)
- T He
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | |
Collapse
|
29
|
Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol 2000 1999; 20:289-340. [PMID: 10522229 DOI: 10.1111/j.1600-0757.1999.tb00164.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D F Kinane
- Department of Periodontology and Oral Immunology, Glasgow Dental Hospital and School, Scotland, United Kingdom
| | | | | |
Collapse
|
30
|
Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 1999; 20:136-67. [PMID: 10522226 DOI: 10.1111/j.1600-0757.1999.tb00161.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A. actinomycetemcomitans has clearly adapted well to its environs; its armamentarium of virulence factors (Table 2) ensures its survival in the oral cavity and enables it to promote disease. Factors that promote A. actinomycetemcomitans colonization and persistence in the oral cavity include adhesins, bacteriocins, invasins and antibiotic resistance. It can interact with and adhere to all components of the oral cavity (the tooth surface, other oral bacteria, epithelial cells or the extracellular matrix). The adherence is mediated by a number of distinct adhesins that are elements of the cell surface (outer membrane proteins, vesicles, fimbriae or amorphous material). A. actinomycetemcomitans enhances its chance of colonization by producing actinobacillin, an antibiotic that is active against both streptococci and Actinomyces, primary colonizers of the tooth surface. The fact that A. actinomycetemcomitans resistance to tetracyclines, a drug often used in the treatment of periodontal disease, is on the rise is an added weapon. Periodontal pathogens or their pathogenic products must be able to pass through the epithelial cell barrier in order to reach and cause destruction to underlying tissues (the gingiva, cementum, periodontal ligament and alveolar bone). A. actinomycetemcomitans is able to elicit its own uptake into epithelial cells and its spread to adjacent cells by usurping normal epithelial cell function. A. actinomycetemcomitans may utilize these remarkable mechanisms for host cell infection and migration to deeper tissues. A. actinomycetemcomitans also orchestrates its own survival by elaborating factors that interfere with the host's defense system (such as factors that kill phagocytes and impair lymphocyte activity, inhibit phagocytosis and phagocyte chemotaxis or interfere with antibody production). Once the organisms are firmly established in the gingiva, the host responds to the bacterial onslaught, especially to the bacterial lipopolysaccharide, by a marked and continual inflammatory response, which results in the destruction of the periodontal tissues. A. actinomycetemcomitans has at least three individual factors that cause bone resorption (lipopolysaccharide, proteolysis-sensitive factor and GroEL), as well as a number of activities (collagenase, fibroblast cytotoxin, etc.) that elicit detrimental effects on connective tissue and the extracellular matrix. It is of considerable interest to know that A. actinomycetemcomitans possesses so many virulence factors but unfortunate that only a few have been extensively studied. If we hope to understand and eradicate this pathogen, it is critical that in-depth investigations into the biochemistry, genetic expression, regulation and mechanisms of action of these factors be initiated.
Collapse
Affiliation(s)
- P M Fives-Taylor
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, USA
| | | | | | | |
Collapse
|
31
|
Olsen I, Shah HN, Gharbia SE. Taxonomy and biochemical characteristics of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 1999; 20:14-52. [PMID: 10522221 DOI: 10.1111/j.1600-0757.1999.tb00156.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway
| | | | | |
Collapse
|
32
|
Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000 1999; 20:82-121. [PMID: 10522224 DOI: 10.1111/j.1600-0757.1999.tb00159.x] [Citation(s) in RCA: 353] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J Slots
- Department of Periodontology, School of Dentistry, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
33
|
Asikainen S, Chen C. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 1999; 20:65-81. [PMID: 10522223 DOI: 10.1111/j.1600-0757.1999.tb00158.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ecological characteristics of the oral cavity are dissimilar for A. actinomycetemcomitans and for P. gingivalis, as judged by differences in their colonization preferences and patterns, associations with periodontal disease parameters, relationships with the subgingival microbiota and the type of periodontitis and their clonal persistence in the oral cavity. These features also suggest that as a periodontal pathogen, A. actinomycetemcomitans is different from P. gingivalis. Probably in most infected individuals, low levels of A. actinomycetemcomitans can persist for years in equilibrium with the host and the resident oral microbiota. However, it is well established that A. actinomycetemcomitans can cause disease in some individuals or in some circumstances when the regulatory mechanisms are unable to maintain homeostasis in the ecosystem. Elevated A. actinomycetemcomitans proportions of the biota can be regarded as a sign of ecological imbalance, leading to increased risk of periodontal destruction. There is also evidence showing elevated pathogenic potential of certain A. actinomycetemcomitans clones. Although A. actinomycetemcomitans seems to be relatively rarely transmitted between cohabiting adults, transmission can occur to periodontally healthy children of A. actinomycetemcomitans-positive parents. Parents and children may share factors that promote successful oral colonization of A. actinomycetemcomitans, or the window of opportunity is in childhood. Therefore, to prevent parent-child transmission of A. actinomycetemcomitans, bacterium-positive parents of young children are optimal targets for enhanced information and treatment. In selected populations, screening for specific clones of A. actinomycetemcomitans has been employed in prevention of peridontitis. Future research aiming at finding the reasons which cause the changes in the oral homeostasis to allow the growth of A. actinomycetemcomitans may give insight into novel prevention strategies for A. actinomycetemcomitans-associated periodontitis. Compared with A. actinomycetemcomitans, P. gingivalis shows a different pattern of coexistence with the host. In periodontal health or in children, P. gingivalis is absent or only rarely detected. When present, P. gingivalis is commonly recovered in high numbers from dentitions exhibiting inflamed periodontitis and poor oral hygiene. Contrary to A. actinomycetemcomitans, the data on the vertical transmission of P. gingivalis are limited. The major infection route of P. gingivalis seems to be between adults, indicating that P. gingivalis commonly colonizes in an established oral microbiota. These characteristics suggest that the degree of tolerance between P. gingivalis and the host is inferior to that between A. actinomycetemcomitans and the host. It appears that the association of P. gingivalis with disease is a rule rather than an accidental incident. On these grounds, it seems that the host-P. gingivalis relationship approaches antibiosis. Since P. gingivalis infection is related to a typical periodontal eco-pathology, the susceptibility to person-to-person transmission of this pathogen may be controlled by periodontal treatment and emphasizing the significance of high standard oral hygiene.
Collapse
Affiliation(s)
- S Asikainen
- Institute of Dentistry, University of Helsinki, Finland
| | | |
Collapse
|
34
|
Mayer MP, Bueno LC, Hansen EJ, DiRienzo JM. Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 1999; 67:1227-37. [PMID: 10024565 PMCID: PMC96451 DOI: 10.1128/iai.67.3.1227-1237.1999] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic locus for a cytolethal distending toxin (CDT) was identified in a polymorphic region of the chromosome of Actinobacillus actinomycetemcomitans, a predominant oral pathogen. The locus was comprised of three open reading frames (ORFs) that had significant amino acid sequence similarity and more than 90% sequence identity to the cdtABC genes of some pathogenic Escherichia coli strains and Haemophilus ducreyi, respectively. Sonic extracts from recombinant E. coli, containing the A. actinomycetemcomitans ORFs, caused the distension and killing of Chinese hamster ovary cells characteristic of a CDT. Monoclonal antibodies made reactive with the CdtA, CdtB, and CdtC proteins of H. ducreyi recognized the corresponding gene products from the recombinant strain. CDT-like activities were no longer expressed by the recombinant strain when an OmegaKan-2 interposon was inserted into the cdtA and cdtB genes. Expression of the CDT-like activities in A. actinomycetemcomitans was strain specific. Naturally occurring expression-negative strains had large deletions within the region of the cdt locus. The cdtABC genes were flanked by an ORF (virulence plasmid protein), a partial ORF (integrase), and DNA sequences (bacteriophage integration site) characteristic of virulence-associated regions. These results provide evidence for a functional CDT in a human oral pathogen.
Collapse
Affiliation(s)
- M P Mayer
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6002, USA
| | | | | | | |
Collapse
|
35
|
Lépine G, Caudry S, DiRienzo JM, Ellen RP. Epithelial cell invasion by Actinobacillus actinomycetemcomitans strains from restriction fragment-length polymorphism groups associated with juvenile periodontitis or carrier status. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:341-7. [PMID: 9872109 PMCID: PMC3528405 DOI: 10.1111/j.1399-302x.1998.tb00689.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epithelial cell invasiveness of Actinobacillus actinomycetemcomitans strains of different restriction fragment-length polymorphism (RFLP) groups associated with disease conversion and asymptomatic carrier status in localized juvenile periodontitis was examined. Twenty clinical isolates were studied for their ability to invade KB monolayers, using the quantitative gentamicin killing assay. Five isolates were found to be invasive, five were not invasive; and the other 10 did not invade better than an invasion negative control Haemophilus aphrophilus strain ATCC 19415. Using probe-specific DNA fingerprinting. 11 strains were assigned to RFLP group II (disease-associated); 4 to RFLP type XIII (carrier status associated); and the other to groups III, IV, V and VII. Eight isolates, all RFLP group II, were leukotoxin producers as determined by PCR amplification of the lkt promoter region. No correlation was found between invasiveness and RFLP group. Leukotoxin production was more associated with noninvasive than invasive strains.
Collapse
Affiliation(s)
- G Lépine
- Faculty of Dentistry, University of Toronto, ONT, Canada
| | | | | | | |
Collapse
|
36
|
Bueno LC, Mayer MP, DiRienzo JM. Relationship between conversion of localized juvenile periodontitis-susceptible children from health to disease and Actinobacillus actinomycetemcomitans leukotoxin promoter structure. J Periodontol 1998; 69:998-1007. [PMID: 9776028 PMCID: PMC3523333 DOI: 10.1902/jop.1998.69.9.998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The periodontal pathogen Actinobacillus actinomycetemcomitans produces a leukotoxin that is considered a primary virulence factor in localized juvenile periodontitis (LJP). Select strains of the bacterium contain a 530-bp deletion in the promoter region of the leukotoxin gene operon which results in enhanced transcription of the leukotoxin. DNA hybridization and polymerase chain reaction (PCR) were used to examine genetic variants of A. actinomycetemcomitans in 24 LJP-susceptible children from 21 families having a history of the disease and 34 control children from non-LJP families. A significant association was found between the detection of variants that had a deletion in the leukotoxin promoter region, indicative of a high level expression leukotoxin genotype, and conversion from a healthy periodontal status to disease. Subjects harboring A. actinomycetemcomitans of this genotype were more likely to convert to LJP than those subjects who had variants containing the full length leukotoxin promoter region (odds ratio = 22.5; 95% C.I., 2.84 < 206.66) [corrected]. These findings support the concept that highly virulent strains or clonal types of periodontal pathogens play a major role in the initiation of periodontal disease in susceptible hosts.
Collapse
Affiliation(s)
- L C Bueno
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6002, USA
| | | | | |
Collapse
|
37
|
He T, Hayashi J, Yamamoto M, Ishikawa I. Genotypic characterization of Actinobacillus actinomycetemcomitans isolated from periodontitis patients by arbitrarily primed polymerase chain reaction. J Periodontol 1998; 69:69-75. [PMID: 9527564 DOI: 10.1902/jop.1998.69.1.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinobacillus actinomycetemcomitans is one of the most suspected pathogens in the initiation and progression of juvenile periodontitis and severe adult periodontitis. The aim of the present study was to investigate the genotypic characterization of A. actinomycetemcomitans using arbitrarily primed polymerase chain reaction (AP-PCR). AP-PCR was applied to 143 A. actinomycetemcomitans strains, including 8 reference strains and 135 clinical strains isolated from 43 unrelated Japanese periodontitis patients. The DNA fragment patterns obtained using a single 10-mer primer with random sequence (OPA-07) for these strains allowed the recognition of 10 distinct AP-PCR groups that correlated to some extent with serotypes. AP-PCR group VIII was significantly (P < 0.05) observed in deep (> 5 mm) periodontal pockets. Group II was exclusively detected in deep pockets. However, a clear relationship was not observed between AP-PCR genotypes and various periodontal status. Only one genotype was found within individual oral cavity/single-infected site, except one case in which the patient harbored two AP-PCR genotypes. The AP-PCR patterns of the A. actinomycetemcomitans isolates recovered from the site after periodontal treatment remained identical. These results demonstrate genetic diversity among the investigated population and a clonal nature in a periodontal patient of A. actinomycetemcomitans by AP-PCR. Furthermore, it could be inferred that a certain AP-PCR genotype(s) of A. actinomycetemcomitans is more important in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- T He
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | |
Collapse
|
38
|
Meyer DH, Fives-Taylor PM. The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol 1997; 5:224-8. [PMID: 9211642 DOI: 10.1016/s0966-842x(97)01055-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periodontal disease consists of a constellation of complex bacterium-host cell interactions. One example of these oral pathogens, Actinobacillus actinomycetemcomitans, has an arsenal of putative virulence determinants that account for its potent periodontopathogenicity. Of these determinants, invasion of host cells and leukocytotoxicity have been studied extensively.
Collapse
Affiliation(s)
- D H Meyer
- Dept of Microbiology and Molecular Genetics, College of Medicine and College of Agricultural and Life Sciences, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
39
|
Valcarcel J, Allardet-Servent A, Bourg G, O'Callaghan D, Michailesco P, Ramuz M. Investigation of the Actinobacillus actinomycetemcomitans genome by pulsed field gel electrophoresis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:33-9. [PMID: 9151642 DOI: 10.1111/j.1399-302x.1997.tb00364.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pulsed field gel electrophoresis was used to investigate nineteen strains of Actinobacillus actinomycetemcomitans. The genome was found to contain a single chromosome whose size we estimate to be 2300 kb from the sum of restriction fragments generated with rare cutting endonucleases. We detected the presence of large plasmids with sizes ranging from 35 to 300 kb. In some strains, extrachromosomal elements constitute over 20% of the total genome. Comparison of the profiles of ApaI digests of the 19 strains showed a high degree of polymorphism with 13 different profiles, providing a new tool for epidemiological studies.
Collapse
Affiliation(s)
- J Valcarcel
- Institut National de la Santé et de la Recherche Médicale, Unité 431, Faculté de Médecine, Nimes, France
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J J Zambon
- Department of Periodontology, State University of New York, School of Dental Medicine, Buffalo, USA
| |
Collapse
|
41
|
Kolodrubetz D, Spitznagel J, Wang B, Phillips LH, Jacobs C, Kraig E. cis Elements and trans factors are both important in strain-specific regulation of the leukotoxin gene in Actinobacillus actinomycetemcomitans. Infect Immun 1996; 64:3451-60. [PMID: 8751884 PMCID: PMC174248 DOI: 10.1128/iai.64.9.3451-3460.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Actinobacillus actinomycetemcomitans, the etiologic agent of localized juvenile periodontitis, produces a potent leukotoxin that kills human neutrophils. The production of leukotoxin RNA can vary more than 50-fold among isolates of A. actinomycetemcomitans, and strains expressing high levels of leukotoxin RNA are most often found at sites of periodontal disease. To assess the relative contributions of transcription factors and promoter sequences in setting the disparate levels of leukotoxin RNA found, we have undertaken classical cis/trans analyses. First, the leukotoxin promoter regions from moderately leukotoxic (Y4) and minimally leukotoxic (ATCC 33384) strains of A. actinomycetemcomitans were cloned, sequenced, and compared with the previously sequences leukotoxin promoter region of the high-producer strain JP2. The Y4 and ATCC 33384 promoter regions each contain a 528-bp segment that is absent from JP2. Interestingly, the analysis of various deletion constructs in A. actinomycetemcomitans indicated that Y4, despite the large insertion, initiates leukotoxin RNA synthesis at the same promoter as JP2 does. To perform cis/trans analyses, these three leukotoxin promoter regions were cloned into a plasmid upstream of the reporter gene beta-galactosidase. Each plasmid was transformed into JP2, Y4, and ATCC 33384, and the beta-galactosidase levels were determined. The results indicated that the sequences responsible for down-regulating leukotoxin RNA levels in Y4 relative to JP2 are found within the transcribed region of the Y4 leukotoxin operon. Importantly, in ATCC 33384, strain-specific trans factors and promoter sequence differences are equally significant in determining the lower levels of leukotoxin RNA. We hypothesize that either strain ATCC 33384 has a negative regulatory protein (which is missing or mutated in JP2/Y4) or that JP2 and Y4 carry an activator that is missing or mutated in ATCC 33384.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | | | | | |
Collapse
|
42
|
Haubek D, Poulsen K, Westergaard J, Dahlèn G, Kilian M. Highly toxic clone of Actinobacillus actinomycetemcomitans in geographically widespread cases of juvenile periodontitis in adolescents of African origin. J Clin Microbiol 1996; 34:1576-8. [PMID: 8735124 PMCID: PMC229068 DOI: 10.1128/jcm.34.6.1576-1578.1996] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The bacterium Actinobacillus actinomycetemcomitans has been implicated in the pathogenesis of juvenile periodontitis as the etiologic agent on the basis of several lines of circumstantial evidence. A matter of extensive debate is whether A. actinomycetemcomitans is an exogenous contagious pathogen or an opportunistic pathogen that resides in the normal oral microflora. Here we show evidence of a single clone of A. actinomycetemcomitans isolated from multiple patients with juvenile periodontitis in members of families of African origin living in geographically widespread areas. The clone is characterized by a 530-bp deletion in the leukotoxin gene operon, resulting in a significantly increased production of leukotoxin.
Collapse
Affiliation(s)
- D Haubek
- Department of Oral Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
43
|
Sandmeier H, van Winkelhoff AJ, Bär K, Ankli E, Maeder M, Meyer J. Temperate bacteriophages are common among Actinobacillus actinomycetemcomitans isolates from periodontal pockets. J Periodontal Res 1995; 30:418-25. [PMID: 8544106 DOI: 10.1111/j.1600-0765.1995.tb01296.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Actinobacillus actinomycetemcomitans is a suspected etiologic agent in destructive periodontal diseases. The detection of bacteriophages in A. actinomycetemcomitans in the subgingival plaque of patients with rapidly destructive forms of periodontitis led to the hypothesis that bacteriophage infection might increase the virulence of this bacterium (19). A. actinomycetemcomitans was isolated from 68 subjects from the Netherlands and Switzerland with localized juvenile periodontitis, rapidly progressing periodontitis, or adult periodontitis, and was tested for the presence of temperate bacteriophage with the overlay plate technique. More than half of the A. actinomycetemcomitans strains were found to release bacteriophage which formed individual plaques on indicator strains. Electron microscopy of preparations from 7 strains revealed virions with an icosahedral head and a contractile tail typical for double-stranded DNA bacteriophages. The presence of A. actinomycetemcomitans carrying temperate bacteriophage was not correlated with the composition of the subgingival microflora nor with the clinical form of periodontal disease. Destructive periodontal disease of subjects with phage-carrying A. actinomycetemcomitans was not more severe than of subjects with phage-free A. actinomycetemcomitans as determined by several clinical parameters. In contrast, the pocket depth and the attachment loss were significantly lower for adult periodontitis subjects with phage-carrying A. actinomycetemcomitans. It seems unlikely that the frequently occurring temperate bacteriophages increase significantly the virulence of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- H Sandmeier
- Department of Preventive Dentistry, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Haubek D, Poulsen K, Asikainen S, Kilian M. Evidence for absence in northern Europe of especially virulent clonal types of Actinobacillus actinomycetemcomitans. J Clin Microbiol 1995; 33:395-401. [PMID: 7714199 PMCID: PMC227955 DOI: 10.1128/jcm.33.2.395-401.1995] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic analysis of an Actinobacillus actinomycetemcomitans population consisting of 88 clinically well characterized Finnish isolates performed by multilocus enzyme electrophoresis confirmed that the five serotypes divide into two phylogenetic lineages, one comprising serotypes b and c and one comprising serotypes a, d, and e. There was no association between any subpopulation and the periodontal health status of the subject from whom the isolates originated, suggesting that the role of A. actinomycetemcomitans in periodontitis is largely opportunistic in the population examined. Southern blot analyses of genomic DNA digested with each of the restriction endonucleases MspI, RsaI, and TaqI revealed extremely limited genetic polymorphism of the structural leukotoxin gene, ltxA, and its associated promoter. All isolates hybridized to a 530-bp DNA fragment derived from the promoter region of the leukotoxin gene operon of a minimally leukotoxic A. actinomycetemcomitans strain. Deletion of the 530-bp sequence has been associated with significantly increased toxin production detected among isolates from patients with juvenile periodontitis in North America but was detected neither among the 88 isolates in the present collection analyzed nor among more than 60 strains in another population of northern European A. actinomycetemcomitans isolates analyzed previously.
Collapse
Affiliation(s)
- D Haubek
- Institute of Medical Microbiology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
45
|
DiRienzo JM, Slots J, Sixou M, Sol MA, Harmon R, McKay TL. Specific genetic variants of Actinobacillus actinomycetemcomitans correlate with disease and health in a regional population of families with localized juvenile periodontitis. Infect Immun 1994; 62:3058-65. [PMID: 7913695 PMCID: PMC302927 DOI: 10.1128/iai.62.8.3058-3065.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A geographically homogeneous population of 83 subjects, from 21 families with localized juvenile periodontitis (LJP), and 35 healthy control subjects was monitored, over a 5-year period, for the presence of the periodontal pathogen Actinobacillus actinomycetemcomitans. Restriction fragment length polymorphism (RFLP) analysis was used to monitor the distribution of genetic variants of this bacterium in LJP-susceptible subjects that converted from a healthy to a diseased periodontal status. A. actinomycetemcomitans was cultured from 57% of the LJP family members accessioned into the study. Nine of 36 LJP-susceptible subjects, in seven families, developed signs of periodontal destruction. All but one of these conversion subjects harbored A. actinomycetemcomitans. Bacterial variants representative of a single RFLP group (II) showed the strongest correlation with conversion (P < 0.002). Six of nine conversion subjects were infected with A. actinomycetemcomitans from this group. RFLP group II variants also prevailed in 8 of 22 probands but were absent in the 35 healthy control subjects. In contrast to the selective distribution of group II variants is diseased individuals, variants belonging to RFLP groups XIII and XIV were found exclusively in the control subjects. Thus, the use of RFLP to type clinical isolates of A. actinomycetemcomitans has resulted in the identification of genetic variants that predominate in LJP and health. These results indicate that studies concerned with the pathogenicity of this bacterium in LJP should be focused on the group II variants.
Collapse
Affiliation(s)
- J M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | |
Collapse
|